SUPPLEMENTAL MATERIAL

Deep Mining of Oxysterols and Cholestenoic Acids in Human Plasma and Cerebrospinal Fluid: Quantification using Isotope Dilution Mass Spectrometry

Eylan Yutuc¹, Alison L. Dickson¹, Manuela Pacciarini¹, Lauren Griffiths¹, Paul R.S. Baker², Lisa Connell², Anders Öhman³, Lars Forsgren⁴, Miles Trupp⁴, Sílvia Vilarinho⁵, Youssef Khalil⁶, Peter T. Clayton⁶, Sinan Sari⁷, Buket Dalgic⁷, Philip Höflinger⁸, Ludger Schöls^{8,9}, William J. Griffiths¹ and Yuqin Wang¹

¹Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK

²Avanti Polar Lipids Inc, Alabaster, AL, USA

³Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden

⁴Department of Clinical Science, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden

⁵Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale University School of Medicine, New Haven, CT, USA

⁶Inborn Errors of Metabolism, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK

⁷Department of Pediatrics, Division of Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey

⁸Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany

⁹German Center for Neurodegenerative Diseases (DZNE), Tübingen

Supplemental Information

Supplemental Methods

Flowchart 1. Schematic illustration of sample preparation. Single-phase liquid extraction is performed into ethanol containing internal standards in the presence or absence of 0.35 M KOH.

Flowchart 2. Different protocols for single-phase liquid extraction.

Flowchart 3. Flowchart showing sterol identification and quantification routine.

Supplemental Figures and Tables

Figure S1. Syn (Z) and anti (E) conformers of the GP-derivative exemplified for 24S-HC. Also shown are 3D minimised energy structures (Chem 3D Pro). MS^2 fragmentation results in loss of the pyridine (Py) group with the formation of the [M-Py]⁺ fragment ion.

Figure S2. LC-MS separation of GP-derivatised monohydroxycholesterols (HC). (A) Mass spectrometric peaks at m/z 546.48 corresponding to the [M]⁺ ion of [²H₇]24S-HC (upper panel); the [M+1]⁺ ion of [²H₆]26-HC (lower panel); and unresolved [M]⁺ ion of [²H₇]24R-HC and the [M+1]⁺ ion of [²H₆]26-HC (central panel). The structure of the [M+1]⁺ ion of [²H₆]26-HC is arbitrarily drawn with a ¹³C at C-21. (B) Upper panel, TIC 534.4 \rightarrow 455.4 \rightarrow for monohydroxycholestenones in plasma. Lower panel TICs 541.5 \rightarrow 462.4 for [²H₇]-labelled monohydroxycholesterols.

Figure S3. MS³ fragmentation of GP-derivatised monhydroxycholesterols in plasma. MS³ ([M]⁺→[M-Py]⁺→) spectra of (A) 24S-HC; (B) 24R-HC; (C) [²H₇]24S-HC; (D) [²H₇]24R-HC; (E)25-HC; (F) [²H₆]25-HC; (G) (25R)26-HC; (H) [²H₆](25R)26-HC; (I) [²H₇]22R-HC; (J) 22S-HC; (K) [²H₇]22S-HC. The formation of key fragment ions is illustrated in Figure S4A-D.

Figure S4. Key fragmentation routes in the MSⁿ spectra of GP-derivatised oxysterols. Mechanisms of side-chain cleavage are indicated by purple arrows. (A) 24R/S-HC and $[^{2}H_{6}]$ 24R/S-HC; (B) 25-HC and $[^{2}H_{6}]$ 25-HC; (C) (25R)26-HC and $[^{2}H_{6}]$ (25R)26-HC; (D) 22R/S-HC and $[^{2}H_{7}]$ 22R/S-HC; (E) 7-HC and $[^{2}H_{7}]$ 7-HC; (F) 6 β -HC and $[^{2}H_{7}]$ 6 β -HC; (G) 7-OC and $[^{2}H_{7}]$ 7-OC; (H) 12 α -HC; (I) 7 α ,25-diHC and $[^{2}H_{6}]$ 7 α ,25-diHC; (J) 7 α ,(25R/S)26-diHC and $[^{2}H_{6}]$ 7 α ,(25R/S)26-diHC; (K) 7 α ,12 α -diHC; (L) 3 β ,7-diHCA(25R/S) and $[^{2}H_{3}]$ 3 β ,7-diHCA(25R/S); (M) 25-D₃ and $[^{2}H_{6}]$ 25-D₃; (N) 3 β H- Δ ⁵-BA and 3 β ,7-diHCA; (D) 3 β -HCA; (P) 3 β ,7 α ,24-triHCA; (Q) 3 β ,7 α ,25-triHCA; (R) 3 β ,7 α ,12 α -triHCA; (S) 3 β ,25-diHCA; (T) 3 β ,27-diHCA; (U) 3 β ,22,25-triHC-24O; (V) 3 β ,22-diHC-24O.

Figure S5. MS³ fragmentation of GP-derivatised monohydroxycholesterols and monohydroxycholestenones in plasma. MS³ ($[M]^+ \rightarrow [M-Py]^+ \rightarrow$) spectra of (A) 7β-HC; (B) [²H₇]7β-HC; (C) 7α-HC; (D) [²H₇]7α-HC; (E) 6β-HC (5α,6β-diHC-18), generated from the acid catalysed dehydration of 5α,6β-diHC; (F) [²H₇]6β-HC ([²H₇]5α,6β-18) generated from the acid catalysed dehydration of [²H₇]5α,6β-diHC; (G) 7-OC; (H) [²H₇]7-OC; (I) 7α-HCO; (J) [²H₇]7α-HCO; (K) 12α-HC (no authentic standard). The formation of key fragment ions is illustrated in Figure S4E-H.

Figure S6. LC-MS separation of GP-derivatised dihydroxycholesterols, dihydroxycholestenones (diHCO), dihydroxycholestenoic (diHCA) and hydroxyoxocholestenoic (H,O-CA) acids. (A) RIC for the $[M]^+$ ions of (upper panel) 7 α ,25-diHC + 7 α ,25-diHCO and 7 α ,(25R/S)26-diHC + 7 α ,(25R/S)26-diHCO (555.4317 ± 5 ppm) found in plasma and (lower panel) [${}^{2}H_{6}$]7 α ,25-diHC and [${}^{2}H_{6}$]7 α ,(25R/S)26-diHC (561.4694 ± 5 ppm) over a 37 min gradient. (B) RIC of the [M]⁺ ions of dihydroxycholestenones (550.4003 ± 5 ppm) found in plasma. Upper panel 37 min gradient, lower panel 17 min gradient. (C) RIC for the [M]⁺ ions of (upper panel) 7 α H,3O-CA(25R/S) (564.3796 ± 5 ppm) found in plasma and (lower panel) [${}^{2}H_{3}$]7 α H,3O-CA(25R/S) (567.3984 ± 5 ppm) over a 37 min gradient. (D) RIC for the [M]⁺

ions of (upper panel) 7α H,3O-CA(25R/S) + 3 β , 7α -diHCA(25R/S) (569.4110 ± 5 ppm) found in plasma and (lower panel) [2 H₃] 7α H,3O-CA(25R/S) (572.4298 ± 5 ppm) over a 37 min gradient. Coloured dashed lines indicate the coincidence of oxysterols between chromatograms.

Figure S7. MS³ fragmentation of GP-derivatised dihydroxycholesterols (diHC) and dihydroxycholestenones (diHCO) in plasma. MS³ ($[M]^+ \rightarrow [M-Py]^+ \rightarrow$) spectra of (A) 7 α ,25-diHC + 7 α ,25-diHCO; (B) [²H₆]7 α ,25-diHC; (C) 7 α ,(25S)26-diHC + 7 α ,(25S)26-diHCO; (D) [²H₆]7 α ,(25S)26-diHC; (E) 7 α ,(25R)26-diHC + 7 α H,(25R)26-diHCO; (F) [²H₆]7 α ,(25R)26-diHC; (G) 7 α ,25-diHCO; (H) 7 α ,(25R)26-diHCO; (I) 7 α ,12 α -diHC. The formation of key fragment ions is illustrated in Figure S4I – S4K.

Figure S8. MS³ fragmentation of GP-derivatised dihydroxycholestenoic (diHCA) and hydroxyoxocholestenoic (H,O-CA) acids in plasma. MS³ ($[M]^+ \rightarrow [M-Py]^+ \rightarrow$) spectra of (A) 3 β ,7 β -diHCA(25R); (B) 3 β ,7 α -diHCA(25S) + 7 α H,3O-CA(25S); (C) [²H₃]3 β ,7 α -diHCA(25S); (D) 3 β ,7 α -diHCA(25R) + 7 α H,3O-CA(25R); (E) [²H₃]3 β ,7 α -diHCA(25R); (G) 7 α H,3O-CA(25R); (H) [²H₃]7 α H,3O-CA(25R). The formation of key fragment ions is illustrated in Figure S4L.

Figure S9. LC-MS(MS³) of cholesterol and other lipophilic sterols in plasma. (A) RIC for the [M]⁺ ions of cholesterol (upper panel, 523.4419 ± 5 ppm), [²H₇]cholesterol (central panel, 530.4858 ± 5 ppm) and isomers of cholestadien-3β-ol (lower panel 521.4262 ± 5 ppm). MS³ ([M]⁺ \rightarrow [M-Py]⁺ \rightarrow) spectra of (B) cholesterol, (C) [²H₇]cholesterol, (D) desmosterol (24-DHC) and (E) 8(9)-dehydrocholesterol (8-DHC). The formation of key fragment ions is illustrated in (F – H).

Figure S10. LC-MS separation of GP-derivatised 25-hydroxyvitanin D₃ and sterol-acids in plasma. (A) RIC for the [M]⁺ ions of 25-D₃ (537.4211 ± 5 ppm, upper panel) and [²H₆]25-D₃ (543.4588 ± 5 ppm, lower panel); (B) 3 β H- Δ^5 -BA (511.3691 ± 5 ppm); (C) 3 β ,7 β -diH- Δ^5 -BA and 3 α ,7 α -diH- Δ^5 -BA + 7 α H,3O- Δ^4 -BA (527.3640 ± 5 ppm, upper panel); 7 α H,3O- Δ^4 -BA (522.3326 ± 5 ppm, lower panel); (D) 3 β -HCA + 3O-CA (553.4161 ± 5 ppm, upper panel); 3O-CA (548.3847 ± 5 ppm, lower panel); (E - H) 3 β ,7 α ,24-triHCA + 7 α ,24-diH,3O-CA, 3 β ,7 α ,25-triHCA + 7 α ,25-diH,3O-CA and 3 β ,7 α ,12 α -triHCA + 7 α ,12 α -diH,3O-CA (585.4059 ± 5 ppm, upper panels); (E) Lower panel, 7 α ,24-diH,3O-CA, 7 α ,25-diH,3O-CA and 7 α ,12 α -diH,3O-CA (580.3739 ± 5 ppm); (F – H) Lower panels show MRM chromatograms targeting (F) 3 β ,7 α ,24-triHCA + 7 α ,24-diH,3O-CA; (G) 3 β ,7 α ,25-triHCA + 7 α ,25-diH,3O-CA; (H) 3 β ,7 α ,12 α -triHCA and 7 α ,12 α -diH,3O-CA. Authentic standards are not available for 3 β ,7 α ,12 α -triHCA and 7 α ,12 α -diH,3O-CA. Coloured dashed lines indicate the coincidence of oxysterols between chromatograms. MS³ spectra are presented in Figures S11 & S12.

Figure S11. MS³ fragmentation of GP-derivatised 25-hydroxyvitamin D₃ and sterol acids in plasma. MS³ ([M]⁺ \rightarrow [M-Py-H₂O]⁺ \rightarrow) spectra of (A) 25-D₃ and (B) [²H₆]25-D₃. MS³ ([M]⁺ \rightarrow [M-Py]⁺ \rightarrow) spectra of (C) 3βH-Δ⁵-BA; (D) 3β,7β-diH-Δ⁵-BA; (E) 3β,7α-diH-Δ⁵-BA + 7αH,3O-Δ⁴-BA; (F) 7αH,3O-Δ⁴-BA; (G) 3β-HCA + 3O-CA; (H) 3O-CA. The formation of key fragment ions is illustrated in Figure S4M-O.

Figure S12. MS³ fragmentation of GP-derivatised of trihydroxycholestenoic (triHCA) and dihydroxy-3oxocholestenoic acids (diH,3O-CA) in plasma. MS³ ([M]⁺ \rightarrow [M-Py]⁺ \rightarrow) spectra of (A) 3 β ,7 α ,24-triHCA + 7 α ,24-diH,3O-CA; (B) 3 β ,7 α ,25-triHCA + 7 α ,25-diH,3O-CA; (C) 3 β ,7 α ,12 α -triHCA + 7 α ,12 α -diH,3O-CA (no authentic standard). The formation of key fragment ions is illustrated in Figure S4P-R.

Figure S13. MS³ fragmentation of GP-derivatised oxysterols in plasma. MS³ spectra of the postulated structures (A) 3β ,25-diHCA or 3β ,25,*x*-trihydroxycholest-5-en-y-one (no authentic standards available); (B) 3β ,27-diHCA or 3β ,27,*x*-trihydroxycholest-5-en-y-one (no authentic standards available); (C) 3β ,*x*-diHCA or 3β ,*x*,*y*-trihydroxycholest-5-en-z-one (no authentic standards available); (D) 3β ,22,25-trihydroxycholest-5-en-24-one or 3β ,x-diHCA (no authentic standard); (E) 3β ,22-dihydroxycholest-5-en-22-one (no authentic standard); (F) 7α ,x-diH,3O-CA (no

authentic standard). The more likely structures are given in *italics*. The formation of key fragment ions is illustrated in Figure S4S-V.

Figure S14. MS³ fragmentation of GP-derivatised of trihydroxycholestenoic (triHCA) and dihydroxy-3oxocholestenoic acids (diH,3O-CA) in CSF. MS³ ($[M]^+ \rightarrow [M-Py]^+ \rightarrow$) spectra of (A) 3 β ,7 α ,24-triHCA + 7 α ,24-diH,3O-CA; (B) 3 β ,7 α ,25-triHCA + 7 α ,25-diH,3O-CA; (C) 3 β ,7 α ,12 α -triHCA + 7 α ,12 α -diH,3O-CA (no authentic standard) and (D) 3 β ,7 α ,x-triHCA + 7 α ,x-diH,3O-CA. The formation of key fragment ions is illustrated in Figure S4P-R.

Table S1. Systematic and common names of sterols including oxysterols and sterol-acids identified or partially identified in the current study. Supplier of reference standards are indicated when available.

Table S2. Figures of merits when varying amount of OxysterolSPLASH at a plasma volume of 100 μL.

Table S3. Figures of merit revealed by standards additions to (A) 100 μ L of plasma using 50 μ L of OxysterolSPLASH and (B) 100 μ L CSF using 20 μ L of OxysterolSPLASH.

Table S4. Diagnostic fragment ions and simple rules for structure determination of GP-derivatised sterols.

Schematic illustration of sample preparation. Single-phase liquid extraction is performed into ethanol containing internal standards in the presence or absence of 0.35 M KOH

Flowchart 2. Different protocols for single-phase liquid extraction.

Flowchart 3

Record high resolution accurate mass spectra via LC-MS

Generate RICs for potential oxysterols, cholestenoic and cholenoic acids

Record MS³ spectra on candidate sterols

Postulate structures from retention time data, accurate mass measurement and MS³ spectra

Identify structures where possible against reference standards or library thereof

Where standards not available postulate structures to reveal a "presumptive" identification

Perform absolute quantification, where possible, on identified structures against exact isotope labelled surrogates

If absolute quantification not possible perform semiquantification against isotope labelled structural analogue

In the absence of authentic standard perform approximate quantification against isotope labelled structural analogue

Flowchart showing sterol identification and quantification routine

S2A

S3A

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:44:12 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

15.14 AV: 1 NL: 3.85E3

S3B

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 02:44:12

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug

 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

18.89 AV: 1 NL: 1.19E2

S3C

m/z

S3D

S3E

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:44:12 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

15.94 AV: 1 NL: 2.08E3

S3F

m/z

S3G

S3H

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:44:12 100uL NIST (2018) + 100ul OxysteroISPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 546.48@cid30.00 462.41@cid35.00 [125.00-555.0]

7.86 AV: 1 NL: 1.28E3

S3

S3J

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 02:23:26

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug
 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]
 B.

8.35 AV: 1 NL: 4.92E1

S3K

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:44:12 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 545.47@cid30.00 461.40@cid35.00 [125.00-555.0]

18.35 AV: 1 NL: 6.81E3

Exact Mass: 541.4493

Exact Mass: 462.4071

Exact Mass: 477.3958

S4N

S4S

S4T Figure S4T

S5A

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

9.13 AV: 1 NL: 5.83E2

S5B

9.10 AV: 1 NL: 1.77E3

S5C

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

9.70 AV: 1 NL: 1.19E4

S5D

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 546.48@cid30.00 462.41@cid35.00 [125.00-555.0]

9.66 AV: 1 NL: 2.06E4

S5E

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

9.97 AV: 1 NL: 1.11E3

S5F

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 546.48@cid30.00 462.41@cid35.00 [125.00-555.(

9.93 AV: 1 NL: 2.25E3

S5G

S5H

S5I

S5J

S5K

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 02:23:26 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 539.44@cid30.00 455.36@cid35.00 [125.00-550.0]

8.48 AV: 1 NL: 5.96E1

S6A

S6D

S7A

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 03:26:25

 100uL NIST (2018) + 100ul OxysteroISPLASH + 10ng 22S-HCO-D7 + 20ug

 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 555.43@cid30.00 471.36@cid35.00 [125.00-560.(

5.03 AV: 1 NL: 2.77E3

S7B

S7C

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 03:26:25 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 555.43@cid30.00 471.36@cid35.00 [125.00-560.(

5.43 AV: 1 NL: 5.27E2

S7D

S7E

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 03:26:25 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 555.43@cid30.00 471.36@cid35.00 [125.00-560.0]

5.64 AV: 1 NL: 3.64E3

S7F

S7G

S7H

EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1B=GPd0_s2_04 #1202 RT: 5.63 AV: 1 NL: 3.56E3 F: ITMS + c ESI Full ms3 550.40@cid30.00 471.36@cid35.00 [125.00-56

S7I

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 03:26:25

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug
 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 555.43@ cid30.00 471.36@ cid35.00 [125.00-560.0]
 125.00-560.0]

8.41 AV: 1 NL: 2.53E2

S8A

S8B

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 03:47:11 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 569.41@cid30.00 485.34@cid35.00 [130.00-575.(

5.13 AV: 1 NL: 7.92E3

S8C

S8D

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 03:47:11 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 569.41@cid30.00 485.34@cid35.00 [130.00-575.(

5.36 AV: 1 NL: 3.45E4

S8E

S8F

500

S8G

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 03:47:11

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug

 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 564.38@cid30.00 485.34@cid35.00 [130.00-575.0]

5.35 AV: 1 NL: 2.29E4

S8H

S9A

S9B

.....

S9C

S9D

EY_200610_[190628_NIST-QC_OxySplash_+... 06/10/20 17:50:25 100uL NIST (2018) + 100uL splash + 20ng 22S-HCO-D7 + 20ug Chol-d7 (α EY_200610_[190628_NIST-QC_OxySplash_+22S-HCO-d7_+Chol-d7_Fr3A F: ITMS + c ESI Full ms3 521.43@cid30.00 437.35@cid35.00 [120.00-530.0]

S9E

EY_200610_[190628_NIST-QC_OxySplash_+... 06/10/20 17:50:25 100uL NIST (2018) + 100uL splash + 20ng 22S-HCO-D7 + 20ug Chol-d7 (ca EY_200610_[190628_NIST-QC_OxySplash_+22S-HCO-d7_+Chol-d7_Fr3A F: ITMS + c ESI Full ms3 521.43@cid30.00 437.35@cid35.00 [120.00-530.0]

S9F

Chemical Formula: C₂₇H₃₆D7⁺ Exact Mass: 374.3799 S9G

S9H

S10A

S10B

S10C

S10D

S10E

S10F

S10G

S10H

11A

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 05:10:14

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug

 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 537.42@cid30.00 435.34@cid35.00 [115.00-545.0]

8.19 AV: 1 NL: 4.20E3

11B

 EY_191014_100uL-NIST-QC_with_2017-Pro...
 10/16/19 13:46:25

 100uL NIST (2018) + 2017-Protocol-iSTDs (20ng 24RS-HC-d6-cert) + 10ng

 EY_191014_100uL-NIST-QC_with_2017-Protocol-iSTDs_rep2of5_Fr1A=GF

 F: ITMS + c ESI Full ms3 543.46@cid30.00 441.37@cid35.00 [120.00-550.0]

7(certified)

50 RT: 8.19 AV: 1 NL: 1.28E4

11C

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 05:51:45 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 511.37@cid30.00 427.30@cid35.00 [115.00-515.(

.35 AV: 1 NL: 6.55E2

11D

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:07:57 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 527.36@cid30.00 443.29@cid35.00 [120.00-535.0]

.12 AV: 1 NL: 1.08E3

11E

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:07:57 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 527.36@cid30.00 443.29@cid35.00 [120.00-535.0]

.62 AV: 1 NL: 3.59E3

11F

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:07:57 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 522.33@cid30.00 443.29@cid35.00 [120.00-535.(

.64 AV: 1 NL: 2.12E3

11**G**

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:28:42 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 553.42@cid30.00 469.34@cid35.00 [125.00-560.0]

7.22 AV: 1 NL: 3.11E4

11H

 EY_191014_100uL-NIST-QC_100uL-OxySpla...
 10/15/19 04:28:42

 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug
 EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E

 F: ITMS + c ESI Full ms3 548.38@cid30.00 469.34@cid35.00 [125.00-560.0]
 125.00-560.0]

7.26 AV: 1 NL: 4.64E2

S12A

EY_191014_100uL-NIST-QC_100uL-OxySpla...

10/15/19 04:28:42

S12B

12C

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:28:42 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 585.41@cid30.00 501.33@cid35.00 [135.00-590.0]

.37 AV: 1 NL: 5.89E2

S13A

S13B

500

S13C

S13D

S13E

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:28:42 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 553.42@cid30.00 469.34@cid35.00 [125.00-560.0]

6.90 AV: 1 NL: 4.69E3

S13F

EY_191014_100uL-NIST-QC_100uL-OxySpla... 10/15/19 04:28:42 100uL NIST (2018) + 100ul OxysterolSPLASH + 10ng 22S-HCO-D7 + 20ug EY_191014_100uL-NIST-QC_100uL-OxySplash_rep2of5_Fr1A=GPd5_Fr1E F: ITMS + c ESI Full ms3 585.41@cid30.00 501.33@cid35.00 [135.00-590.0]

.04 AV: 1 NL: 5.27E2

S14A

500

S14B

S14C

S14D

