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Supplementary Figure 1. Validation of MTSSL-labeled Cdk2 phosphorylation, labeling and function. a) Mass spectra of
unphosphorylated Cdk2 (DEER A-loop construct) without (black) and with (red) two MTSSL spin probes (+368 Da). Expected masses:
34,054 Da and 34,422 Da, respectively. b) Mass spectra of unphosphorylated (red) and phosphorylated (blue) Cdk2 (DEER A-loop
construct) labeled with two MTSSL labels on A93C and R157C. c) Kinase activity assays showing catalytic activation of Cdk2 WT, the
unlabeled DEER A-loop construct (Cdk2-Cyslite-R157CA93C), and the DEER A-loop construct labeled with 2 MTSSL spin labels. We
confirmed that the spin labels remained on the kinase in the kinase activity assay buffer by mass spectrometry. d) Size exclusion
chromatography traces for unphosphorylated spin-labeled monomeric Cdk2 (DEER A-loop construct) (red) and Cdk2:cyclinA dimer
(yellow) as well as free cyclinA (blue), demonstrating that the spin-labeled kinase binds the cyclinA subunit. The SDS-PAGE gel shows
fractions from the Cdk2:cyclinA dimer run confirming formation of the 1:1 complex and demonstrating that the sample was prepared
with excess cyclinA. Protein samples used for reference Cdk2 and cyclinA markers (lanes 1 and 2) had been previously validated. This
analysis was performed on the sample used for the DEER experiment. e) Mass spectrum of the phosphorylated Cdk2 o.C-helix
construct with two MTSSL labels on S46C and A93C. Expected mass: 34,573 Da. f) Kinase activity assays showing catalytic activity of
the a.C-helix probe construct compared to WT Cdk2. The activity of the +2xMTSSL sample was measured with protein previously used
in the DEER experiment itself. g) Crystallographic temperature factors (left) and spin label conformational modeling (right) of the A-loop
labeling site residue R157.
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Supplementary Figure 2. Gaussian fits of the DEER spectra can be assigned to specific conformational states of Cdk2
observed in x-ray structures. MTSSL rotamers visualized on the x-ray structures of Cdk2 using the PyMOL plugin MtsslWizard.
Calculated ensemble distance distributions were used to assign conformational states to Gaussian populations from the DEER
experiments measuring a) the A-loop of Cdk2 and Cdk2:cyclinA, showing that Cdk2 samples the Aloop-out; state (inset), and that
Cdk2:cyclinA adopts the Aloop-out, state, b) the a.C-helix of Cdk2 and Cdk2:cyclinA, showing that the MTSSL probe is more
constrained in the presence of cyclin, leading to different Gaussian centers for the aC-in conformation, c) the A-loop of pCdk2 and
pCdk2:cyclinA, showing that pCdk2 has a similar Aloop-out subpopulation to Cdk2 and that pCdk2:cyclinA adopts the Aloop-outs state,
d) the a.C-helix of pCdk2 and pCdk2:cyclinA, showing that pCdk2:cyclinA is mostly shifted to the a.C-in state. The inset in ¢ shows the
result of attempting to fit the pCdk2:cyclinA DEER data without the Aloop-in subpopulation (red), highlighting that the Aloop-in
subpopulation is necessary to fit the early evolution times.
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Supplementary Figure 3. NMR spectra of MTSSL- and dMTSSL-labeled Cdk2. The TROSY-HSQC spectra of MTSSL-labeled
(paramagnetic) and dMTSSL-labeled (diamagnetic) Cdk2 samples in the four biochemical states are shown. Resonance assignments
are shown in the insets. a) Monomeric unphosphorylated Cdk2 (Cdk2). b) Monomeric phosphorylated Cdk2 (pCdk2). c)
Unphosphorylated Cdk2:cyclinA dimer (Cdk2:cyclinA), d) Phosphorylated Cdk2:cyclinA dimer (pCdk2:cyclinA).
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Supplementary Figure 4. The Cdk2 Aloop-out states are distinguished by NMR PRE experiments. a) Plots of the PRE Iy/l4 values
for monomeric Cdk2, as well as calculated I,/l4 for the Aloop-in state (black, based on the apo 1HCK x-ray structure) and the Aloop-out;
state (gray, based on the KAP-bound 1FQ1 structure). The experimental and calculated PRE effects are shown mapped onto the x-ray
structure on the right. PRE effects on the C-terminal half of the $3-a.C loop, CMGC insert, aEF-helix and aF-helix demonstrate that
monomeric Cdk2 samples the Aloop-out; state. Error bars represent the standard error calculated from the signal-to-noise ratio of the
entire spectrum. b) The PRE effects for phosphorylated monomeric Cdk2 are mapped onto the x-ray structure. ¢) Experimental and
calculated PRE Iy/l4 values for Cdk2:cyclinA. The PRE effect on the CMGC insert is consistent with adoption of the Aloop-out; state
observed in the 1FIN x-ray structure. The PRE signature on the aG helix is consistent with an Aloop-in subpopulation. Error bars
represent the standard error calculated from the signal-to-noise ratio of the entire spectrum. d) Experimental and calculated PRE Iy/lq



values for pCdk2:cyclinA. The experimental values are consistent with adoption of the Aloop-out; state, as well as the loss of the Aloop-

in subpopulation seen in the absence of phosphorylation. Error bars represent the standard error calculated from the signal-to-noise
ratio of the entire spectrum.
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Supplementary Figure 5. DEER data on unphosphorylated Cdk2 bound to Cdk2 inhibitors (Aloop). DEER spectra (bottom) and
spin-spin distance distributions (top) for Cdk2 bound to four Cdk2 inhibitors. Distance distributions were acquired by fitting DEER
spectra using Tikhonov regularization, and independently fitting to two Gaussian functions representing Aloop-in and Aloop-out; states
The calculated Aloop-out; distance distribution from the Cdk2:KAP structure (1FQ1) is shown in grey and scaled along the y-axis for
clarity. DEER spectra, Tikhonov fits and decomposed Gaussian fits are shown for a) Cdk2:dinaciclib, b) Cdk2:AZD5438, c)

Cdk2:roscovitine, d) Cdk2:flavopiridol. e) All four inhibitors promote the Aloop-out; state in the presence of cyclinA, as manifested by a
loss of the Aloop-in subpopulation (arrow).
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Supplementary Figure 6. DEER data on unphosphorylated Cdk2 bound to Cdk2 inhibitors (aC-helix). DEER spectra (bottom)
and spin-spin distance distributions (top) for Cdk2 bound to four Cdk2 inhibitors. Distance distributions were acquired by fitting DEER
spectra using Tikhonov regularization, and independently fitting to two Gaussian functions representing a.C-out and a.C-in states. The
distance distribution from the a.C-in state of Cdk2:K03861 is shown in grey and scaled along the y-axis for clarity. DEER spectra,
Tikhonov fits and decomposed Gaussian fits are shown for a) Cdk2:dinaciclib, b) Cdk2:AZD5438, ¢) Cdk2:roscovitine, d)
Cdk2:flavopiridol.
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Supplementary Figure 7. The x-ray structure of monomeric Cdk2 bound to AZD5438 shows evidence of the inhibitor-driven
conformational change. The two conformations in the crystallographic model (PDB ID: 6GUH) are colored light blue for the inactive
state and dark blue for the active-like state. The position of the catalytic lysine K33 in the corresponding dinaciclib structure is shown in
light yellow for comparison.
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Supplementary Figure 8. FRET measurements of inhibitor binding. Inhibitor and cyclin binding experiments with a)
unphosophorylated Cdk2 and b) phosphorylated Cdk2. Ratiometric FRET measurements from representative experiments are shown
along with the global fits (dashed black lines, see Methods).
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Supplementary Figure 9. Coupling parameters and microscopic equilibrium dissociation constants from the FRET analysis. a)
B values derived from fits of the FRET data to the extended allosteric two state model (black) and the corresponding values
independently measured with DEER (blue), show that the four Cdk2 inhibitors drive a conformational shift to the Aloop-out state. Values
for FRET experiments are mean + S.E.M; n = 3 independent experiments b) Microscopic equilibrium dissociation constants for inhibitor
binding to different conformational and biochemical states of unphosphorylated Cdk2. The corresponding data for phosphorylated Cdk2
are shown in main Figure 4d. Values are mean + S.E.M; n = 3 independent experiments
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Supplementary Figure 10. Phylogenetic tree of Cdk1, Cdk2 and Cdk4/6 across metazoans. The phylogenetic tree was generated
using the maximum likelihood method in MEGA X. The amino acid residue found at the central hub location (A151 in human Cdk2, 1164
in human Cdk4) is shown for each species. There is a clear divergence of this position between Cdk2 and Cdk4 lineages.
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Supplementary Figure 11. Validation of the Cdk2Cd4Hub construct, phosphorylation, cyclinA binding and folding. a). Mass
spectrum of unphosphorylated and phosphorylated Cdk2¢44Hu> homogeneously labeled with 2 MTSSL spin labels (expected masses:
34439 Da and 34519 Da, respectively). b) Size exclusion chromatograms for spin-labeled monomeric Cdk2Cd4Hub (plue), MTSSL-
labeled Cdk2Cdk4Hub:cyclinA complex (green), and free cyclinA. The SDS-PAGE gel shows the fractions from the size exclusion run on
the Cdk2Cdk4Hub:cyclinA complex, confirming the formation of the 1:1 complex and demonstrating the presence of excess cyclinA in the
sample used for DEER experiments. Protein samples used for reference Cdk2 and cyclinA markers (lanes 1 and 2) had been
previously validated. This analysis was performed on the sample used for the DEER experiment.
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Supplementary Figure 12. DEER spectra and distance distributions of the Cdk2¢dk4Hub and Cdk2-148R mutants. DEER spectra
(below) and distance distributions (above) for a) unphosphorylated (red) and phosphorylated (blue) Cdk2Cdk4Hub:cyclinA complexes.
Unlike WT Cdk2, phosphorylation does not enhance the conformational shift to the Aloop-outs state in the mutant. b) pCdk2:cyclinA
(blue) and pCdk2-148R:cyclinA (black). The residual Aloop-in subpopulation observed in WT is lost in the L148R mutant, as manifested in
the DEER spectra at early evolution times. ¢) monomeric pCdk2, pCdk2¢d4Hub and pCdk2-48R showing that the L148R mutation drives
a shift to the a.C-in state. d) dimeric pCdk2:cyclinA, pCdk2Cd4Hub:cyclinA and pCdk2-148R:cyclinA complexes, showing that cyclin and
phosphorylation cannot drive Cdk2¢d4Hub jnto the canonical o.C-in conformation.
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Supplementary Figure 13. Inhibitors do not discriminate well between the monomeric forms of WT Cdk2 and the Cdk2Cdk4Hub
mutant. FRET binding affinities of Cdk2 and Cdk4 inhibitors for phosphorylated monomeric pCdk2 (blue) and pCdk2Cd4Hub (grey).
Corresponding data for the phosphorylated pCdk2:cyclinA dimers are shown in main Figure 5h. The pronounced effects of the hub
mutations on the affinities of the Cdk2 inhibitors for the dimer are not observed with the monomer, indicating that they arise from loss of
allosteric coupling to the cyclin subunit in the Cdk2C94Hub mytant. Values are mean + S.E.M; n = 3 independent experiments.
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Supplementary Figure 14. Error surface analysis of global fitting of FRET data to the extended allosteric two state
model. a) Gaussian populations derived from the DEER data for Cdk2 and Cdk2:cyclinA were used to constrain the
values of the equilibrium constants Keq and aKeq in the fitting procedure. b) A representative error surface analysis of the
fit parameters performed in Kintek Explorer. Every pairwise combination of unconstrained parameters was explored and
the ratio of the optimal fit chi2 (chi2min) to the chi2 obtained with a given combination of parameters is plotted on a color
scale as shown in the legend.



