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Reviewer Reports on the Initial Version: 

Referee #1 (Remarks to the Author): 
 
Summary. Understanding how the human gut microbiome is established is important to address infant 
health. In this paper, the authors explore the role of inter- and intra-kingdom microbial interactions on 
the colonization and development of the pre-term infant gut microbiome. The authors inferred intra-
/inter-species interactions by fitting a generalized Lotka-Volterra model to absolute abundance data, as 
measured by MK-SpikeSeq. Then, they validated a number of these interactions experimentally, either in 
vitro or in mouse models. 
 
This work demonstrates: 
• a reasonable method for absolute abundance quantification of individual taxa within microbial 
community samples; 
• that ecological interactions within complex natural communities can be inferred from data; 
• that some of the key inferred interactions can be validated experimentally (although difficult to 
validate overall accuracy); 
• that these interactions are consistent with the successional patterns characteristic of the developing 
infant gut microbiome. 
Overall, I was quite impressed with this paper. The questions are important, the data are solid (but see 
below), and the validation with laboratory experiments encouraging. I believe that the paper will be of 
broad interest and should be published in Nature if the authors can address the following questions. 
 
Major comments 
 
1. I would like to see more visualizations of the different trajectories for different patients. Only 
representation in Fig. 2C for a “typical” patient, where it looks to me that at the end of the trace that 
there are equal amounts of Escherichia, Enterococcus, and Kleb, rather than just one dominating (as 
indicated in the text, line 112). Which “path” did this typical patient take? 
 
2. Having inferred interactions from the data doesn’t meant that the patterns in the data are driven by 
the interactions. This statement is true even if the interactions are validated in the lab with isolates. I 
say this despite the fact that I think that it is likely (hopefully?) true, and that I was impressed by the 
validation. I don’t think that any new measurement is necessary, but the authors may need to slightly 
weaken the text (lines 161, 207, 236 for example). 
 
3. Do the authors think that the inferred interaction network sufficient to recapitulate the observed final 
three states? I am ok if the answer is no, but it would be nice to know the authors’ thoughts. 
 
4. I felt the need to learn more about the similarities and differences between pre-term and full-term 
microbiome assembly. Also, in this paper, the authors studied early-life microbiome assembly using 
mostly samples from infants who were born via Caesarean-section (131/178). It’s known that the mode 
of baby delivery is a significant factor that affects the composition of the gut microbiota throughout the 
neonatal period and into infancy. Also, C-section babies are missing key microbes. 
(https://doi.org/10.1038/s41586-019-1560-1). On a related note, lines 42-53 may not accurately 



capture what the field has already learned about the role of the different factors that were mentioned. 
 
Minor comments 
 
1. In the MK-SpikeSeq method the authors add cells instead of DNA as the standard for absolute 
quantification. It seems to me that depending upon the nature of the error in DNA extraction (ie whether 
variation in DNA extraction efficiency is correlated among the different species from sample to sample) 
then the authors’ approach could be either better or worse than adding bare DNA. Is this true? I would 
have appreciated a bit more of a justification for why the authors think that it is better to add cells. 
2. The data used to validate the MK-SpikeSeq method are plotted in a way that makes it difficult to 
evaluate the method. 
a. Fig. S2A and S2B don’t have axis labels, the axes aren’t the same length, and the distance between 
tick labels is not the same. 
b. In Fig. S2A, S2B, and S2C, the authors should report the slope and offset of the best-fit line, not just 
the r. Otherwise, it’s not clear that there is a 1:1 mapping between observed and expected data. 
c. Could be nice to quantify the accuracy of absolute abundance measurements for individual taxa, since 
that’s the object of interest for all subsequent analyses. 
 
3. The conclusion from the linear mixed model (lines 127-131) seems very strong, given the analysis 
presented. 
a. Residuals? Is this model a good fit to the data? 
b. How was the confidence interval calculated? 
c. Plot of bacterial load vs. fungal load? 
d. Effect size seems small, but also difficult to evaluate, given normalization. 
e. Negative correlation is only barely statistically significant 
 
4. Fig. S6: For the fungal ITS, it seems like the data were fit on a linear scale, thereby biasing the best-
fit line towards high-abundance samples. Probably would be best to log-transform the data before 
fitting. 
 
5. I found Fig. 1A more confusing than illuminating. Despite already being familiar with the effect, it took 
me some time to figure out what all of the bars were supposed to be telling me. 
 
6. More generally, are any of the primary conclusions dependent upon whether the data is analyzed on a 
linear or log-data? 
 
7. Fig. S7: Statistical test? P-value? 
 
8. I would have appreciated a sentence somewhere discussing similarities and differences between the 
pattern of colonization and succession between pre-term and full-term infants. 
 
9. Line 165: Given the regularization that was done, we should not be surprised that many interactions 
contain a 0 (commensalism or amensalism). 
 
10. Line 230: “occur” should be deleted 
 
11. Line 235: “context-independent” should read “context-dependent” 
 
12. Line 717: The finding of Cryptococcus spp. as a dominant microbial genus in the studied mycobiome 
contradicts the consensus of the mycobiome community regarding the absence of cryptococcus from the 
normal human gut microbiome. Could the authors elaborate? (There was a reference to a table that I 
could not access) 
 
13. It’s surprising that Saccharomyces spp. wasn’t found in the gut mycobiome since it’s the most 
abundant yeast in the human gut microbiome. (see: https://doi.org/10.1186/s40168-017-0373-4 ) 
 



14. Lines 160-161: The species should perhaps always be mentioned. “Candida inhibited both Klebsiella 
and Escherichia, but was itself inhibited by Staphylococcus.” 
 
15. There are data showing that E. coli produces a fungicidal factor against C. albicans. (doi: 
10.15698/mic2018.05.631.) 
 
16. There is some evidence that the interactions between C. albicans and S. epidermidis is synergistic 
(https://doi.org/10.1186/1471-2180-13-257 and https://doi.org/10.1099/0022-1317-51-4-344) 
 
17. Line 544: In vivo co-colonization validation. A reference for the antibiotic pre-treatment and the 
ampicillin drinking water should be added. Was it necessary to add antibiotic treatment during the co-
colonization? It may change bacterial growth in monoculture colonization/co-colonization. Also, bacteria 
may respond differently as a response to the antibiotic. More generally, it seems that it would be good if 
the animal experiments mimicked the real conditions as much as possible. 
 
18. I couldn’t find important information that would be needed to reproduce the experiment, such as an 
anesthesia protocol and inoculum concentrations. It’s not clear when the authors say: “lower inoculation 
was used for K. pneumoniae than others as this bacterium more readily and rapidly established 
colonization in the mouse gut”. What were the actual doses used? What is the background supporting 
this statement? 
 
19. Line 805: Figure S2. What is the label “others” in A? 
 
20. It would have been nice to see Cryptococcus in a mock community, but I will not insist on this. 
 
 
Referee #2 (Remarks to the Author): 
 
The authors develop and use to great effect a technique of converting relative abundances into absolute 
abundances, use this to assess the temporal changes in microbial gut populations, and infer ecological 
relationships between different microbes in the developing infant gut. The authors support their inferred 
relationships by isolating representatives of their genera of interest, then showing how in vitro 
coculturing replicates most of the interaction dynamics suggested by their model. Interestingly, the in 
vitro dynamics that didn’t follow the model predictions could be injected into a SPF mouse model system 
to mimic the model predictions, implying that these interactions were dependent on the gut 
environment. The key findings of this paper – that specific pairwise microbial interactions drive the 
pattern of succession in the infant gut, only some of which are context-dependent on the gut 
environment, are valuable discoveries for understanding the assembly of this microbiome. 
 
Further, the authors show that inference from relative abundance entirely misrepresented the dynamics 
that could be concluded from absolute abundances; that the dominant species of later succession (which 
microbe dominates after the pioneer Staphylococcus) seems to be related to the outcome of multiple 
pairwise interactions between dominant microbes, and that fungal and bacterial populations are 
negatively correlated, perhaps due to inhibitory effects of yeast species like Candida albicans. 
 
The combination of approaches used in this work is rarely accomplished in microbiome work, especially 
the experimental validation of microbial interactions. In addition, the contribution of fungal and archaeal 
species in the human microbiome is an underexplored area, so it is nice to see that the authors applied 
their method broadly. This paper represents a big step in a much needed direction for the microbiome 
field. 
 
Major comments: 
 
I found the description of MK-SpikeSeq to be lacking in the text and confusingly depicted in Fig 1. It was 
difficult to piece together all of the information from the figure, methods and supp info to get a clear 
understanding of both how it works and the various validations used with mock communities. It might 



be more effective to move it all to the supplementary material and combine the associated data 
together. 
 
Figure 1C shows how the absolute abundance of spike-in microbes can be back-calculated from their 
known dilution factor. In lines 87-88, the authors claim that this approach is “robust to variable DNA 
extraction efficiency,” but does not address bias in extraction efficiency between, e.g., gram positive 
bacteria versus their gram-negative spike-in standard or yeast species compared to filamentous fungi. 
Further, in Supp figure S2, some of the filamentous fungal species appear to be present at very low 
levels (if at all). Is this due to differences in DNA extraction efficiency, lower input, PCR bias, or 
something else. My concern is that there is systematic over- or under-estimation of certain kinds of 
microbes biased by the selection of spike-in species. It would be nice to see whether or not the species 
selection has a significant effect on the calculation of absolute abundance of other microbes. 
 
In Figure 3D and F, why are the input levels for certain species so different between alone and 
interacting conditions? How do we know that this doesn’t affect the growth outcome? 
 
Minor comments: 
• Within the abstract (lines 18-19), the authors claim that the “predictable assembly [of the infant gut] 
is vital to health,” yet the cited papers do not support this exact claim, rather just that gut composition 
is important to health status. 
• Authors could clarify that the antibiotic they are referring to in line 146 are not microbiome-produced, 
but rather clinical antibiotics. 
• Figure 1a might be streamlined by demonstrating how the same relative abundance scenario could be 
represented by two different absolute abundance scenarios, instead of convoluting the modeled scenario 
with different cumulative populations trajectories. 
• I would like to see multiple infant successions, even if in supplementary, to evaluate how 
representative the one shown in Figure 2C is. 
• Figure S2a and S2b: the scatter plots are missing axis text – important to know how much expected 
versus observed abundances only correlate, as mentioned in the text, versus how close they match. 
 
 
Referee #3 (Remarks to the Author): 
 
This manuscript by Rao et al introduces a new method for absolute quantitation of bacteria, archaea and 
fungi present in the intestinal microbiota. They apply this method for analysis of longitudinal samples 
from a cohort of 178 preterm infants, and use the results to model and predict intra- and inter-kingdom 
interactions, which are finally validiated by in vitro experiments as well as in animals. 
 
The methodology is original and highly relevant, since the many limitations of focusing only on relative 
bacterial abundances within the microbiome are becoming increasingly clear to the field. 
The results obtained are novel and important for the understanding of the establishment of the preterm 
microbiome, as well as for the understanding of microbial ecology in general. 
 
I have the following comments and suggestions: 
 
1) The microbiome of preterm infants is significantly different from that of infants born within term, the 
latter being characterized by a high abundance of bifidobacteria and a massive influence of 
breastfeeding. I therefore think it is important to make it clear already in the title, that the present study 
deals with preterm infants. Perhaps also emphasize it a bit more in the abstract since the facultative 
organisms selected by the aerobic preterm gut environment differ drastically from those of the normal 
term infant microbiome. 
 
2) The researchers spike the samples with bacterial, fungal and archaeal DNA, and can quantify the 
absolute abundances within these kingdoms. However, the manuscript and figures are focused only on 
bacteria and fungi, with no mentioning of the results obtained for archaea. These would be interesting to 
know. Even if they are not conclusive, it would be good to include them. 



3) l. 118 - The blooming of Klebsiella is not really masked in the relative data. 
 
4) l. 125 - Similarly, I think that '..uncovered dramatic blooms and collapses in fungal genera masked by 
relative abundances..' is a bit overstated, since these blooms and collapses are largely also seen in the 
relative abundance data. 
 
5) l. 165-166 - I think that this is remarkable and surprising. It there a risk that the applied model might 
be biased against the detection of symmetric (+/+ and -/-) interactions? 
 
6) l. 186-190: It would be relevant to know which distinct species within each genus were captured. 
Also, it is unclear whether each of these species were tested seperately against each of the species from 
another genus? Or were they tested as a mix of all species from one genus? Are only 
representative/affirmative data shown in Fig 3c? Were there no species-species interactions which did 
not fit the model prediction? 
 
7) l. 193-194: Note that the environment (gut versus lab medium) may have a huge impact on e.g. 
competition for nutrients. 
 
8) l. 196: You state here that no positive effect of Staphylococcus on Klebsiella was observed under in 
vitro conditions, but still this is marked with a big blue arrow in Fig 3c? 
 
9) 228: I think a new sub-headline would be feasible here. 
 
Comments to figures: 
Fig 1b - I don't understand the purpose of having two fecal samples/ two soil samples with an arrow 
between them in the left side of the figure? 
 
Fig 3a - What is the green round dot in this figure representing? 
 
Fig 3c - see comment 8). Also, do the dots represent replicate experiments or different species? (If both, 
it would be good to label the difference as for Candida). 
 
Fig S6 - Something went wrong with the panel letter references in the legend to this figure. 

 

Author Rebuttals to Initial Comments: 

We thank all three referees for their enthusiasm for our work and for their helpful comments, which have 
allowed us to substantially improve our manuscript. Please see below for our point-by-point responses. 

 
Referees'  comments: 

 
Referee #1 (Remarks to the Author): 

 
Summary. Understanding how the human gut microbiome is established is important to address infant health. In this 
paper, the authors explore the role of inter- and intra-kingdom microbial interactions on the colonization and 
development of the pre-term infant gut microbiome. The authors inferred intra-/inter-species interactions by fitting a 
generalized Lotka-Volterra model to absolute abundance data, as measured by MK-SpikeSeq. Then, they validated 
a number of these interactions experimentally, either in vitro or in mouse models. 

 
This work demonstrates: 
• a reasonable method for absolute abundance quantification of individual taxa within microbial community samples; 
• that ecological interactions within complex natural communities can be inferred from data; 
• that some of the key inferred interactions can be validated experimentally (although difficult to validate overall 
accuracy); 
• that these interactions are consistent with the successional patterns characteristic of the developing infant gut 
microbiome. 
Overall, I was quite impressed with this paper. The questions are important, the data are solid (but see below), and 



the validation with laboratory experiments encouraging. I believe that the paper will be of broad interest and should 
be published in Nature if the authors can address the following questions. 

 
Major comments 

 
1. I would like to see more visualizations of the different trajectories for different patients. Only representation in Fig. 
2C for a “typical” patient, where it looks to me that at the end of the trace that there are equal amounts of 
Escherichia, Enterococcus, and Kleb, rather than just one dominating (as indicated in the text, line 112). Which 
“path” did this typical patient take? 

 
Thank you for your suggestion, we’ve now included supplementary figures illustrating the changes in bacterial and 
fungal community composition and abundance for all of the 178 infants in our cohort (Extended Data Figs 
8,9,24,25). For the 13 infants for whom we sequenced daily samples we’ve also included a new visualization that 
illustrates how each infant’s bacterial and fungal communities change over time, relative to all other infants in our 
cohort (Extended Data Figs 10-22, see below for an example). As the reviewer can hopefully see, together these 
additional figures highlight how conserved the trajectories are for the infants’ bacterial communities, and how 
unpredictable their fungal dynamics are. 

 
We suspect the apparent equal distributions are due to the log scale on which we’ve plotted the total abundances, 
which obscures that Klebsiella is roughly an order of magnitude higher in abundance than the other taxa (we admit, 
this wasn’t very clear in our original figure). We’ve now added gridlines to Fig 2c and the equivalent supplementary 
figures, which we hope makes these differences more apparent. More fundamentally though, the reviewer has hit on 
an important point - that even though Klebsiella dominates in terms of relative abundances, the other major taxa are 
still present in appreciable levels - a phenomenon shared by several of the other infants. This again highlights the 
importance of quantifying absolute abundances when studying microbiome communities, and we’ve added 
additional text highlighting this point in the manuscript: 

 
“Such comparisons also indicated that though the bacterial communities within our cohort are typically dominated by just 
one genus, in many cases the other major genera remain at high levels within the preterm infant gut (Extended Data Figs 
10-22).” 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

  
 

 

 
Extended Data Figure 15. Bacterial and fungal dynamics for Infant 6. left, Time series illustrating the relative abundances of 
bacteria and fungi within Infant 6, demonstrating overall microbiota dynamics and comparing relative and absolute dynamics for 
major taxa. right, Black line indicates the trajectories of the bacterial (top) and fungal (bottom) communities within Infant 6 in 
relation to all other infant samples. White star indicates the first sample collected and red star indicates the final sample 
taken. 

 
2. Having inferred interactions from the data doesn’t meant that the patterns in the data are driven by the 
interactions. This statement is true even if the interactions are validated in the lab with isolates. I say this despite the 
fact that I think that it is likely (hopefully?) true, and that I was impressed by the validation. I don’t think that any new 
measurement is necessary, but the authors may need to slightly weaken the text (lines 161, 207, 236 for example). 

 
We agree with the reviewer, though our inference and validation suggest the interactions do influence community 
dynamics, we were probably too strong in our wording. As such, we’ve softened our text accordingly in the 
following sections: 

 
Line 161, now line 173: 
“These results suggested that not only do preterm infants harbor diverse fungal communities, but that members of these 
communities may play a role in are critically influencing larger scale community dynamics.” 

 

Line 207, now line 223: 



“These in vivo data recapitulated the dynamics observed in infant assembly (Fig 2c) and demonstrated suggested that the 
predictable patterns in infant microbiome assembly are may indeed be due to exploitation of an early pioneer species by a 
late colonizer.” 

 
Line 236, now line 256: 
“Our findings demonstrate suggest a common mechanism of assembly between the infant microbiota and macroscopic 
ecological succession. Just as in macroscopic ecosystems15–17, microbes may exploit one another to establish within the infant 
gut, and direct interactions between kingdoms appear to play a central role in community dynamics” 

 
Line 244: 

“Together, our data demonstrated a novel species-specific cross-kingdom interaction that appears to shapes the preterm 
infant gut microbiota.” 

 
Abstract: 

“We infer computationally and demonstrate experimentally in vitro and in vivo that predictable assembly dynamics are may 
be driven by directed, context-dependent interactions between specific microbes” 

 

“Remarkably, we find that interactions between kingdoms drive can influence assembly” 

3. Do the authors think that the inferred interaction network sufficient to recapitulate the observed final three states? 
I am ok if the answer is no, but it would be nice to know the authors’ thoughts. 

 
This is a really interesting question from the reviewer. To try and answer this we took our 18 prevalent genera and 
calculated all of the possible subcommunities composed of one or more genera (yielding 262143 possible 
subcommunities). Using our inferred interaction matrix we then calculated which of these subcommunities had 
feasible steady states (states where all constituent species had non-zero abundances) – yielding 763 possible 
subcommunities. Finally, we examined the community composition of these possible steady states and checked 
which of these subcommunities were linearly asymptotically stable - yielding 26 possible communities, of which 3 
had no bacteria present so were discounted. 

 
Interestingly, we found that the majority of our feasible steady states were dominated by either Klebsiella or 
Escherichia, with the remainder dominated by either Enterococcus, Bifidobacterium or Veillonella. Perhaps more 
remarkably still, the majority of the few stable communities observed were characterized by either high Klebsiella 
abundance (9/23) or high Enterococcus abundance (5/23). To a certain extent, therefore, our model does seem to 
recapitulate the observed final states. That is, our model suggests that domination by Klebsiella or Enterococcus are 
common stable community states, and thus we might expect infants’ microbiomes to converge towards one of 
these two states over time. Further, the model suggests that while domination by Escherichia is feasible, this state is 
not stable and thus likely to be transient - something that indeed we see relatively frequently in our cohort, where 
infants that are dominated by Escherichia often transition to domination by Klebsiella or Enterococcus. Finally, the 
model suggests Candida domination is the most common feasible fungal community state, but that such 
communities are not often stable – perhaps unsurprising given the lack of stable fungal colonization within our 
cohort. 

 
However, while interesting, we are wary about (over)interpreting these results. Though feasible and stable 
community states are tractable methods of assessing likely model outcomes, in reality we imagine infant guts are 
unlikely to be at steady state (as we know from longer term studies of preterm infants, their microbial communities 
will change further). Moreover, our final state predictions are performed agnostic of antibiotic perturbations, as  
doing so would require additional assumptions about dosing and timing of antibiotics, but in reality, these will likely 
also be shaping the final community states. 

 
In the light of this, we’ve now included our model predictions (see below) and a conservative discussion of our 
findings in the supplement (Supplemental Text Section 5) as we think they’ll be of interest to readers. 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Extended Data Figure 29. Feasible and stable bacterial and fungal communities, as predicted by inferred interaction 
network. a, Steady-state bacterial relative abundances of those subcommunities predicted to have a feasible equilibrium, 
wherein all constituent genera have non-zero abundances. b, Steady-state bacterial relative abundances of those feasible 
subcommunities predicted to be linearly asymptotically stable. c, Steady-state fungal relative abundances of those 
subcommunities predicted to have a feasible equilibrium. d, Steady-state fungal relative abundances of those feasible 
subcommunities predicted to be linearly asymptotically stable. 

 
 

4. I felt the need to learn more about the similarities and differences between pre-term and full-term microbiome 
assembly. Also, in this paper, the authors studied early-life microbiome assembly using mostly samples from infants 
who were born via Caesarean-section (131/178). It’s known that the mode of baby delivery is a significant factor that 
affects the composition of the gut microbiota throughout the neonatal period and into infancy. Also, C-section 
babies are missing key microbes. (https://doi.org/10.1038/s41586-019-1560-1). On a related note, lines 42-53 may 
not accurately capture what the field has already learned about the role of the different factors that were mentioned. 



Thank you for this comment, indeed all three reviewers suggested we include further details on differences in 
microbiota development between delivery modes and gestational age. We have therefore edited our text 
accordingly (including citing the paper referenced above and others supporting the impact of different factors on 
infant gut microbiome composition): 

 
“Yet despite the apparent importance of the infant microbiota, we do not understand what drives initial microbiota 
development. Premenstrual age (term vs. preterm), mode of delivery (Caesarian section vs. vaginal), host epithelial and 
immune ontogeny, diet (formula vs. mother’s milk), antibiotics, and the interactions between individual microbes have 
been demonstrated2,18–22,28–30 or have the potential to influence microbiota composition. But with so many moving parts, the 
specific role of any individual factor in mediating microbiota development and assembly has remained unclear.” 

 
“Specifically, we assembled a prospective cohort of 178 preterm infants from a tertiary-care neonatal intensive care unit 
(NICU). The assembly of the preterm microbiota differs substantially from that of term infants. Most preterm infants are 
born via C-section and as such are seeded with skin and hospital-associated microbes and devoid of key maternal derived 
bacteria7,21,29. In addition, the preterm microbiota displays “delayed” maturity with a prolonged membership of facultative 
anaerobic bacteria compared to that of a predominantly strict anaerobic community of term infants7,21,29. We focused on 
preterm infants due to their clinical relevance and because they are amenable to high-frequency longitudinal sampling with 
readily available clinical and dietary metadata.” 

 
“Consistent with previous preterm gut studies, we observed that preterm infant gut bacterial communities cluster primarily into 
four distinct community states, characterized by the domination of one of four genera: Staphylococcus, Klebsiella, Escherichia or 
Enterococcus (Fig 2a). In contrast to the microbiome of full-term infants, these community clusters were independent of 
diet or delivery mode (Extended Data Fig 7).” 

Minor comments 
 

1. In the MK-SpikeSeq method the authors add cells instead of DNA as the standard for absolute quantification. It 
seems to me that depending upon the nature of the error in DNA extraction (ie whether variation in DNA extraction 
efficiency is correlated among the different species from sample to sample) then the authors’ approach could be 
either better or worse than adding bare DNA. Is this true? I would have appreciated a bit more of a justification for 
why the authors think that it is better to add cells. 

 
The reviewer raises an important point that we did not make clear enough in our manuscript. We chose to add 
spiked cells specifically because it helps control against errors in DNA extraction. That is, by spiking in cells rather 
than bare DNA we are able to identify cases where DNA extraction has failed, which would be indicated by seeing 
no or little DNA from the spike-in cells. This means, unlike when one spikes in bare DNA, we can distinguish 
between cases where extraction has failed and cases where there is simply very little microbial community present 
in the sample. This also means we can normalize between samples with variable DNA extraction, such as between 
samples from different environments, or different experimental conditions. 

 
As demonstrated in the figure below, we found the ability to distinguish between these two cases was particularly 
important for the fungal communities within our cohort. Here we observed several examples that our rDNA 
sequencing criteria identified as having failed during processing (<1k total reads), likely due to poor DNA extractions 
as indicated by low qPCR signals (red dots in Extended Data Fig. 6a; these failures were largely unrelated to 
limitation of sequencing depth, as a separate re-sequencing only rescued six of these samples). 

 
Using a bare DNA spike-in would overcome the poor extraction efficiency of the spike-in signal (most reads would 
come from bare DNA) and suggest the total fungal load in these samples was at or near zero. However, when we 
selected 10 of these samples and reprocessed them to achieve better DNA extraction (Extended Data Fig. 6b, c), we 
found that 8 had total fungal loads in line with the average fungal loads in successful samples (log10 (ITS1) > 3), 
with only 2 samples showing no detectable fungal signal (Extended Data Fig. 6d). 

 
Our motivation for the use of a cell-based spike-in and its robustness to extraction efficiency variability are all vital 
points that we did not make clear enough in our original manuscript. As such, we have now included an additional 
supplementary section, “Section 2 – MK-SpikeSeq validation”. Here we discuss in more detail how MK-SpikeSeq 
compares to existing methods, demonstrate its ability to detect failures in extraction, and illustrate how MK- 



SpikeSeq can accurately detect changes in absolute abundances of individual taxa. We have also added several 
supplementary figures (Extended Data Figs. 2-6) to support this discussion. 

 

 
Extended Data Figure 6. MK-SpikeSeq identifies errors in sample processing of fungal communities. a, In our first phase of 
NICU sequencing (see Supplemental Text), we identified a number of samples, highlighted in red dots, that failed to yield >1k 
ITS1 reads per sample post quality filtering (red dashed line). Many of these sequencing-failed samples showed much lower (>5 
deltaCt) ITS1 qPCR signals than the spike-in control (green dashed line), indicating poor DNA extractions of fungi in these 
samples. Shown next to the axes are frequency histograms of measurements. b, Reprocessing of 10 of these sequencing-failed 
samples led to increased ITS1 qPCR signals, indicating better DNA extractions. c, These reprocessed samples also yielded normal 
>10k ITS1 reads, passing our rDNA sequencing criteria. d, Eight of the reprocessed samples showed non-zero fungal 
communities, and only two had no detectable fungal signal. Shown are the composition (colored bars) and total abundance 
(empty bars) of fungal communities in these reprocessed samples. 

 
2. The data used to validate the MK-SpikeSeq method are plotted in a way that makes it difficult to evaluate the 
method. 
a. Fig. S2A and S2B don’t have axis labels, the axes aren’t the same length, and the distance between tick labels is 
not the same. 
b. In Fig. S2A, S2B, and S2C, the authors should report the slope and offset of the best-fit line, not just the r. 
Otherwise, it’s not clear that there is a 1:1 mapping between observed and expected data. 
c. Could be nice to quantify the accuracy of absolute abundance measurements for individual taxa, since that’s the 
object of interest for all subsequent analyses. 

 
Thank you for catching this, we’ve now adjusted the axis in Extended Data Fig 2 accordingly and reported the slope 
and offset as suggested. We’ve also now added additional supplementary figures illustrating that MK-SpikeSeq 
accurately captures changes in absolute abundance for a range of individual taxa within both mock communities 
and human fecal samples: 



 

 
 
 
 

Extended Data Figure 2. MK-SpikeSeq reliably measures absolute abundances across kingdoms. A set of single-kingdom mock 
communities with a fixed composition of 10 bacterial (a) or 10 fungal (d) species and variable total microbial loads (indicated by 
the pie chart schematics underneath), were quantified using MK-SpikeSeq for relative composition (colored bars) and absolute 
abundance (black/grey bars). b, e, Correlations between expected (based on initial microbial densities and known dilution 
factors) and MK-SpikeSeq-measured total absolute abundances show that MK-SpikeSeq reliably detects absolute abundances of 
bacteria and fungi. Note that for e, as exact rDNA copy numbers per fungal cell are undefined, the expected total ITS1 
abundances are only estimates (here using 200 rDNA copies per fungal cell). c, f, Absolute abundance changes for individual 
members (color coded same as a, d) in the bacterial and fungal mock communities are largely consistent with known dilution 
factors. g, A set of serial dilutions of a human fecal sample was quantified using MK-SpikeSeq for relative composition (colored 
bars, shown are the phylum level taxa) and absolute abundance (empty bars). h, Absolute abundance changes for individual 
OTUs (color coded in phyla same as g) across kingdoms are largely consistent with known dilution factors. 



3. The conclusion from the linear mixed model (lines 127-131) seems very strong, given the analysis presented. 
a. Residuals? Is this model a good fit to the data? 
b. How was the confidence interval calculated? 
c. Plot of bacterial load vs. fungal load? 
d. Effect size seems small, but also difficult to evaluate, given normalization. 
e. Negative correlation is only barely statistically significant 

 
We agree with the reviewer that in hindsight our original discussion of the linear mixed model was too strong given 
the weakness of the effect, and the skew in our residuals (see below, now included in the extended data). We have 
therefore toned down our discussion of the inverse correlation observed, both in the main text and the abstract, and 
provided details on how confidence intervals were calculated: 

 
“However, though the fungal dynamics were themselves unpredictable, a linear mixed-effects model that accounted for infant 
age, anti-bacterials and anti-fungals, uncovered a significant weak negative correlation between bacterial and fungal loads 
(normalized effect size: -0.060, 95% Wald CI: [-0.119, -0.001], Fig 2f). That is, when accounting for all clinical covariates, samples 
with higher fungal loads tended to have lower bacterial loads. This inverse relationship between bacterial and fungal 
communities suggested led us to wonder whether cross-kingdom interactions might be influencing preterm microbiota 
dynamics.” 

 

Extended Data Figure 27d, Diagnostics for linear mixed effects model. 

 
4. Fig. S6: For the fungal ITS, it seems like the data were fit on a linear scale, thereby biasing the best-fit line 
towards high-abundance samples. Probably would be best to log-transform the data before fitting. 

 
Thank you for the suggestion, we have now fit the data on a log scale and adjusted the figure (now Extended Data 
Fig. 27d) accordingly. 

 
5. I found Fig. 1A more confusing than illuminating. Despite already being familiar with the effect, it took me some 
time to figure out what all of the bars were supposed to be telling me. 

 
All three reviewers found Fig. 1a more confusing that illuminating. In the light of this, we’ve now moved the mock 
community data into the supplement and replaced Fig. 1a with a simplified schematic demonstrating the general 
principle of how relative abundances can obscure different absolute abundance trajectories. We hope this will now 
be clearer for our readers. 

 
6. More generally, are any of the primary conclusions dependent upon whether the data is analyzed on a linear or 
log-data? 

 
By definition, our major analysis - the interaction inference - can only be performed on logged data as this is 
necessary to transform the gLV equations to a linear regression form. The only conclusion that is impacted when we 
change between a log or linear scale is the linear mixed effects model. When this is fit on non-logged data the 
correlations with day of life and antibiotic administration remain, however we find that the inverse correlation 
between total bacterial and fungal loads is no longer significant (Wald 95% CI: [-0.123, 0.003], Satterthwaite’s p- 
value: 0.06). Importantly though, the LME model fits more poorly to the non-logged data, supporting our choice to 



analyze on a logged scale. That said, for this reason, alongside the others mentioned above, we have toned down 
our discussion of the linear mixed effects model results. 

 
 

7. Fig. S7: Statistical test? P-value? 
 
Thank you for this suggestion. We tested to see whether the observations that anti-bacterials primarily inhibit 
bacteria and antifungals fungi was significant and found this not to be the case, so have softened our language in 
the figure legend to reflect this: 

 
“Antibacterials primarily inhibit bacteria, and antifungals primarily inhibit fungi, however there is not a significant bias in the 
likelihood of either antimicrobial inhibiting their target kingdom (exact binomial tests, H0: P(Inhibition) = 0.5, p>0.05)” 

 

8. I would have appreciated a sentence somewhere discussing similarities and differences between the pattern of 
colonization and succession between pre-term and full-term infants. 

 
As discussed above (major comment 4), we’ve now added additional text highlighting the differences between full- 
term and pre-term infants. 

 
 

9. Line 165: Given the regularization that was done, we should not be surprised that many interactions contain a 0 
(commensalism or amensalism). 

 
The reviewer is completely right, the prevalence of commensal and amensal interactions is not surprising given the 
regularization used, we were unclear regarding two key points when trying to discuss the pitfalls of correlational 
analysis. We’ve now edited this paragraph to focus on the prevalence of exploitative interactions, which we find to 
be surprisingly common and that cannot be detected using correlational analysis. We’ve also edited our initial 
discussion of the regularization approach to make clear this method identifies only those interactions playing a 
strong role in shaping community dynamics, and will thus filter out weak interactions: 

 
“Together this yields a highly parameterized model of community dynamics, which we fit to our data using a highly 
conservative regularization framework. By doing so, we were able to identify those microbe-microbe or microbe- antibiotic 
interactions playing a strong and consistent role in shaping community dynamics – while avoiding overfitting and filtering 
out weak interactions that do not influence overall community dynamics.” 

 
“Notably, we discovered that a substantial proportion of the interactions shaping preterm infant assembly are 
exploitative (+/-), with these asymmetric interactions comprising over 20% of inferred microbe-microbe interactions (Extended 
Data Fig 28c).” 

 
10. Line 230: “occur” should be deleted 

 
Thank you for catching this, we’ve now edited accordingly. 

 
11. Line 235: “context-independent” should read “context-dependent” 

Thank you for also catching this, we’ve now edited accordingly. 

12. Line 717: The finding of Cryptococcus spp. as a dominant microbial genus in the studied mycobiome 
contradicts the consensus of the mycobiome community regarding the absence of cryptococcus from the normal 
human gut microbiome. Could the authors elaborate? (There was a reference to a table that I could not access) 

 
The reviewer raises an interesting point, as indeed Cryptococcus is normally thought to be rare in the human gut 
microbiome. It’s important to note, the Cryptococcus species present were C. frias, C. uniguttulatus and C. saitoi, 
none of which are typically considered pathogens, and we did not observe any incidence of the pathogens C. 
neoformans or C. gattei. Given this divergence between infant and adult mycobiome communities we’ve added 
some discussion of this (and the rarity of Saccharomyces) to our main text: 



“Of note, though rare in adults30, Cryptococcus was the dominant fungal genus in approximately 5% of all samples, while despite 
being a common inhabitant of the adult gut, Saccharomyces species30 were found in only 5 infants.” 

 
13. It’s surprising that Saccharomyces spp. wasn’t found in the gut mycobiome since it’s the most abundant yeast 
in the human gut microbiome. (see: https://doi.org/10.1186/s40168-017-0373-4 ) 

 

As above, we thank the reviewer for pointing out this interesting difference between our cohort and what’s known of 
the adult mycobiome. Indeed, we only found Saccharomyces spp in 5 of the infants we sampled. As mentioned 
above, we’ve now added a brief discussion of the differences in mycobiome composition we observe. 

 
14. Lines 160-161: The species should perhaps always be mentioned. “Candida inhibited both Klebsiella and 
Escherichia, but was itself inhibited by Staphylococcus.” 

 
We apologize for being unclear; here we were referring to the results of the inference which we conducted at the 
genus level. We’ve now edited our text to hopefully make this clearer: 

 
“Our ecological inference predicted that strong intra- and inter-kingdom interactions between specific microbial genera play a 
pivotal role in shaping infant gut assembly, independently of antibiotic perturbations” 

 
We’ve also now added a supplementary table (Supplemental Table 14a) outlining exactly which species pairs were 
used for all of the in vitro interaction validation experiments. 

 
 

15. There are data showing that E. coli produces a fungicidal factor against C. albicans. (doi: 
10.15698/mic2018.05.631.) 

 
Thank you for bringing this to our attention, we wonder if this may be an example of an interaction that is either 
context-dependent so does not occur in the gut (for example, the fungicide appears to require magnesium 
limitation) or is relatively weak, so is dropped in the regularization. This touches on an important point also 
mentioned by Reviewer 3 that context can play a key role in determining how taxa interact with one another, and 
we’ve now added a short sentence discussing this point more explicitly in our main text: 

 
“These data also underlined the vital importance of context when studying microbiota interactions; illustrating how taxa may 
interact differently in vitro versus within a host-associated microbiota.” 

 
16. There is some evidence that the interactions between C. albicans and S. epidermidis is synergistic 
(https://doi.org/10.1186/1471-2180-13-257    and   https://doi.org/10.1099/0022-1317-51-4-344) 

 

Thank you for bringing this to our attention, we were interested to see that Pammi et al’s paper suggests Candida 
does worse in mixed species biofilms than in single species ones, adding further evidence to the cross-kingdom 
interactions we infer. We also find it interesting that both papers observe a positive effect of Candida on 
Staphylococcus, which we don’t infer. As with the fungicide mentioned above, this might be because the positive 
interaction is weak and doesn’t affect overall community dynamics (so is regularized out), or because this interaction 
is specific to the biofilm nature of the experiments referenced. Either way, this again underlines the importance of 
context on microbial interactions, and we’ve now cited the Pammi paper in the main text (note, we have not 
referenced the Adam et al paper as it focuses on antibiotic susceptibility, as opposed to direct growth inhibition / 
promotion): 

 
“As predicted, Candida members caused on average a ~100-1000-fold inhibition of each Enterobacteriaceae and experienced a 
~10-100-fold reduction in growth when co-cultured with Staphylococcus, consistent with previous observations from mixed 
species biofilms48.” 

 
17. Line 544: In vivo co-colonization validation. A reference for the antibiotic pre-treatment and the ampicillin 
drinking water should be added. Was it necessary to add antibiotic treatment during the co-colonization? It may 
change bacterial growth in monoculture colonization/co-colonization. Also, bacteria may respond differently as a 
response to the antibiotic. More generally, it seems that it would be good if the animal experiments mimicked the 
real conditions as much as possible. 

 
Thank you for bringing this to our attention. We’ve now added references to support both the pre-treatment and 
antibiotic drinking water. Specifically, Jung et al (2019) used vancomycin and metronidazole treatment to overcome 



colonization resistance against K. pneumoniae and Koh et al (2008) used penicillin drinking water to achieve a higher 
colonization level of C. albicans. We implemented these treatments following pilot experiments that found without the 
antibiotic treatment K. pneumoniae was rapidly lost from the mouse gut following inoculation (data not shown), likely 
due to colonization resistance from endogenous gut commensals. Importantly though, all of the NICU isolates used in 
our colonization experiments were resistant in vitro to ampicillin, suggesting that the antibiotic treatment should not 
directly affect any interactions. 

 
It would of course have been ideal to directly mimic the exact antibiotic conditions experienced by the infants in our 
cohort in our mouse model. Unfortunately, this was not possible as the dosing and frequency of antibiotic 
administration varied substantially infant to infant. Notably though, all 13 of the frequently sampled infants received 
ampicillin during their first week of life and 6/13 received vancomycin, thus we believe the antibiotic treatments in 
the mouse model do capture this aspect of real preterm conditions. 

 
 

18. I couldn’t find important information that would be needed to reproduce the experiment, such as an anesthesia 
protocol and inoculum concentrations. It’s not clear when the authors say: “lower inoculation was used for K. 
pneumoniae than others as this bacterium more readily and rapidly established colonization in the mouse gut”. What 
were the actual doses used? What is the background supporting this statement? 

 
We apologize for the lack of information here. The details regarding the timeline and inoculations were in 
Supplemental Table 15, and we’ve now clarified them in the supplementary text: 

 
“For inoculation into each mouse, we used 109 CFU for S. epidermidis, 108 CFU for Candida and 106 CFU for K. pneumoniae, each 
in 200 uL sterile PBS and injected intragastrically using a 1 ml syringe bearing a 22G ball tip needle through the pharynx. No 
anesthesia was performed in the gavage, but gentle handling of mice was ensured. Note that we used a lower inoculation for K. 
pneumoniae because a 108 CFU oral inoculation of K. pneumoniae was shown to achieve rapid colonization in the mouse gut 
(Jung, H. J. et al. MBio 2019) and here we aimed to measure the colonization dynamics of K. pneumoniae.” 

 
19. Line 805: Figure S2. What is the label “others” in A? 

 
We apologize for the confusion. “Others” in the panel were spurious OTU calls from the sequencing reads, likely due 
to contamination. As they only represent <0.1% of the population, for simplicity we have now removed these from 
the figure. 

 
20. It would have been nice to see Cryptococcus in a mock community, but I will not insist on this. 

 
We agree with the reviewer that including Cryptococcus in our mock community would be a nice addition. 
Unfortunately owing to the ongoing situation we are currently somewhat limited in our access to the lab and our 
ability to source new strains, therefore we hope the reviewer will not mind if we do not conduct further mock 
community tests. Our feeling is that our current mock community is sufficient to both demonstrate the general 
principles of the spike-in method and validate that our method can accurately recapitulate known absolute 
abundances. 

 
 

Referee #2 (Remarks to the Author): 
 
The authors develop and use to great effect a technique of converting relative abundances into absolute 
abundances, use this to assess the temporal changes in microbial gut populations, and infer ecological relationships 
between different microbes in the developing infant gut. The authors support their inferred relationships by isolating 
representatives of their genera of interest, then showing how in vitro coculturing replicates most of the interaction 
dynamics suggested by their model. Interestingly, the in vitro dynamics that didn’t follow the model predictions 
could be injected into a SPF mouse model system to mimic the model predictions, implying that these interactions 
were dependent on the gut environment. The key findings of this paper – that specific pairwise microbial interactions 
drive the pattern of succession in the infant gut, only some of which are context-dependent on the gut environment, 
are valuable discoveries for understanding the assembly of this 
microbiome. 

 
Further, the authors show that inference from relative abundance entirely misrepresented the dynamics that could 



be concluded from absolute abundances; that the dominant species of later succession (which microbe dominates 
after the pioneer Staphylococcus) seems to be related to the outcome of multiple pairwise interactions between 
dominant microbes, and that fungal and bacterial populations are negatively correlated, perhaps due to inhibitory 
effects of yeast species like Candida albicans. 

 
The combination of approaches used in this work is rarely accomplished in microbiome work, especially the 
experimental validation of microbial interactions. In addition, the contribution of fungal and archaeal species in the 
human microbiome is an underexplored area, so it is nice to see that the authors applied their method broadly. This 
paper represents a big step in a much needed direction for the microbiome field. 

 
Major comments: 

 
I found the description of MK-SpikeSeq to be lacking in the text and confusingly depicted in Fig 1. It was difficult to 
piece together all of the information from the figure, methods and supp info to get a clear understanding of both 
how it works and the various validations used with mock communities. It might be more effective to move it all to 
the supplementary material and combine the associated data together. 

 
All three reviewers suggested that we clarify our description of MK-SpikeSeq both in the text and in Fig 1. We have 
therefore completely revamped Fig 1 (see below) and edited our main text and supplement to present a clearer 
understanding. Specifically, as suggested we’ve now moved our mock community validation experiments from Fig 1 
into the supplement and replaced them with simpler schematics outlining how relative abundances can obscure 
community dynamics and describing in more detail how the MK-SpikeSeq method works. We’ve also substantially 
simplified our discussion of method validation in the main text and expanded our discussion of method validation/ 
comparisons with existing methods in the supplement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   
 

 
 

Figure 1. Multiple Kingdom SpikeSeq (MK-SpikeSeq) enables robust quantitation of absolute abundances. a, Schematic 
illustrating how relative abundance data can mask underlying community dynamics, rendering it challenging to distinguish 
different ecological scenarios. b, Overview of the MK-SpikeSeq pipeline. Prior to DNA extraction, defined amounts of each spike-
in cell (bacteria (B) , fungi (F) and archaea (A)) are added to each microbiome sample. Relative abundances of each microbial 
kingdom are then quantified using standard kingdom- 

    
 

   

    
 

  
 

  
   
  
    
 

    
 

   

    
 

  
  

    
     

 



specific rDNA amplicon sequencing. As the absolute abundances of each spike-in cell’s rDNA are known, these quantities can be 
used as back-normalization factors to calculate the absolute abundances of all other organisms present in each sample. The 
spike-in cells also serve as internal controls for the entire sample processing procedure, rendering the absolute quantification 
robust to factors such as sample-to-sample variable DNA extraction efficiency. 

 
Figure 1C shows how the absolute abundance of spike-in microbes can be back-calculated from their known 
dilution factor. In lines 87-88, the authors claim that this approach is “robust to variable DNA extraction efficiency,” 
but does not address bias in extraction efficiency between, e.g., gram positive bacteria versus their gram-negative 
spike-in standard or yeast species compared to filamentous fungi. Further, in Supp figure S2, some of the 
filamentous fungal species appear to be present at very low levels (if at all). Is this due to differences in DNA 
extraction efficiency, lower input, PCR bias, or something else. My concern is that there is systematic over- or 
under-estimation of certain kinds of microbes biased by the selection of spike-in species. It would be nice to see 
whether or not the species selection has a significant effect on the calculation of absolute abundance of other 
microbes. 

 
The reviewer raises a very important point. Compared with existing methods of quantifying absolute abundances 
from microbiome samples, our method is more robust to confounding factors like host cells that affect overall 
microbial DNA extraction efficiency between samples (see response to Reviewer 1). However, it cannot solve the 
problem of variable extraction efficiency between taxa. This problem is universal to all sequencing studies and is a 
function of the DNA extraction methods used (Greathouse et al Genome Biol 2019). To minimize this issue we used 
a standard commercial kit that includes the bead-beating mechanical lysis, a practice shown to improve the DNA 
extraction performance (Costea, P., et al. Nat Biotechnol, 2017), however, we cannot overcome this problem 
entirely. 

 
Crucially though, the variability in extraction efficiency between taxa should be conserved sample to sample. As 
such, this variability should not impact comparisons in microbial load between samples, and thus will not affect any 
of our inference analyses. To show this conservation of extraction efficiency, we’ve now added additional 
supplementary figures (Extended Data Figure 2) illustrating that MK-SpikeSeq accurately captures changes in 
absolute abundances for individual taxa, including Gram-negative and Gram-positive bacteria and a range of fungal 
species including filamentous fungi, within both mock communities and human fecal samples. We’ve also expanded 
our Supplemental Text (Section 2 – MK-SpikeSeq validation) to discuss in more detail the differences between MK- 
SpikeSeq and existing abundance quantification methods. 

 
Finally, and perhaps most importantly, the choice of spike-in species will not affect the abundance measurements    
as the spike in cells simply serve as a normalization factor during the sequencing process – thus they will not impact 
either the underlying community composition or the extraction efficiency of other taxa. To demonstrate this, we have 
performed rDNA amplicon sequencing on a set of samples with and without spike-in, which confirm that our spike-    
in does not alter rDNA relative abundance profiles (Extended Data Fig 4d). 

 
 
In Figure 3D and F, why are the input levels for certain species so different between alone and interacting 
conditions? How do we know that this doesn’t affect the growth outcome? 

 
We apologize for being unclear here. The first data points shown in Fig. 3D and 3F are not the input levels but rather 
the first measurement taken (i.e. the first stool sample collected 12 hrs post gavage). The same input levels were 
used for both the mono- and co-colonization experiments. We have now edited Fig 3d/f, the accompanying figure 
legend and our supplementary text to make this much clearer: 

 
“For inoculation into each mouse, we used 109 CFU for S. epidermidis, 108 CFU for Candida and 106 CFU for K. pneumoniae, 
each in 200 uL sterile PBS and injected intragastrically using a 1 ml syringe bearing a 22G ball tip needle through the pharynx. 
No anesthesia was performed in the gavage, but gentle handling of mice was ensured. Note that we used a lower inoculation 
for K. pneumoniae because a 108 CFU oral inoculation of K. pneumoniae was shown to achieve rapid colonization in the mouse 
gut (Jung, H. J. et al. MBio 2019) and here we aimed to measure the colonization dynamics of K. pneumoniae.” 

 
“CFU counts quantifying microbial fitness in vivo in a specific pathogen free (SPF) mouse model, reproducing the predicted 
exploitation of Staphylococcus by Klebsiella. Gavage 2 indicates day of inoculation with K. pneumoniae” 



Minor comments: 
• Within the abstract (lines 18-19), the authors claim that the “predictable assembly [of the infant gut] is vital to 
health,” yet the cited papers do not support this exact claim, rather just that gut composition is important to health 
status. 

 
We apologize for being unclear here, we have now altered this sentence and another in the main text to better 
reflect the references cited: 

 
“The gut microbiota is vital to preterm infant health8,9 yet the forces underlying these predictable dynamics remain unknown.” 

 
“Remarkably, this developmental process occurs in a strikingly predictable manner, with specific bacterial taxa establishing at 
distinct points in infant life18–22. The early life microbiome is critical to infant and later-life health, with microbiota composition 
linked to a range of disease outcomes, morbidity and mortality, particularly within vulnerable preterm infants” 

 
 

• Authors could clarify that the antibiotic they are referring to in line 146 are not microbiome-produced, but rather 
clinical antibiotics. 

 
Thank you for bringing this to our attention, we’ve now clarified this: 

 
“The model also allows each clinically-administered antimicrobial agent to inhibit, promote or have no effect on each 
community member.” 

 
• Figure 1a might be streamlined by demonstrating how the same relative abundance scenario could be represented 
by two different absolute abundance scenarios, instead of convoluting the modeled scenario with different 
cumulative populations trajectories. 

 
All three reviewers found Fig. 1a more confusing that illuminating, as discussed above (major comment 1), we’ve 
now moved the mock community data into the supplement and replaced Fig. 1a with a simplified schematic 
demonstrating the general principle of how relative abundances can obscure different absolute abundance 
trajectories. 

 
 

• I would like to see multiple infant successions, even if in supplementary, to evaluate how representative the one 
shown in Figure 2C is. 

 
Thank you for your suggestion, we’ve now included additional figures plotting the succession dynamics for all of the 
infants in our cohort (178 in total). We’ve also included new pathway visualization figures that plot how individual 
infants’ microbiomes and mycobiomes transition over time relative to all the infants in our cohort, which we’ve  
plotted for the 13 infants for whom we have very high frequency samples (see response to Reviewer 1). 

 
 

• Figure S2a and S2b: the scatter plots are missing axis text – important to know how much expected versus 
observed abundances only correlate, as mentioned in the text, versus how close they match. 

 
Our apologies, we have now edited these figures (now Extended Data Figure 2) accordingly, adding axis text and 
information on the statistical fits: 



 
 

Referee #3 (Remarks to the Author): 
 
This manuscript by Rao et al introduces a new method for absolute quantitation of bacteria, archaea and fungi 
present in the intestinal microbiota. They apply this method for analysis of longitudinal samples from a cohort of 178 
preterm infants, and use the results to model and predict intra- and inter-kingdom interactions, which are finally 
validiated by in vitro experiments as well as in animals. 

 
The methodology is original and highly relevant, since the many limitations of focusing only on relative bacterial 
abundances within the microbiome are becoming increasingly clear to the field. 
The results obtained are novel and important for the understanding of the establishment of the preterm microbiome, 
as well as for the understanding of microbial ecology in general. 

 
I have the following comments and suggestions: 

 
1) The microbiome of preterm infants is significantly different from that of infants born within term, the latter being 
characterized by a high abundance of bifidobacteria and a massive influence of breastfeeding. I therefore think it is 
important to make it clear already in the title, that the present study deals with preterm infants. Perhaps also 
emphasize it a bit more in the abstract since the facultative organisms selected by the aerobic preterm gut 
environment differ drastically from those of the normal term infant microbiome. 

 
The reviewer makes a very good point, and we’ve now changed our title and abstract accordingly. We’ve also 
included more discussion of how the preterm microbiome differs from that of full term infants in our main text: 

 
Title: 
Multi-kingdom quantitation reveals distinct ecological drivers of predictable early-life microbiome assembly in preterm 
infants 

 
Abstract: 
“The preterm infant gut microbiota develops remarkably predictably, with pioneer species colonizing after birth, followed 
by an ordered succession of other microbes. The gut microbiota is vital to preterm infant health yet the forces underlying these 
predictable dynamics remain unknown.” 

 
Main text: 
“Yet despite the apparent importance of the infant microbiota, we do not understand what drives initial microbiota 
development. Premenstrual age (term vs. preterm), mode of delivery (Caesarian section vs. vaginal), host epithelial and 
immune ontogeny, diet (formula vs. mother’s milk), antibiotics, and the interactions between 



individual microbes have been demonstrated or have the potential to influence microbiota composition. But with so many 
moving parts, the specific role of any individual factor in mediating microbiota development and assembly has remained 
unclear.” 

 
“Specifically, we assembled a prospective cohort of 178 preterm infants from a tertiary-care neonatal intensive care unit 
(NICU). The assembly of the preterm microbiota differs substantially from that of term infants. Most preterm infants are 
born via C-section and as such are seeded with skin and hospital-associated microbes and devoid of key maternal derived 
bacteria7,21,38. In addition, the pre-term microbiota displays “delayed” maturity with a prolonged membership of facultative 
anaerobic bacteria compared to that of a strict anaerobic community of term infants7,21,38. We focused on preterm infants 
due to their clinical relevance and because they are amenable to high-frequency longitudinal sampling with readily available 
clinical and dietary metadata.” 

 
2) The researchers spike the samples with bacterial, fungal and archaeal DNA, and can quantify the absolute 
abundances within these kingdoms. However, the manuscript and figures are focused only on bacteria and fungi, 
with no mentioning of the results obtained for archaea. These would be interesting to know. Even if they are not 
conclusive, it would be good to include them. 

 
Thank you for the suggestion, we’ve now moved our plots of archaeal community development from the 
supplement into Fig 2. Specifically, we now show how total archaeal abundances change over time, and illustrate 
for each week of life the proportion of samples in which archaea were / were not detected (see below). We’ve also 
edited the main text to discuss this in more detail: 

 
“Archaea were notably rare within our cohort, with most samples showing no archaeal signal. However, we did detect a weak 
positive trend in both the frequency of archaeal detection (Chi Squared test for trend, p=0.002), and total archaeal load over 
time (Spearman’s R=0.13, p=0.002), with higher archaeal abundances generally detected in later weeks of life (Fig 2g,h)” 



  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 
 

3) l. 118 - The blooming of Klebsiella is not really masked in the relative data. 
 

Our apologies for being unclear, here we were referring to the fact that absolute abundances show Klebsiella begins 
to bloom within the infant gut several days before this rise is evident in the relative abundance measurements. 
We’ve now adjusted our text slightly to clarify this point, and referred to other infants where we see similar 
discrepancies between the relative and absolute abundance dynamics of Klebsiella: 

 
“In several infants, relative abundances masked the timings of blooms in Klebsiella and Escherichia (Fig. 2c, Extended Data 
Figs. 10, 15, 16, 20), and showed Staphylococcus and Enterococcus collapsing in the community when their abundances were, in 
fact, comparatively stable (Fig. 2c, Extended Data Figs. 10-20).” 

 
4) l. 125 - Similarly, I think that '..uncovered dramatic blooms and collapses in fungal genera masked by relative 
abundances..' is a bit overstated, since these blooms and collapses are largely also seen in the relative abundance 
data. 

 
Again we apologize for being unclear. We’ve now toned this statement down somewhat, but also added additional 
text and figures to clarify the dynamics we were referring to: 

 
“As with bacterial communities, MK-SpikeSeq uncovered dramatic blooms and collapses in fungal genera masked by relative 
abundances. For example, in several infants Candida stably maintained a high relative abundance within the mycobiome, 
despite dropping by multiple orders of magnitude in absolute load over time (Fig. 2c, Extended Data Figs. 10, 14, 19).” 

          

 



5) l. 165-166 - I think that this is remarkable and surprising. It there a risk that the applied model might be biased 
against the detection of symmetric (+/+ and -/-) interactions? 

 
This is a very good question and we were not sufficiently clear in our manuscript: our model is somewhat biased 
against +/+ and -/- interactions as the regularization will filter out weak interactions that do occur within the gut, but 
do not play a major role in shaping community dynamics. In other words, the commensal/amensal interactions 
observed may in fact represent +/+ or -/- interactions, but where one partner is only very weakly affected by the 
other. What our results do imply, however, is that strong symmetric interactions are either very rare within the 
microbiome, or do not frequently impact community dynamics. 

 
Notably, there should not be any bias in favor of strong +/- interactions, yet these are common in our inference. This 
is an important observation, as such exploitative interactions cannot be detected by correlational analyses. We’ve 
now edited several sections of our text to make these points (and the biases in our model) clearer: 

 
“Together this yields a highly parameterized model of community dynamics, which we fit to our data using a highly 
conservative regularization framework. By doing so, we were able to identify those microbe-microbe or clinical antibiotic-
microbe interactions playing a strong and consistent role in shaping community dynamics – while avoiding overfitting 
and filtering out weak interactions that do not influence overall community dynamics.” 

 
“Notably, we discovered that a substantial proportion of the interactions shaping preterm infant assembly are exploitative 
(+/-), with these asymmetric interactions comprising over 20% of inferred microbe-microbe interactions (Extended Data Fig 28c).” 

 
6) l. 186-190: It would be relevant to know which distinct species within each genus were captured. Also, it is 
unclear whether each of these species were tested seperately against each of the species from another genus? Or 
were they tested as a mix of all species from one genus? Are only representative/affirmative data shown in Fig 3c? 
Were there no species-species interactions which did not fit the model prediction? 

 
Thank you for bringing up these important points, we’ve now included supplementary tables outlining more clearly 
which distinct species within each genus were isolated (Supplemental Table 13) and which species/strains were co- 
cultured with which for the interaction validation experiments (Supplemental Table 14a). For the validation 
experiments each isolated species was tested independently against multiple strains/species of the partner genus 
(not a mix of all species from one genus). Testing each species independently was important as it allowed us to 
demonstrate that in most cases interactions were conserved at the genus level – we have now edited the legend of 
Fig 3 (see below) to make this clearer. 

 
Regarding the reviewer’s final question, Figs 3c-f demonstrate all the interactions we tested, together illustrating that 
all the strong interactions between dominant taxa predicted by our inference could be recapitulated in vitro, or in the 
case of Staphylococcus-Klebsiella, in vivo. In other words, we did not find any false positives (nor in the case of 
Klebsiella-Enterococcus, a false negative). As noted above though, our inference will only identify those interactions 
that strongly and consistently influence community dynamics. Other interactions between taxa may be biologically 
possible, but our model suggests these either do not occur in vivo, or do not have a strong influence upon overall 
community dynamics. We’ve now edited our manuscript to make this clearer as we think it is an important point, 
and thank the reviewer for bringing it up (see response to comment 5 above) 

 
 

7) l. 193-194: Note that the environment (gut versus lab medium) may have a huge impact on e.g. competition for 
nutrients. 

 
The reviewer raises a very important point that context can play a major role in shaping inter-taxa interactions. We 
have now called this out more explicitly in the paragraph following lines 193-194, as we think it is most relevant to 
the section of the manuscript where we discuss differences in interactions in vitro vs in vivo: 

 
“That is, we hypothesized that, due to differing environments in vitro versus in vivo, such as differing nutritional or spatial 
conditions, Klebsiella might only gain a benefit from Staphylococcus within the gut.” 



“These data also underlined the vital importance of context when studying microbiota interactions; illustrating how taxa may 
interact differently in vitro versus within a host-associated microbiota.” 

 
8) l. 196: You state here that no positive effect of Staphylococcus on Klebsiella was observed under in vitro 
conditions, but still this is marked with a big blue arrow in Fig 3c? 

 
We apologize for being unclear, the purpose of the arrows in Fig 3c was to indicate which predicted interactions 
were being tested in the corresponding figure, not those validated in vitro. We have now edited the legend and 
added additional labels to Fig 3 to make this clearer: 

 
Legend: 
“in vitro growth effects of infant isolates upon one another using monoculture and pairwise co-culture, testing the predicted 
within-kingdom interactions indicated by schematic.” 

 

9) 228: I think a new sub-headline would be feasible here. 
 
Thank you for this suggestion. We have now added a “Discussion” sub-headline here. 

 
 
Comments to figures: 
Fig 1b - I don't understand the purpose of having two fecal samples/ two soil samples with an arrow between them 
in the left side of the figure? 

 
We apologize for being unclear, our goal here was to illustrate the longitudinal nature of our sampling. As discussed 
above, we’ve now substantially revamped Fig. 1 to make this clearer. 

 
Fig 3a - What is the green round dot in this figure representing? 
This was supposed to indicate that our interaction network captures within- and between-kingdom interactions (ie 
the circle is supposed to be a fungus) we have now edited our figure legend to make this clearer and altered Fig. 1 
so the use of a circle to represent fungi is consistent throughout: 

 
“a. Schematic illustrating the generalized Lotka-Volterra (gLV) model used to identify causative drivers of microbiota 

bacterial (purple ovals) and fungal (green circle) dynamics within the infant gut.” 

 

Fig 3c - see comment 8). Also, do the dots represent replicate experiments or different species? (If both, it would be 
good to label the difference as for Candida). 

 
Thank you for pointing this out. As discussed above, we have now added a new supplementary table (Supplemental 
Table 14a) to indicate each of the species combinations used for each experiment. We have not labelled the 
differences between species in the figure as we did for Candida because we found this made the figure harder to 
understand (while we only had two Candida species, we had multiple representatives of most of the other genera). 
However, we have now edited our figure legend to make clear to the reader the dots refer to distinct isolate 
combinations: 

 
“Figure 3c. in vitro growth effects of infant isolates upon one another using monoculture and pairwise co-culture, testing the 
predicted within-kingdom interactions indicated by schematic. Each dot represents a unique combination of an individual 
isolate from each genus (Supplemental Table 14a).” 

Fig S6 - Something went wrong with the panel letter references in the legend to this figure. Thank you 
for catching this, we have now edited the figure legend accordingly. 



 

 
Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 
 
The authors have done a good job addressing the questions raised by me and the other referees. I 
believe that this is an excellent study that can be published as is. 
 
Jeff Gore 
 
 
Referee #2 (Remarks to the Author): 
 
Thank you for providing detailed responses, and for making the suggested changes. I do not have 
any further comments or concerns. 
 
 
Referee #3 (Remarks to the Author): 
 
The authors have answered all the issues that I raised, and I have no further comments. 
I thank the authours for their thorough rebuttal, which made it easy for the reviewers to identify 
and assess the changes that were made. 

 


	We thank all three referees for their enthusiasm for our work and for their helpful comments, which have allowed us to substantially improve our manuscript. Please see below for our point-by-point responses.
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