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1 Preface

This file serves two purposes:

1. To provide a transparent record for the analysis conducted in the
paper ‘Evaluation of online training for international, multi-centre
collaborative studies: A Qualitative Analysis with Natural Language
Processing and Machine Learning Techniques’ and enable
reproducible research

2. To provide a guide for researchers and educationalists to implement
the techniques discussed in their own work, whether that be in
surveys of any kind (not just educational), focus groups and indeed
any form of free text data

This analysis was implemented in the R programming_language (https://mr
an.microsoft.com/open), however Python (https.//www.python.org/), Julia (http
s://www.julialang.org/) and more offer robust tools to conduct the same
analyses. A basic understanding of R is required to follow the code and
the author does not attempt to teach this, however recommends the
following courses to learn R:

1. HealthyR (https://healthyr.surgicalinformatics.org/) by the University of
Edinburgh, available in both online and face to face formats

2. R Programming_(https://www.coursera.org/learn/r-programming), a
MOOC by Johns Hopkins University

This analysis was further performed using Microsoft Open R, rather than
the standard distribution of R from the R Foundation (https://www.r-project.
org/foundation/). This is because Microsoft's distribution incorporates
Intel’s Math Kernel Library (https://software.intel.com/content/www/us/en/deve
lop/tools/math-kernel-library.html) which significantly enhances the
performance of many of the machine learning algorithms used here on
Intel processors. For this reason, it also recommended to run these
analyses using Intel hardware. Running this code takes roughly 1 and a
half hours on a modern laptop (with Intel 8550u processor). Smaller
datasets with desktop computers or server clusters and graphics
processors may be significantly faster.



https://mran.microsoft.com/open
https://www.python.org/
https://www.julialang.org/
https://healthyr.surgicalinformatics.org/
https://www.coursera.org/learn/r-programming
https://www.r-project.org/foundation/
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
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A HTML version of this document is available here:
(https://aborakati.github.io/E-learning-Analysis/)



https://aborakati.github.io/E-learning-Analysis/

2 Software Environment

R version 3.5.3 (2019-03-11)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17763)

Matrix products: default

locale:

[1] LC_COLLATE=English_United Kingdom.1252

[3] LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252

attached base packages:

[1] grid

stats

graphics grDevic

other attached packages:

[1]
[4]
[7]
[1e]
[13]
[16]
[19]
[22]
[25]

tidytext_0.2.0
sentimentr_2.7.1
gnm_1.1-0
RColorBrewer_1.1-2
ggpubr_0.2.3
stringr_1.4.0
readr_1.3.1
ggplot2_3.2.1
RevoUtils_11.0.3

broom_0.5.2
syuzhet_1.0.4
vcd_1.4-4
tm_0.7-6
magrittr_1.5
dplyr_0.8.3
tidyr_1.0.0
tidyverse_1.2.1

es utils

ldatuning_0.

datasets

LC_CTYPE=English_United Kingdom.1252

methods  base

2.0

vedExtra_0.7-1

wordcloud_2.

NLP_6.2-0

forcats_0.4.

purrr_0.3.2

tibble_2.1.3
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2]

topicmodels_©.2-8
RevoUtilsMath_11.0.0 topicdoc_0.1.0

loaded via a namespace (and not attached):

[1]

[5]

[9]
[13]
[17]
[21]
[25]
[29]
[33]
[37]
[41]
[45]
[49]
[53]
[57]

httr_1.4.1
stats4_3.5.3
backports_1.1.4
rvest_0.3.4
qdapRegex_0.7.2
relimp_1.0-5
cli_1.1.0
janeaustenr_0.1.5
xml2_1.2.2
lifecycle_0.1.0
ca_0.71
gtable_0.3.0
textclean_0.9.3
parallel_3.5.3
Imtest_0.9-36

jsonlite_1.6
cellranger_1.1.0
lattice_0.20-38
colorspace_1.4-1
haven_2.1.1
withr_2.1.2
crayon_1.3.4
SnowballC_0.6.0
tools_3.5.3
munsell _0.5.0
rlang_0.4.0
R6_2.4.0
zeallot_0.1.0
Rcpp_1.0.2

modelr_0.1.5
slam_0.1-45
glue_1.3.1
Matrix_1.2-15
scales_1.0.0
nnet_7.3-12
readxl_1.3.1
nlme_3.1-137
data.table_1.12.2
compiler_3.5.3
rstudioapi_0.10
z00_1.8-6
modeltools_0.2-22
vctrs_0.2.0

assertthat_0.2.1
pillar_1.4.2
ggsignif_0.6.0
pkgconfig 2.0.2
generics_0.0.2
lazyeval _0.2.2
tokenizers_0.2.1
MASS_7.3-51.1
hms_0.5.1
lexicon_1.2.1
qvcalc_0.9-1
lubridate_1.7.4
stringi_1.4.3
tidyselect_0.2.5






3 Load Libraries

3.0.1 Loads required packages for analysis:

library(tidyverse)
library(ggpubr)
library(tm)
library(wordcloud)
library(vcdExtra)
library(syuzhet)
library(sentimentr)
library(topicmodels)
library(ldatuning)
library(tidytext)
library(topicdoc)






4 Load Data and Data Cleaning

data <- read_csv
«/
E-learning Data/E-learning Feedback (Responses) - Form Responses 1l.csv",

col_types = cols( How would you rate the e-learning overall? =
col_integer()))

Change variable names:

# ##Ratings has a numerical rating for
# the course overall from 1 5 (5 being
# highest)

ratings <- table(data$ How would you rate the e-learning overall?’)

# ##Good has freetext responses for the
# question below:

good <- data$ What was good about the e-learning overall?"

# ##Bad has freetext responses for the
# question below:

bad <- data$ What could be improved about the e-learning overall?"

# ##O0ther has freetext responses for the
# question below:

other <- data$"Any other comments about the e-learning overall:"

Mean and standard deviation of overall ratings:

meanrating <- mean(data$ How would you rate the e-learning overall?")
sdrating <- sd(data$ How would you rate the e-learning overall?")

Normality testing:

gghistogram(ratings, xlab = "Ratings")
ggqqplot(ratings)
shapiro.test(ratings)

All show non normal distribution (expected)
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5 Bar plot of ratings with mean

This generates a bar chart with the number of responses for the question
'How would you rate the e learning overall?’, in each category of 1 5, with
a vertical line where the mean rating is

ggplot(data, aes(x = factor(data$ How would you rate the e-learning overall?”))) +
geom_bar(stat = "count", width = 0.7,
fill = "steelblue") + geom_vline(xintercept = 4.56,

color = "orange", size = 2) + coord_cartesian(clip = "off") +
geom_text(stat = "count", aes(label = ..count..),
vjust = -0.5, color = "black", size = 3.5) +

geom_text(x = 4.56, y = -55, label = "Mean = 4.56",
size = 3, colour = "black") + ggtitle("Overall Rating of E-learning Course by
Participants") +
xlab("Ratings (1-5/5)") + ylab("Number") +
theme_minimal() + theme(plot.title = element_text(hjust = 0.5))

This corresponds to Figure 2:
Overal Rating of E-leaming Course by Participants
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6 Qualitative Analysis

Converts ‘good’ into an object of type ‘corpus’ for the tm package (for

text mining analysis)

goodcorpus <- Corpus(VectorSource(good))

This code removes extraneous text which may be analysed by the package
e.g. 'the’, ‘a’, punctuation, converts to lower case, so upper and lower case
words aren't treated seperately, removes whitespace which are counted

separately

goodcorpus <- tm_map(goodcorpus,

goodcorpus <- tm_map(goodcorpus,
stopwords("english"))

goodcorpus <- tm_map(goodcorpus,
c("the"))

goodcorpus <- tm_map(goodcorpus,

goodcorpus <- tm_map(goodcorpus,

content_transformer(tolower))

removeWords,

removeWords,

removePunctuation)

stripWhitespace)

This code creates a ‘Term Document Matrix’ for the ‘goodcorpus’, this is a
table of each word that appears, with the frequency of each word

matrix <- TermDocumentMatrix(goodcorpus)

The following code sorts the matrix in decreasing order of frequency:

m <- as.matrix(matrix)

v <- sort(rowSums(m), decreasing = TRUE)

d <- data.frame(word = names(v),

freq = v)

This generates the values for table 3 in the manuscript ‘Frequency of top
20 words entered in response to question 'What was good about the e

learning overall?’

15



16 6 Qualitative Analysis

The following code generates a wordcloud, with the size of word
proportional to it's frequency in the ‘goodcorpus’

wordcloud(words = d$word, freq = d$freq,
min.freq = 1, max.words = 20, random.order = FALSE,
rot.per = 0.35, colors = brewer.pal(s,
"Dark2"))

The rest of the code in this section generates a TermDocumentMatrix and
wordcloud as above but for the ‘badcorpus’ and ‘othercorpus’

# Bad feedback
badcorpus <- Corpus(VectorSource(bad))

# Transform to remove extraneous text

# e.g. 'the' punctuation, convert to

# Lower case

badcorpus <- tm_map(badcorpus, content_transformer(tolower))

badcorpus <- tm_map(badcorpus, removeWords,
stopwords("english"))

badcorpus <- tm_map(badcorpus, removeWords,
c("the"))

badcorpus <- tm_map(badcorpus, removePunctuation)

badcorpus <- tm_map(badcorpus, stripWhitespace)

matrix2 <- TermDocumentMatrix(badcorpus)

# Sort matrix by most common words

m2 <- as.matrix(matrix2)

v2 <- sort(rowSums(m2), decreasing = TRUE)

d2 <- data.frame(word = names(v2), freq = v2)

# Wordcloud
wordcloud(words = d2$word, freq = d2$freq,
min.freq = 1, max.words = 20, random.order = FALSE,
rot.per = 0.35, colors = brewer.pal(s,
"Dark2"))

# Other feedback
othercorpus <- Corpus(VectorSource(other))

# Transform to remove extraneous text

# e.g. 'the' punctuation, convert to

# Lower case

othercorpus <- tm_map(othercorpus, content_transformer(tolower))

othercorpus <- tm_map(othercorpus, removeWords,
stopwords("english"))

othercorpus <- tm_map(othercorpus, removeWords,
c("the"))

othercorpus <- tm_map(othercorpus, removePunctuation)

othercorpus <- tm_map(othercorpus, stripWhitespace)

matrix3 <- TermDocumentMatrix(othercorpus)

# Sort matrix by most common words

m3 <- as.matrix(matrix3)

v3 <- sort(rowSums(m3), decreasing = TRUE)

d3 <- data.frame(word = names(v3), freq = v3)



# Wordcloud
wordcloud(words = d3$word, freq = d3$freq,
min.freq = 1, max.words = 20, random.order = FALSE,
rot.per = 0.35, colors = brewer.pal(s8,
"Dark2"))






7 Sentiment Analysis
Merge all 3 corpuses (good, bad and other) into one:

combined <- rbind(d, d2, d3)
combinedvector <- rbind(good, bad, other)
combinedcorpus <- Corpus(VectorSource(combinedvector))

7.0.1 AFINN analysis

This section takes the AFINN lexicon (a dictionary of the English language
with scores assigned depending on how positive or negative the word is
judged to be) and assigns that score to each word in the ‘combined’
corpus

afinn <- get_sentiments("afinn")

afinncomb <- inner_join(combined, afinn)

afinncomb <- mutate(afinncomb, sum = freq *
score)

Unweighted mean and standard deviation of setiment scores:

meansent <- (sum(afinncomb$sum)/sum(afinncomb$freq))
sd(afinncomb$score)
afcomb <- select(afinncomb, freq, score)

Weighted average and standard deviation, weighted by frequency of each
word:

fr <- expand.table(afcomb, freq = "freq")
mean(fr$score)
sd(fr$score)

This generates the afinn score
7.0.2 Syuzhet analysis
This code does the same as the above but for the syuzhet lexicon:

syuzhet <- get_sentiment_dictionary(dictionary = "syuzhet")
syuzhetcomb <- inner_join(combined, syuzhet)
syuzhetcomb <- mutate(syuzhetcomb, sum = freq *
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20 7 Sentiment Analysis

value)
meansentsz <- (sum(syuzhetcomb$sum)/sum(syuzhetcomb$freq))
sd(syuzhetcomb$score)
szcomb <- select(syuzhetcomb, freq, value)
fs <- expand.table(szcomb, freq = "freq")
mean(fs$value)
sd(fs$value)

7.0.3 SentimentR

This code uses the sentimentr package to generate the syuzhet lexicon
scores, this takes into account valence shifters e.g. this was not good,
which would otherwise be evaluated as a positive for the word good

combinedvector <- combinedvector[!is.na(combinedvector)]
syzsent <- sentiment_by(combinedvector)

summary(syzsent)

sd(syzsent$ave_sentiment)

These values are used in the manuscript



8 Topic Modelling

Create Document Term Matrix without stopwords for combinedcorpus:
n.b. ‘Document Term Matrix’ is different to the ‘Term Document Matrix’
above the former has each word as a column, with frequencies in the row,
the latter has each word as a row with frequencies in the column

combinedcorpusrem <- tm_map(combinedcorpus,
removeWords, stopwords(“english"))

combineddtm <- combinedcorpusrem %>% DocumentTermMatrix()

# #Remove empty rows
rowTotals <- apply(combineddtm, 1, sum)
combineddtm <- combineddtm[rowTotals > @,

1

This code finds the optimum number of thematic topics by Latent
Dirichlet Allocation, for speed of computation, it is run in chunks of 50:

result <- FindTopicsNumber(combineddtm, topics = seq(from = 2,
to = 50, by = 1), metrics = c("Griffiths2004",
"CaoJuan2009", "Arun2010", "Deveaud2014"),
method = "Gibbs", control = list(seed = 77),
mc.cores = 4L, verbose = TRUE)

FindTopicsNumber_plot(result)

result2 <- FindTopicsNumber(combineddtm,
topics = seq(from = 51, to = 100, by = 1),
metrics = c("Griffiths2004", "CaoJuan2009",
"Arun2010", "Deveaud2014"), method = "Gibbs",
control = list(seed = 77), mc.cores = 4L,
verbose = TRUE)

FindTopicsNumber_plot(result2)

result3 <- FindTopicsNumber(combineddtm,
topics = seq(from = 101, to = 150, by = 1),
metrics = c("Griffiths20e4", "CaoJuan2009",
"Arun2010", "Deveaud2014"), method = "Gibbs",
control = list(seed = 77), mc.cores = 4L,
verbose = TRUE)

FindTopicsNumber_plot(result3)

The plot of ‘result1’ generates supplementary figure 1 which shows 6 is
the optimum number of topics (greater numbers diverge from the
optimum) as evaluated by 4 different methods:
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22 8 Topic Modelling

minimize

metrics:

*  Grifiths2004
A caoluan2009
1.00 B Aun2010
~+ Deveaud2014

maximize

234567 8 910111213141516 17 181920212223242526 2728293031 323334353637 3839404142434445 4647 484950
number of topics

Topic generation, with 6 topics:

lda <- LDA(combineddtm, 6, method = "Gibbs")
ldab <- tidy(1lda)
ldab <- arrange(ldab, topic, desc(beta))

'Idab’ is a dataframe which contains each word sorted by topic and
frequency (frequency = beta), this gives the results in table 6



9 Model Diagnostics

Please see:

Jordan Boyd-Graber, David Mimno, and David Newman, 2014. Care and
Feeding of Topic Models: Problems, Diagnostics, and Improvements. CRC
Handbooks of Modern Statistical Methods. CRC Press, Boca Raton, Florida.
Available from:_(https://home.cs.colorado.edu/~jbg/docs/2014 book chapter ca
re_and feeding.pdf)

For more detailed information on the diagnostic metrics below.

9.1 Log Likelihood:

lda@loglikelihood

[1] -22061.33

9.2 Perplexity

exp(-1 * (lda@loglikelihood/7122))

[1] 22.14544

The log likelihood and perplexity are both omnibus measures of how well
the LDA model predicts the corpus of text. Lower values are better.

23
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9.3 Multiple Diagnostic Values:

diag_df <- topic_diagnostics(lda, combineddtm)

diag_df <- diag_df %>% mutate(topic_label = terms(1lda,
5) %>% apply(2, paste, collapse = ", "),
topic_label = paste(topic_num, topic_label,

sep =" - ")

diag_df

9 Model Diagnostics

Topic Topic Mean Token

Number Size Length
1 206.288 5.8
2 184.6986 5.8
3 191.0681 6.6
4 202.9427 74
5 207.9337 5.1
6 194.0688 5.7

Distance from
Corpus

0.526838

0.499784

0.533508

0.538766

0.554422

0.545239

Hellinger Distance from
Token to Document

0.110258

0.108121

0.114748

0.092861

0.140479

Prominence

24

24

Coherence Exclusivity

-206.429

-231.868

-208.624

-219.931

-210.759

-195.376

9.696937

9.594147

9.632935

9.714171

9.904656

9.852739

5 Most Frequent
Words

1 - easy,
understand, good,
follow, end

2 - clear, easy, use,
simple, useful

3 - questions, very,
well, short, really

4 - nothing, clear,
concise, module,
examples

5 - more,
informative, nil,
test, none

6 - good,
information, the,
data, redcap

9.3.0.1 See below for basic description of metrics



9.4 Plot 25

9.4 Plot
9.4.0.1 Generate bart charts of above metrics:

diag_df %>% gather(diagnostic, value, -topic_label,
-topic_num) %>% ggplot(aes(x = topic_num,
y = value, fill = str_wrap(topic_label,
25))) + geom_bar(stat = "identity") +
facet_wrap(~diagnostic, scales = "free") +
labs(x = "Topic Number", y = "Diagnostic Value",
fill = "Topic Label", title = "All Topic Model Diagnostics")

All Topic Model Diagnostics

Coherence Distance from Corpus Exclusivity
o 100
-50 04 75
-100 w0
-150 02
25
-200
00 00
2 4 6 2 4 6 2 4 6
Hellinger Distance between Token and Document Mean Token Length Prominence Topic Number and

5 Most Frequent Words

1 - easy, understand,
good, follow, end

6 2
010 . 2- clear, easy, use,
15 simple, useful
3 - questions, very,
0.05 10 well, short, really
4-nothing, clear,
5 concise, module, examples
5 - more, informative,
000 0 0
2 4 6 2 4 6 2 4

nil, test, none
6 6 - good, information,
the, data, redcap

IS

Diagnostic Value

Topic Size
150
100
o
2 4 6

Coherence- Measure of how similar the words in a defined topic are in
terms of meaning (or semantics), larger values are better; the measure
used here is as described in:

@
3

Topic Number

Mimno, D., Wallach, H. M., Talley, E., Leenders, M., & McCallum, A. (2011,
July). “Optimizing semantic coherence in topic models.” In Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(pp. 262-272). Association for Computational Linguistics. Chicago

Distance from Corpus- This is the Hellinger distance of the average
probability of the words in each topic from the average probability
distribution of the same words across the entire corpus

Exclusivity- Measure of how distinct top 10 words in each topic is from
other topics see:
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Bischof, Jonathan, and Edoardo Airoldi. 2012. “Summarizing topical
content with word frequency and exclusivity.” In Proceedings of the 29th
International Conference on Machine Learning (ICML12), eds John
Langford and Joelle Pineau.New York, NY: Omnipress, 201-208.

Prominence- Number of Words in each topic with a probability of >0.2 in
the overall corpus

Mean Token Length- Mean number of characters in each word

Topic Size- No of unique words in each topic






