Supporting Information for

Yoshihiro Ishikawa^{1,2,3}, Yuki Taga⁴, Keith Zientek^{2, #a}, Nobuyo Mizuno^{2, #b¶}, Antti M. Salo⁵, Olesya Semenova², Sara F. Tufa², Douglas R. Keene², Paul Holden², Kazunori Mizuno⁴, Douglas B. Gould^{3,6} Johanna Myllyharju⁵ and Hans Peter Bächinger¹

From ¹ Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA, ² Shriners Hospital for Children, Research Department, Portland, Oregon, USA, ³ Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA, ⁴ Nippi Research Institute of Biomatrix, Ibaraki, Japan, ⁵ Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland, ⁶ Department of Anatomy, University of California, San Francisco, School of Medicine, CA USA.

Running title: Two distinct roles of LH1and P3H3 in lysine hydroxylation

Present address #; ^a Proteomics core facility, Oregon Health & Science University, Portland, Oregon, USA, ^b Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA.

* To whom correspondence should be addressed: Yoshihiro Ishikawa, Ph.D., Department of Ophthalmology, University of California, San Francisco, School of Medicine, California, USA; Tel: (503) 866-5940, E-mail: <u>yoshi.molecularensemble@gmail.com</u> and yoshihiro.ishikawa@ucsf.edu, ORCID-ID: https://orcid.org/0000-0003-2013-0518

Experiment	Mouse line	Age	Related Figure and Table		
Western blotting	Р3Н3	3-month-old	Figures 1C and S1B		
X-ray	РЗН3	4-month-old	Figure 1E		
Collagen extraction # and Protein level	РЗНЗ	2-5-month-old	Figures 2, 3, 4, 5, 6, 8, S2, S3, S4, S5, S6, S7, S8 and S9 / Table 1, 2,		
analysis	LH1	2.5-month-old	3, 4, 5 and S1		
Skin staining	Р3Н3	8-month-old	Figures 9A, 9B and 9C		
EM	Р3Н3	3-month-old	Figure 9D		
Fibril diameter	РЗН3		Figure 9E		

Table S1: Detailed information of harvested tissue and specimen

#: Extracted collagens were used for SDS-PAGE analysis, amino acid analysis, circular dichroism, glycosylation analysis and site-specific characterization of lysine PTMs.

Table S2: Comparison of overall proline and lysine post-translational modifications between P3H3 WT and LH1 WT mice in type I collagen between tissues and type V collagen in the skin.

			3Hyp (%)	P value	4Hyp (%)	P value	Pro (%)	P value	Hyl (%)	P value	Lys (%)	P value
Col5	skin	P3H3 WT	1.14 ± 1.1	0.91743	44.8± 4.5	0.03363	54.1 ± 5.0	0.0508	60.4 ± 4.7	0.86983	39.6 ± 4.7	0.8186
		(5)										
		LH1 WT	1.07 ± 0.20	-	52.5 ± 2.1		46.5 ± 2.3	-	60.0 ± 2.6	-	40.5 ± 2.6	-
		(3)										
Col1	skin	P3H3 WT	0.17 ± 0.17	0.04954	47.1 ± 3.3	0.06191	52.7 ± 3.5	0.05605	16.9 ± 4.4	0.63679	83.1 ± 2.6	0.60438
		(4)										
		LH1 WT	0.57 ± 0.27		51.1 ± 1.1		48.3 ± 1.3		18.2 ± 2.4		81.7 ± 2.4	
		(4)										
	tendon	P3H3 WT	0.95 ± 0.57	0.41272	44.5 ± 2.7	0.04573	54.6 ± 3.4	0.06719	19.7 ± 2.6	0.18342	80.3 ± 2.5	0.17535
		(6)										
		LH1 WT	1.17 ± 0.26	-	47.2 ± 0.9	-	51.7 ± 1.1		18.1 ± 0.6	-	81.9 ± 0.6	
		(6)										
	bone	P3H3 WT	1.46 ± 0.84	0.20661	48.1 ± 1.72	0.98643	50.5 ± 2.1	0.60563	22.0 ± 3.3	0.09326	78.0 ± 3.3	0.12138
		(5)										
		LH1 WT	0.85 ± 0.53	1	48.0 ± 1.2	1	51.1 ± 1.5	1	18.3 ± 2.8		81.3 ± 2.6	1
		(5)										

Values are given as means \pm S.D. The number in the bracket next to the genotypes indicates biological replicates.

3Hyp + 4Hyp + Pro = 100% and Lys + Hyl = 100%. Values of amino acids were obtained using amino acid analysis.

Note: 3Hyp; 3-hydroxyproline, 4Hyp; 4-hydroxyproline, Pro; unmodified proline, Lys; unmodified lysine, Hyl; hydroxylysine

Name	company	Product number	dilution ratio	Gel running buffer
anti-LH1 (PLOD1) Mouse monoclonal	Santa Cruz Biotechnology	sc-271640	1:250	MOPS
anti-P3H3 (LEPREL2) Rabbit Polyclonal	proteintech	16023-1-AP	1:500	MOPS
anti-SC65 (LEPREL4) Rabbit Polyclonal	proteintech	15288-1-AP	1:500	MOPS
anti-CypB (PPIB) Rabbit Polyclonal	Sigma-Aldrich	SAB4200201	1:1000	MES
anti-LH2 (PLOD2) Rabbit Polyclonal	proteintech	21214-1-AP	1:500	MOPS
anti-FKBP65 (FKBP10) Rabbit Polyclonal	proteintech	12172-1-AP	1:1000	MOPS
anti-Hsp47 (SERPINH1) Rabbit Polyclonal	proteintech	10875-1-AP	1:500	MES
anti-LH3 (PLOD3) Rabbit Polyclonal	proteintech	11027-1-AP	1:500	MOPS
anti-FKBP22 (FKBP14) Rabbit Polyclonal	proteintech	15884-1-AP	1:500	MES
anti-β-Tubulin III Rabbit Polyclonal	Sigma-Aldrich	T2200	1:500	MOPS
Sea	condary antibody			
HRP-conjugated anti-mouse IgG	Dako	P0447	1:1	0,000
HRP-conjugated anti-rabbit IgG	GE Healthcare	NA934	1:3	0,000

Table S3: Antibodies and gel running buffers used for Western blot analyses.

(A) Original agarose gel image of PCR genotyping of P3H3 null, heterozygote and WT mice. The lanes circled by white dots are used in Figure 1B. (B) Original image of a Western blot of whole mouse kidney lysates analyzed with anti-P3H3 (left) anti-GAPDH (right), respectively.

Figure S2. SDS-PAGE analysis of purified pepsin treated skin type V collagen of P3H3 and LH1 null mice.

SDS-PAGE analysis of purified pepsin treated skin type V collagen of P3H3 and LH1 null mice and their WT controls. The purified skin type V collagen was run on a NuPAGE 3 - 8 % Tris-Acetate gel in the presence of a reducing agent and stained with GelCode Blue Stain Reagent. Each sample in the SDS-PAGE gel represents a biological replicate, i.e. an independently prepared collagen sample from the tissue. Panel (A) and (B) represent the comparison between P3H3 WT and null, and between LH1 WT and null mice, respectively. The area circled by black line is used in Figure 2A.

Figure S3. Occupancy (%) of glycosylation in total hydroxylysine residues in skin type V collagen from P3H3 null mice.

The occupancy of *O*-glycosylation attached to hydroxylysine (GGHL + GHL + free Hyl = 100) in skin type V collagen of WT and P3H3 null mice is demonstrated in the left bar graph generated by values from the table underneath. The right bar graph shows the ratio of total PTMs in lysine (Lys + Hyl = 100) and is the same as in Figure 2B. Values of *O*-glycosylation and unmodified hydroxylysine after alkaline hydrolysis were obtained by LC-MS. The number of biological replicates is n = 3 for both genotypes. The numbers in the graphs indicate the mean \pm S.D. P values obtained by statistical analyses are shown in the table underneath. The values of total hydroxylysine and lysine were from Table 1. [GGHL (gray); glucosylgalactosyl hydroxylysine, GHL (light pink); galactosyl hydroxylysine, Free Hyl (dark pink); unmodified hydroxylysine, Total Hyl (blue); total hydroxylysine, Lys (green); unmodified lysine].

Figure S4. The melting temperature of each fraction folded in skin type V collagen from P3H3 null mice.

The thermal stability of skin type V collagen from P3H3 WT (blue) and null (red) mice was monitored by CD at 221 nm in 0.05 M acetic acid between 30 and 38 °C (left panel). The whole graph used for this analysis is shown in Figure 2C. The table on the right presents the melting temperature of each fraction folded in the CD curve of P3H3 WT and null skin type V collagen. The number of biological replicates is n = 3 for both WT and P3H3 null. The numbers in the graphs indicate the mean \pm S.D. P values obtained by statistical analyses are also shown.

(A) $\alpha 1(V)$ [73–87] GFDGLAGLOGEK#GHR (z = 3, m/z 622.9722; O indicates Hyp, and K# indicates GGHL). (B) $\alpha 2(V)$ [76–90] GFOGAOGLOGLK#GHR (z = 3, m/z 616.9731). –GG represents deglycosylated fragment ions.

B

skin

bone

the tissue. Panel (A) and (B) represent the comparison between P3H3 WT and null, and between LH1 WT and null mice, respectively. The black vertical lines in panel (A) denotes irrelevant lanes that were eliminated from the original image. The area circled by black line is used in Figure 4A.

РЗНЗ								
			Lys (%): 83.1 ± 2.6					
WT	17.9 ± 1.34		8.19 ± 0.51		74.0 ±1.81			
	GGHL	P-value	GHL (%)	P-value	Free Hyl (%)	P-value		
	(%)	0.012	GILL (70)	0.953	11cc Hyr(70)	0.021		
Null	14.2 ± 1.57		8.17 ± 0.52		77.6 ± 1.52			
		Lys (%): 96.0 ± 1.3						

	LH1									
			Lys (%): 81.7 ± 2.4							
WT	17.2 ± 1.44		9.51±0.77		73.3 ± 0.80					
	GGHL	P-value	GHL (%)	P-value	Free Hyl (%)	P-value				
	(%)	2.21E-5	GHL (70)	0.602	Free Hyr (70)	4.36E-5				
Null	7.74 ± 0.72		9.16 ± 1.03		83.1 ±1.70					
		Lys (%): 98.1 ± 0.4								

The occupancy of *O*-glycosylation attached to hydroxylysine (GGHL + GHL + Free Hyl = 100) in skin type 1 collagen of P3H3 null and LH1 null mice and their WT controls is demonstrated in the left bar graph which is generated by values from the table underneath. The right bar graph shows the ratio of total PTMs in lysine (Lys + Hyl = 100) and is the same as in Figure 4B. Values of *O*-glycosylation and unmodified hydroxylysine after alkaline hydrolysis were obtained by LC-MS., The number of biological replicates was

n = 4 for all genotypes. The numbers in the graphs indicate the mean \pm S.D. P values obtained by statistical analyses are shown in the table underneath. The values of total hydroxylysine and lysine in the right bar graph are from Table 1. [GGHL (gray); glucosylgalactosyl hydroxylysine, GHL (light pink); galactosyl hydroxylysine, Free Hyl (dark pink); unmodified hydroxylysine, Total Hyl (blue); total hydroxylysine, Lys (green); unmodified lysine].

РЗНЗ								
			Lys (%): 80.3 ± 2.5					
WT	2.10 ± 0.05		1.84 ± 0.16		96.1 ± 0.18			
	GGHL	P-value	GHL (%)	P-value	Free Hyl (%)	P-value		
	(%)	1.50E-4	GILL (70)	0.003	11cc Hyr(70)	7.10E-5		
Null	5.38 ± 0.78		2.42 ± 0.19		92.2 ± 0.78			
		Lys (%): 90.2 ± 0.9						

LH1									
			Lys (%): 81.9 ± 0.6						
WT	2.48 ± 0.25		2.00 ± 0.11		95.5 ± 0.22				
	GGHL	P-value	GHL (%)	P-value	Free Hyl (%)	P-value			
	(%)	3.69E-4		0.003	11cc Hyr(70)	2.64E-4			
Null	17.9 ± 4.28		3.15± 0.46		79.0 ± 4.33				
		Lys (%): 98.4 ± 0.5							

The occupancy of *O*-glycosylation attached to hydroxylysine (GGHL + GHL + Free Hyl = 100) in tendon type 1 collagen of P3H3 null and LH1 null mice and their WT controls is demonstrated in the left bar graph which is generated by values from the table underneath. The right bar graph shows the ratio of total PTMs in lysine (Lys + Hyl = 100) and is the same as in Figure 4B. Values of *O*-glycosylation and unmodified hydroxylysine after alkaline hydrolysis were obtained by LC-MS. The number of biological replicates was

n = 4 for all genotypes. The numbers in the graphs indicate the mean \pm S.D. P values obtained by statistical analyses are in the table underneath. The values of total hydroxylysine and lysine in the right bar graph are from Table 1. [GGHL (gray); glucosylgalactosyl hydroxylysine, GHL (light pink); galactosyl hydroxylysine, Free Hyl (dark pink); unmodified hydroxylysine, Total Hyl (blue); total hydroxylysine, Lys (green); unmodified lysine].

Figure S9. Western blots analysis of proteins in the molecular ensemble involved in lysyl hydroxylation using skin tissue extracts

The skin tissue extracted from WTs and P3H3 null mice and LH1 null mice were electrophoresed on a Bolt 4-12% Bis-Tris Plus Gel followed by transfer to PVDF and Western blotting. (A) and (B) shows the probing HRP-conjugated anti-mouse IgG and anti-rabbit IgG as a secondary antibody, respectively. To verify non-specific bands raised by the secondary antibody, the membrane probed with only secondary antibody is included in (A). Antibodies used to the blotting are listed in Supplemental Table S3. The asterisk indicates the migration corresponding to the molecular weight of the protein, which was used for further quantitative analysis.