Quick and Easy Assembly of a One-step qRT-PCR Kit for COVID-19 Diagnostics Using In-House Enzymes

Masateru Takahashi^{1, †,*}, Muhammad Tehseen^{1, †}, Rahul Salunke², Etsuko Takahashi¹, Sara Mfarrej², Mohamed A. Sobhy¹, Fatimah S. Alhamlan³, Sharif Hala^{2,4,5}, Gerardo Ramos-Mandujano ⁶, Ahmed A. Al-Qahtani³, Fadwa S. Alofi⁷, Afrah Alsomali⁸, Anwar M. Hashem⁹, Asim Khogeer¹⁰, Naif A. M. Almontashiri¹¹, Jae Man Lee¹², Hiroaki Mon¹², Kosuke Sakashita¹³, Mo Li⁶, Takahiro Kusakabe¹², Arnab Pain², and Samir M. Hamdan^{1,*}

¹ Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

² Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

³ Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.

⁴ King Saud bin Abdulaziz University of Health Sciences, Jeddah, 22384, Saudi Arabia.

⁵ King Abdullah International Medical Research Centre, Jeddah, Makkah, Ministry of National Guard Health Affairs, Jeddah, Makkah, 22384, Saudi Arabia.

⁶ Stem Cell and Regenration Laboratory. Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

⁷ Infectious Diseases Department, King Fahad Hospital, Madinah, 3177, Saudi Arabia.

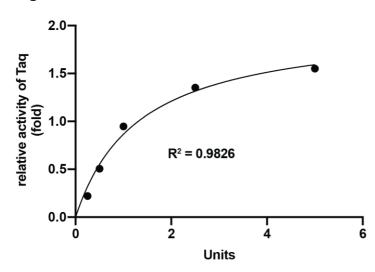
⁸ King Abdullah Medical Complex (KAMC), Jeddah, 23816, Saudi Arabia.

⁹ Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

¹⁰ Plan and Research Department, General Directorate of Health Affairs Makkah Region, MOH, 24321, Saudi Arabia.

¹¹ College of Applied Medical Sciences, Taibah University, Madinah, 41311, Saudi Arabia; Center for Genetics and Inherited Diseases, Taibah University, Madinah, 42353, Saudi Arabia.

¹² Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.


¹³ King Abdullah University of Science and Technology (KAUST), Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Thuwal, 23955-6900, Saudi Arabia.

^{*} **Correspondence**: Samir M. Hamdan (samir.hamdan@kaust.edu.sa)

Masateru Takahashi (masateru.takahashi@kaust.edu.sa)

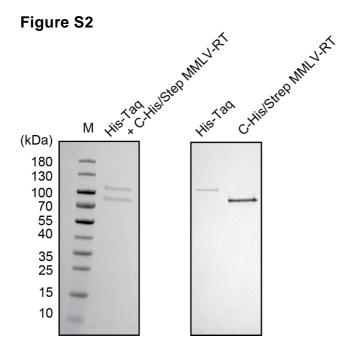
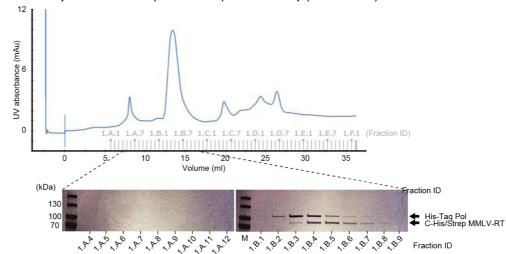

[†] These authors contributed equally: Muhammad Tehseen, Masateru Takahashi

Figure S1

Standard titration curve of native Taq Pol's activity.


The PCR assays were conducted with serially diluted N-Taq Pol (Thermofisher) (see Materials and Methods section), and the standard titration curve of N-Taq Pol activity was plotted.

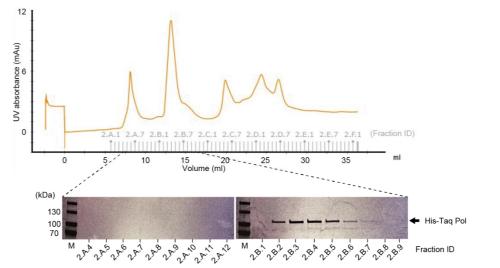
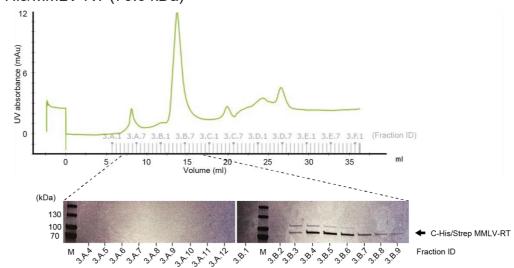
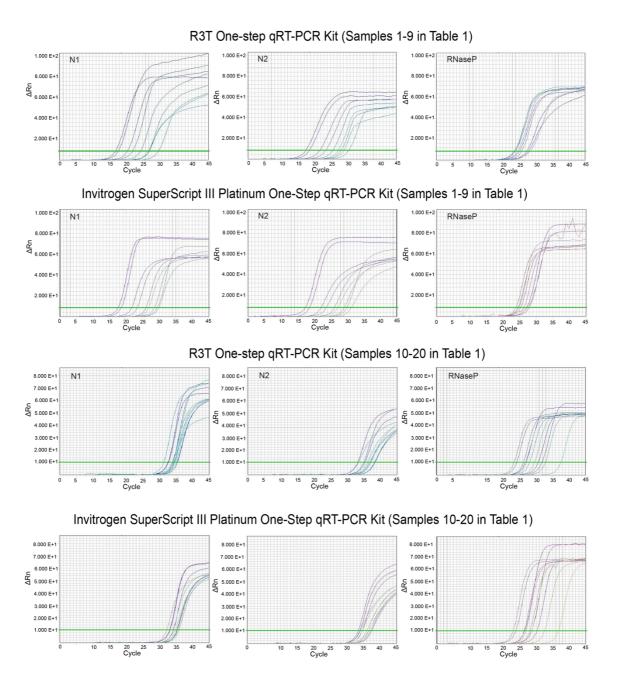

SDS-PAGE analysis of His-Taq and C-His/Strep MMLV-RT after the PCR. After the PCR products were analyzed in Figure 3C, the reaction mixture leftover (500 ng of C-His/Strep MMLV-RT vs. 20 units of His-Taq Pol) was subjected to the SDS-PAGE analysis (left panel). Fresh purified His-Taq Pol and C-His/Strep MMLV-RT were loaded as a size control (right panel).

Figure S3


A C-His/Strep MMLV-RT (78.5 kDa) + His-Taq (93.4 kDa)

B His-Taq (93.4 kDa)


C C-His/MMLV-RT (78.5 kDa)

Elution profiles and SDS-PAGE gels of C-His/Strep MMLV-RT and His-Taq Pol from SEC.

The elution profiles from size-exclusion chromatography (SEC) and SDS-PAGE gels are shown for the mixture of C-His/Strep MMLV-RT and His-Taq (A), His-Taq only (B), and C-His/Strep MMLV-RT only (C). The protein samples were mixed with the PCR buffer and incubated on ice for 10 minutes. And the incubated samples were loaded onto the Superdex 200 10/30 GL column (GE Healthcare).

Figure S4

Comparison of amplification curves from the different positive patient samples.

The amplification curves of Ct values in Table 1 are shown. N1, N2, and RNaseP represent the primer sets used with the R3T One-step qRT-PCR kit or the Invitrogen SuperScript III Platinum One-Step qRT-PCR kit.

Table S1Comparision of R3T One-step qRT-PCR System with TaqPath 1-Step RT-qPCR System.

ystem	Thermofisher TaqPath 1-Step RT						R3T One-step qRT-PCR System							
Result	Expected	Ct value in patient samples								Ct value in patient samples				
					N	Sample	Sr. No.	Result	Expected	RP	N2	N1	Sample	Sr. No.
Positive SARS CoV-	+	30.3	20.1	19.8	18.8	RC-26	1	Positive SARS CoV-2	+	27.7	15.9	19.4	RC-26	1
Positive SARS CoV-	+	37.1	17.2	17.7	16.9	RC-3	2	Positive SARS CoV-2	+	28.5	17.1	13.3	RC-3	2
Positive SARS CoV-	+	32.8	15.7	16	16.4	RC-7	3	Positive SARS CoV-2	+	26.6	18.7	18	RC-7	3
Positive SARS CoV-	+	26.5	24.8	25.4	25	RC-4	4	Positive SARS CoV-2	+	29.8	25.4	24.6	RC-4	4
Positive SARS CoV-	+	36.6	18	18.6	17.5	RC-5	5	Positive SARS CoV-2	+	29.9	18.9	12.3	RC-5	5
Positive SARS CoV-	+	37	16.1	16.1	16.8	RC-13	6	Positive SARS CoV-2	+	24.8	18.5	17.7	RC-13	6
Positive SARS CoV-	+	28.6	27.4	26.8	27.1	RC-30	7	Positive SARS CoV-2	+	28.2	24.1	26.5	RC-30	7
Positive SARS CoV-	+	34.6	16.3	16	15.9	RC-31	8	Positive SARS CoV-2	+	26.6	14.3	16.6	RC-31	8
Positive SARS CoV-	+	26.5	30.9	30.2	31.9	RC-38	9	Positive SARS CoV-2	+	24.9	28.9	33	RC-38	9
Positive SARS CoV-	+	26.7	24.2	23.9	24.6	RC-39	10	Positive SARS CoV-2	+	22.6	21.9	25.2	RC-39	10
Positive SARS CoV-	+	36.3	15.3	15.1	16.6	RC-40	11	Positive SARS CoV-2	+	22.9	14.1	16.6	RC-40	11
Positive SARS CoV-	+	29	22.6	22.4	24	RC-44	12	Positive SARS CoV-2	+	25.8	22.4	24.9	RC-44	12
Positive SARS CoV-	+	29.9	21.3	21.7	23.4	RC-45	13	Positive SARS CoV-2	+	24.5	22.8	24.5	RC-45	13
Positive SARS CoV-	+	33	17.3	17.2	18.7	RC-46	14	Positive SARS CoV-2	+	27.9	18.9	19.7	RC-46	14
Positive SARS CoV-	+	30	20.1	19.7	21	RC-47	15	Positive SARS CoV-2	+	26	21.2	22	RC-47	15
Positive SARS CoV-	+	27	24.7	25.5	27.5	RC-9	16	Positive SARS CoV-2	+	26.7	29.5	28.6	RC-9	16
Positive SARS CoV-	+	24.1	24	24.4	21.5	RC-10	17	Positive SARS CoV-2	+	32.1	28.2	27.4	RC-10	17
Positive SARS CoV-	+	23.5	34.9	33.8	32.9	RC-11	18	Positive SARS CoV-2	+	29.2	34.7	35.6	RC-11	18
Positive SARS CoV-	+	27	31.5	31.8	31.3	RC-12	19	Positive SARS CoV-2	+	24.6	32.2	33.7	RC-12	19
Positive SARS CoV-	+	27	34.9	34.6	32.6	RC-6	20	Positive SARS CoV-2	+	29.8	34	33.5	RC-6	20
Negative SARS CoV-	_	27.9	_	_	_	RC-36	21	Negative SARS CoV-2	_	27.7	_	_	RC-36	21
Negative SARS CoV-	_	27.7	_	_	_	RC-37	22	Negative SARS CoV-2	_	28.3	_	_	RC-37	22
Negative SARS CoV-	_	26,6	-	_	_	RC-49	23	Negative SARS CoV-2	-	26.4	_	_	RC-49	23
Negative SARS CoV-	_	26.8	_	_	_	RC-64	24	Negative SARS CoV-2	_	25.5	_	_	RC-64	24
Negative SARS CoV-	_	26.5	_	_	_	RC-65	25	Negative SARS CoV-2	_	27.1	_	_	RC-65	25

N1 and N2: N-gene; RP: RNaseP; NTC: No template

N: N-gene; S: Spike Protein gene; MS2: Phage Control