

Supplementary Figure 1. Terpenoid biosynthesis in a plant cell can proceed via the chloroplast localized DXP pathway and the cytosol localized MEV pathway. G3P, glyceraldehyde 3-phosphate; DOXP, 1-deoxy-D-xylulose-5-phosphate synthase; IPP, isopentyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA.

Supplementary Figure 2. Yield improvement of diterpenoids through the chloroplastic, DXP pathway requires overexpression of rate limiting gene DXS. Arrows in blue represent chloroplast localized and overexpressed genes.. G3P, glyceraldehyde 3-phosphate; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DOXP, 1-deoxy-D-xylulose-5-phosphate synthase; IPP, isopentyl pyrophosphate; DMAPP, dimethylallyl pyrophosphate; chlGGPPS, chloroplastic geranylgeranyl pyrophosphate synthase; chldiTPS, chloroplastic diterpene synthase(s); HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA;

Supplementary Figure 3. Simplified taxol biosynthetic pathway

Supplementary Figure 4: Characterization of intermediates from overexpression of *cytTDS* via MEV engineering. (a) GC-MS total ion chromatogram (TIC) and MS spectra of products from overexpression of *HMGR*, *cytGGPPS* and *cytTDS* in *N. benthamiana*. Representative TICs are shown. Five products with m/z corresponding to diterpene derived scaffolds were observed upon expression of *cytTDS*. Identified products corresponded to **12**, isomer, taxadiene-4(20), 11(12)-diene, and three minor taxadiene-derived scaffolds⁵⁷. Putative ion structures for **12** were assigned as reference. Putative structures are preliminary and based on predicted formulas combined with analysis of fragment ions observed in MS spectra. An endogenous metabolite coeluting with taxadiene was identified (* in the TIC). (b) MS spectra of endogenous metabolite. (c) GC-MS extracted ion chromatogram (EIC) using m/z = 122.1, corresponding an abundant fragment found in the MS of **12**, confirmed that **12** is only present upon *TDS* expression.

Supplementary Figure 5: Overexpression of *cytGGPPS* and *HMGR* alters endogenous triterpenoid metabolism. GC-MS total ion chromatogram (TIC) and MS spectra of triterpenoid derived products observed in *N. benthamiana*. Overexpression of *cytGGPPS* and *HMGR* results in the accumulation of endogenous phytosterols in leaf extracts independent of co-expression with *cytTDS*. Assignments for labeled peaks was done via comparison against MS spectra from previous reports⁵⁸.

Supplementary Figure 6: Subcellular localization of overexpressed cytGGPPS-GFP and chlGGPPS-GFP fusion proteins and controls in *N. benthamiana*. (a) GFP localization and a (b) GFP fusion construct of the small subunit of RuBisCo indicate respective cytosolic and plastid localization. (c) Partial cytosolic localization of cytGGPPS-GFP was observed via the truncation of the predicted chloroplast transit peptide of GGPPS. (d) chlGGPPS-GFP overexpression resulted in plastid localization. Images of subcellular localization were chosen. All images show z-stacks of maximum intensity projections scaled to the same intensity range for GFP fluorescence (green; 488nm excitation, 500 - 550 emission), chlorophyll autofluorescence (magenta; 488nm excitation, 650nm excitation, 650 – 700 emission) and the two channel composite. Images are representative of three biological replicates repeated over two independent experiments.

Supplementary Figure 7: Previously established forskolin biosynthetic pathway.

Supplementary Figure 8: MS spectra of 13R-manoyl oxide and forskolin. Putative ion structures for both products were assigned as reference.

Supplementary Figure 9: Characterization and yields of pathway intermediates upon overexpression of either *cytOsCPS4* or *cytOsKSL4* via cytosolic engineering. (a) Average GC-MS ion abundances of syn-pimaradiene precursors after overexpression of indicated genes via cytosolic engineering. Values and error bars represent the mean and the standard deviation of biological triplicates. (b) MS spectra of geranylgeraniol and **11**.

Supplementary Figure 10: Depiction of momilactone gene cluster on *Oryza sativa* **chromosome 4.** *Os*CPS4, *Os*KSL4, CYP99A3 and *Os*MAS have previously been directly implicated in momilactone biosynthesis.

¹H NMR (600 MHz, Chloroform-*d*) δ 5.82 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.69 (d, *J* = 4.9 Hz, 1H), 4.96 (dd, *J* = 17.4, 1.0 Hz, 1H), 4.96 (bd, 1H), 4.93 (dd, *J* = 10.7, 1.0 Hz, 1H), 4.13 (bs, 1H), 4.08 (dd, *J* = 9.2, 3.4 Hz, 1H), 3.58 (dd, *J* = 9.2, 2.1 Hz, 1H), 2.20 (dd, *J* = 6.8, 2.1 Hz, 1H), 2.14 – 2.07 (m, 2H), 2.05 – 1.98 (m, 2H), 1.76 – 1.69 (m, 1H), 1.71 – 1.63 (m, 2H), 1.60 – 1.48 (m, 2H), 1.48 – 1.42 (m, 1H), 1.41 (s, 3H), 1.28 – 1.18 (m, 1H), 0.87 (s, 3H).

Supplementary Figure 11: ¹H NMR spectra of momilactone B in CDCl₃ isolated from *N. benthamiana*.

Supplementary Figure 12: ¹³C NMR spectra of momilactone B in CDCl₃ isolated from *N. benthamiana*.

Supplementary Figure 13: TIC from purified momilactone B from large scale isolation in *N. benthamiana*. Two impurities were not separable by silica-gel chromatography. Based on MS fragmentation patters, these impurities possibly correspond to structural isomers of momilactone B or the ring-opened form of the lactol.

					Rank				
	Name	Family	Gene ID	Chromosome	Bait:	Bait:	Bait:	Bait:	Bait:
					OsCPS4	CYP99A3	Os MAS	CYP99A2	OsKSL4
1	CYP99A3	P450	Os04g0178400	4*	3	N/A	76	26	271
2	CYP701A8	P450	Os06g0569500	6	4	6	89	7	154
3	CYP99A2	P450	Os04g0180400	4*	8	28	33	N/A	98
4	CYP701A9	P450	Os06g0568600	6	22	39	69	49	323
5	CYP71Z8	P450	Os10g0439800	10	31	84	7	18	230
6	CYP71Z5	P450	Os02g0529800	2	55	77	165	32	175
7	CYP94E3	P450	Os05g0382500	5	94	210	14	58	281
8	CYP76M14	P450	Os01g0561600	1	172	338	67	135	409
9	CYP76M8	P450	Os02g0569400	2^	620	581	882	273	4
10	CYP76M5	P450	Os02g0569000	2^	341	249	711	194	72
11	2-ODD candidate #1	2-ODD	Os09g0245500	9	48	12	232	139	503
12	2-ODD candidate #2	2-ODD	Os04g0662600	4	245	464	88	136	306
13	SDR candidate #1	SDR	Os07g0664000	7	16	27	42	89	558
14	Os MAS	SDR	Os04g0179200	4*	17	69	N/A	22	309
15	SDR candidate #2	SDR	Os07g0663700	7	66	158	20	43	24
16	<i>Os</i> CPS4	Terpene synthase	Os04g0178300	4*	N/A	3	19	8	243
17	OsKSL8	Terpene synthase	Os11g0474800	11	47	81	112	102	447
18	OsKSL7	Terpene synthase	Os02g0570400	2^	111	61	332	68	103
19	OsKSL4	Terpene synthase	Os04g0179700	4*	386	392	532	125	N/A

Supplementary Table 1: List of potential momilactone biosynthetic gene candidates.

List is ranked via Pearson's correlation coefficient between genes present in the momilactone biosynthetic cluster and biosynthetic candidates. Potential biosynthetic genes shown correspond only to genes belonging to CYP, 2-ODD, SDR, and terpene synthase families. Gene names in bold correspond to genes involved in momilactone biosynthesis. A * or a ^ indicate genes present in either the momilactone gene cluster or the phytocassane gene cluster.

						0					
	Compound	Compound use for standard	MEV Eng.		DXP Eng.			Plant	1	Isolated yield	
Pathway			mg/g FW	mg/g DW ¹	mg/g FW	mg/g DW ¹	Plants	weight (g)	(mg)	ug/g FW	ug/g DW¹
taxane biosynthesis	taxadiene (12)	5a-taxadiene-ol	0.13 ± 0.03	1.27 ± 0.31	0.02 ± 0.00	0.20 ± 0.03	-	-	-		-
	syn-pimaradiene (1)	GGOH	0.13 ± 0.06	1.32 ± 0.57	0.01 ± 0.01	0.13 ± 0.07	-	-	-		-
memilectore	(6)	momilactone B	0.06 ± 0.01	0.63 ± 0.10	-	-	-	-	-		-
biosynthesis	momilactone A (8)	momilactone B	0.03 ± 0.02	0.28 ± 0.15	-	-	-	-	-		-
	(7)	momilactone B	0.01 ± 0.01	0.12 ± 0.07	-	-	-	-	-		-
	momilactone B	momilactone B	0.02 ± 0.01	0.17 ± 0.08	-	-	80	216	3.6	16.7	167
forskolin biosynthesis	13-R-manoyl oxide (13)	GGOH	0.67 ± 0.07	6.67 ± 0.69	0.06 ± 0.01	0.57 ± 0.13	-	-	-		-
	forskolin	forskolin	0.13 ± 0.03	1.27 ± 0.26	0.02 ± 0.01	0.19 ± 0.09	-	-	-		-

Supplementary Table 2: Yields of diterpenoid products engineered in this study.

¹Fresh to dry weight calculations correspond to typically observed ~90% weight loss after lyophillization of *N. benthamiana* leaves.

Time	DMSO	SA 1 mM	momilactone B			
days	mock		2.5 uM	12.5 uM	60 uM	
0	0%	0%	0%	0%	0%	
3	99%	0%	0%	0%	0%	
5	99%	0%	97%	0%	0%	
7	99%	0%	97%	0%	0%	
10	99%	0%	97%	81%	0%	

Supplementary Table 3: Germination efficiency of *A. thaliana* seeds (n=100).

Supplementary Table 4: List of PCR primer pairs used in this study.

Purpose	Name	Primer Sequence (5' to 3')		
	HMGB	Fwd	ATTCTGCCCAAATTCGCGACCGGT ATGAAGAAAAAGCAAGCTGG	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG TCATGTTGTTGTTGTTGTCGTTGTCG	
	chiGGPPS	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
Metabolic engineering		Rev	GAAACCAGAGTTAAAGGCCTCGAG TCAGTTTTGCCTGAATGCAATG	
Metabolic engineering	outCCPPS	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGCTTCCTATCAAGAATGC	
	cytourro	Rev	GAAACCAGAGTTAAAGGCCTCGAG TCAGTTTTGCCTGAATGCAATG	
	DYS	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGCTTCTTCTGCATTTGC	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG TCAAAACAGAGCTTCCCTTGG	
	chITDS	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
Taxane biosynthesis		Rev	GAAACCAGAGTTAAAGGCCTCGAG TCATACTTGAATTGGATCAATATAAACTTTTC	
	cvtTDS	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGTAATGATGAGCAGCAG	
	- Oyribo	Rev	GAAACCAGAGTTAAAGGCCTCGAG TCATACTTGAATTGGATCAATATAAACTTTTC	
	chlCfTPS2	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	(22-773)cvtCfTPS2	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGAACAGCAATAAAAGGCAGTC	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	(46-773)cvtCfTPS2	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGTTGCAAGTCTGGATGCG	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	chIC/TPS3	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	(23-598)cytCfTPS3	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGTCTGCAGCTGTTAAATGC	
Forskolin biosynthesis		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	(38-598)cytCfTPS3	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGGAATCTTGCCAGTCCACC	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	CYP76AH15	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	CYP76AH11	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	CYP76AH16	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	ACT 1-8	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	chlOsCPS4	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	cvtOsCPS4	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGCCGCCGTACCCGGCC	
	-	Rev	GAAACCAGAGTTAAAGGCCTCGAG	
Momilactone	chlOsKSL4	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
biosynthesis		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	cytOsKSL4	Fwd	ATTCTGCCCAAATTCGCGACCGGTATGGCGGTGATGTCGTCCTG	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	
	CYP99A3	Fwd	ATTCTGCCCAAATTCGCGACCGGT	
		Rev	GAAACCAGAGTTAAAGGCCTCGAG	

Purpose	Name	Primer Sequence
	0)/070140	Fwd ATTCTGCCCAAATTCGCGACCGGT
	CTP/OIVIO	Rev GAAACCAGAGTTAAAGGCCTCGAG
	0.000	Fwd ATTCTGCCCAAATTCGCGACCGGT
Momilactone	USIVIAS	Rev GAAACCAGAGTTAAAGGCCTCGAG
biosynthesis	000700444	Fwd ATTCTGCCCAAATTCGCGACCGGT
-	CTP/6M14	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CVD70149	Fwd ATTCTGCCCAAATTCGCGACCGGT
	CTPTUTAO	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CVD00A2	Fwd ATTCTGCCCAAATTCGCGACCGGT
	CTP99AZ	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CVD70140	Fwd ATTCTGCCCAAATTCGCGACCGGT
	CTP/UIA9	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CVD7170	Fwd ATTCTGCCCAAATTCGCGACCGGT
	CTP/120	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CVD7175	Fwd ATTCTGCCCAAATTCGCGACCGGT
	GYP/125	Rev GAAACCAGAGTTAAAGGCCTCGAG
Momilactone	CVD04E3	Fwd ATTCTGCCCAAATTCGCGACCGGT
	C1P94E3	Rev GAAACCAGAGTTAAAGGCCTCGAG
biosynthesis gene	CYP76M5	Fwd ATTCTGCCCAAATTCGCGACCGGT
candidates		Rev GAAACCAGAGTTAAAGGCCTCGAG
	2-ODD Fwo candidate #1 Rev	Fwd ATTCTGCCCAAATTCGCGACCGGT
		Rev GAAACCAGAGTTAAAGGCCTCGAG
	2-ODD candidate #2	Fwd ATTCTGCCCAAATTCGCGACCGGT
		Rev GAAACCAGAGTTAAAGGCCTCGAG
	SDR candidate #1	Fwd ATTCTGCCCAAATTCGCGACCGGT
		Rev GAAACCAGAGTTAAAGGCCTCGAG
	SDR	Fwd ATTCTGCCCAAATTCGCGACCGGT
	candidate #2	Rev GAAACCAGAGTTAAAGGCCTCGAG
	CED	Fwd GGTTCGGGAAGCATGACTAGCAAAGGAGAAGAAC
	GFP	Rev GAAACCAGAGTTAAAGGCCTCGAGTTATTTGTATAGTTCATCCATGCC
	Gibson overlaps	Fwd ATTCTGCCCAAATTCGCGACCGGT
	chITDS-GFP	Rev GTTCTTCTCCTTTGCTAGTCATGCTTCCCGAACCTACTTGAATTGGATCAATATAAAC
	Gibson overlaps	Fwd ATTCTGCCCAAATTCGCGACCGGTATGGTAATGATGAGCAGCAG
	cytTDS-GFP	Rev GTTCTTCTCCTTTGCTAGTCATGCTTCCCGAACCTACTTGAATTGGATCAATATAAAC
GFP fusion constructs	Gibson overlaps	Fwd ATTCTGCCCAAATTCGCGACCGGT
	chlGGPPS-GFP	Rev GTTCTTCTCCTTTGCTAGTCATGCTTCCCGAACCGTTTTGCCTGAATGCAATGTAATC
	Gibson overlaps	Fwd ATTCTGCCCAAATTCGCGACCGGTATGGCTTCCTATCAAGAATGC
	cytGGPPS-GFP	Rev GTTCTTCTCCTTTGCTAGTCATGCTTCCCGAACCGTTTTGCCTGAATGCAATGTAATC
	Gibson overlaps	Fwd ATTCTGCCCAAATTCGCGACCGGTATGGCTTCCTCTATGCTCTCTCC
	subunit - GFP	Rev GTTCTTCTCCTTTGCTAGTCATGCTTCCCGAACCTTCGGAATCGGTAAGGTCAGG

¹Nucleotides emphazised in **bold** represent those which hybridize to the gene of interest. Nucleotides emphasized in *italics* represent those which hybridize to the four peptide linker used to link fusion protein constructs. All other nucleotides consist of the 5' overlaps designed for Gibson assembly with pEAQ-HT vector. Gene accession numbers and IDs can be found in Supplementary Table 5.

Name	Organism	Gene ID / Accession	Reference
HMGR	Nicotiana tabacum	AT1G76490.1 / AY488113	51
GGPPS	Taxus canadensis	AF081514	60
DXS	Arabidopsis thalaina	AT4G15560.1 / BT002340	52
TDS Taxus brevifolia		U48796	38
CfTPS2 Plectranthus barbatus		KF444507	40
CfTPS3	Plectranthus barbatus	KF444508	42
CYP76AH15	Plectranthus barbatus	KT382358	
CYP76AH11	Plectranthus barbatus	KT382349	20
CYP76AH16	Plectranthus barbatus	KT382359	20
ACT 1-8	Plectranthus barbatus	KT382363	
OsCPS4	Oryza sativa	Os04g0178300 / AB066270	25, 26
OsKSL4	Oryza sativa	Os04g0179700 / AB126934	27, 28
CYP99A3	Oryza sativa	Os04g0178400 / AK071864	29
CYP76M8	Oryza sativa	Os02g0569400 / XM_015768144.1	30
OsMAS	Oryza sativa	Os04g0179200 / XM_015778721.1	32
CYP76M14	Oryza sativa	Os01g0561600 / XM_015773010.1	This study
CYP701A8	Oryza sativa	Os06g0569500 / XM_015785419.1	43
CYP99A2 Oryza sativa		Os04g0180400 / XM_015778482.1	-
CYP701A9	Oryza sativa	Os06g0568600 / XM_015786143.1	-
CYP71Z8	Oryza sativa	Os10g0439800 / XM_015759387.1	-
CYP71Z5	Oryza sativa	Os02g0529800 / XM_015768673.1	-
CYP94E3	Oryza sativa	Os05g0382500 / XM_015782035.1	-
CYP76M5	Oryza sativa	Os02g0569000 / XM_015768639.1	30
2-ODD candidate #1 Oryza sativa		Os09g0245500 / XM_015755150.1	-
2-ODD candidate #2	Oryza sativa	Os04g0662600 / XM_015779149.1	59
SDR candidate #1	Oryza sativa	Os07g0664000 / XM_015790180.1	_
SDR candidate #2	Oryza sativa	Os07g0663700 / XM_015791272.1	-
Small RuBisCo subunit	Arabidopsis thaliana	RBCS1A / AT1G67090.1	-

Supplementary Table 5: Accession numbers and gene IDs used in this study.

Gono	Chloroplast transit peptide residues					
Gene	ChloroP	LOCALIZER				
GGPPS	(1 - 18)	(1 - 41)				
TDS	(1 - 58)	(1 - 51)				
CfTPS2	(1 -45)	(1 - 21)				
CfTPS3	(1 - 37)	(1 - 22)				
OsCPS4	(1 - 56)	(1 - 52)				
OsKSL4	(1 - 81)	(1 - 73)				

Supplementary Table 6: Chloroplast transit peptide predictions using ChloroP and LOCALIZER.

¹Cells in gray indicate the truncated gene variant used in this study.

Family	Pfam #	ID
CYP450s	PF00067	p450
	PF03171	2OG-Fell_Oxy
	PF13532	2OG-Fell_Oxy 2
	PF13640	2OG-Fell_Oxy 3
2-ODDs	PF13661	2OG-Fell_Oxy 4
	PF13759	2OG-Fell_Oxy 5
	PF10014	2OG-Fe_Oxy_2
	PF16870	OxoGdeHyase_C
SDRs	PF00106	Adh_short
Terpene	PF01397	Terpene_synth
synthase	PF03936	Terpene_synth_C
	PF01370	Epimerase
	PF01073	3Beta_HSD

Supplementary Table 7: Table of Pfam numbers used to find momilactone biosynthetic genes