

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038671
Article Type:	Original research
Date Submitted by the Author:	21-Mar-2020
Complete List of Authors:	Li, Feng-e ; Jilin University First Hospital, Stroke Center, Department of Neurology; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Zhang, Fu-Liang; The First Hospital of Jilin University, Stroke Center, Department of Neurology Guo, Zhen-Ni ; Jilin University First Hospital, Liu, Dong; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Liu, Hao-Yuan; Jilin University First Hospital, Stroke Center, Department of Neurology Yang, Yi; Jilin University First Hospital, Stroke Center, Department of Neurology; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology
Keywords:	Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE, PUBLIC HEALTH, Cardiac Epidemiology < CARDIOLOGY, EDUCATION & TRAINING (see Medical Education & Training)

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Original Article

Title Page

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey

Feng-e Li^{1,2}, MD; Fu-Liang Zhang¹, MD, PhD; Zhen-Ni Guo³, MD, PhD; Dong Liu², MD; Hao-YuanLiu¹; MD; Yi Yang^{1, 3}, MD, PhD[#].

¹ Stroke Center, Department of Neurology, The First Hospital of Jilin University,

Chang Chun, Jilin, 130021, China.

² Stroke Center, Department of Neurology, The Affiliated Hospital of Beihua University, JiLin, Jilin, 132011, China.

³ Clinical Trail and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Chang Chun, Jilin, 130021, China.

* These authors contributed equally to the manuscript.

[#] Correspondence and reprint requests should be addressed to: Yi Yang, MD, PhD. Stroke Center & Clinical Trail and Research Center for Stroke, Department of Neurology, the First Hospital of Jilin University, Xinmin Street 1#, 130021, Chang Chun, Jilin, China. Telephone: +86-18186870008; Fax: 0086-431-88782378; E-mail: doctoryangyi@163.com.

Authors contributions: Conception and design: Y Y, and Z-N G. Acquisition of the data: F-L Z and H-Y L. Data analysis: F-e L, D L, F-L Z. Drafting and revising the manuscript: F-e L. Critical revision: Z-N G, and Y Y. All of the authors approved the

final version for publication.

Disclosure: The authors declare no conflict of interest.

Study Funding: This project was supported by the National Key R&D Program of China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key Laboratory (20190901005JC) to Yi Yang. Project on research and application of effective intervention techniques for high risk population of stroke from the National Health and Family Planning Commission in China (GN-2016R0010).

Search terms: metabolic syndrome, prevalence, sex difference, cross-sectional, risk factor.

Word count: abstract 297 words; text 2509 words; 21 references; 5 tables.

reziez onz

ABSTRACT

Objectives To determine the gender differences and risk factors of Metabolic syndrome (MS) among the populations in northeast China.

Study design This study analyzed a part of the cross-sectional survey data of the National Stroke Screening and Prevention Program of China from 2016. The MS is defined as the presence of any three of the five risk factors: abnormal waist circumference, triglyceride, high-density lipoprotein cholesterol, blood pressure, fasting plasma glucose. Multiple regression analysis was used to investigate the sex-specific prevalence and risk factors of MS.

Setting The study was conducted in the Dehui city, Jilin province, China.

Participants A total of 4052 participants with complete questionnaire information and laboratory examinations were included in this analysis.

Results The prevalence of MS in northeast China (\geq 40 years old) was 50.1%. In the male group, increase in age (\geq 65 years old, OR=1.460, 95%CI: 1.065-2.002), high Body Mass Index (BMI) (overweight: OR=3.324, 95%CI: 2.403-4.598), abnormal neck circumference (OR=2.078, 95%CI: 1.569-2.751), and physical inactivity (OR=1.437, 95%CI: 1.064-1.941) significantly increased the risk of MS. In the female group, increase in age (OR=1.938, 95%CI: 1.466-2.561), high BMI (overweight: OR=3.273, 95%CI: 2.602-4.116), and abnormal neck circumference (OR=1.853, 95%CI: 1.521-2.258) were the underlying cause of MS. People with a junior middle school diploma (OR=0.633, 95%CI: 0.495-0.809) and being underweight (less BMI) (OR=0.238, 95%CI: 0.107-0.529) were less likely to develop MS.

Conclusions The prevalence of MS in women is significantly higher than that in men in northeast China. While increase in age, abnormal neck circumference and BMI

 significantly increase the risk of MS in women and men, physical inactivity increases the risk of MS only in men. Additionally, higher education reduces the risk of MS in women. Active lifestyle, preventive interventions and improvement in the level of education could reduce the prevalence of MS.

Key words: metabolic syndrome, prevalence, sex difference, cross-sectional, risk factor.

to beet teries only

Strengths and limitations of this study

1. This cross-sectional study involves a large representative sample of Chinese people.

2. We used a uniform pre-coded questionnaire designed by the Stroke Screening and Prevention Program of the National Health and Family Planning Commission of China (CNSSS).

3. Partial results are based on self-reported data from the investigators, which inevitably has the drawback of recall bias.

4. Our survey excluded people who were sick or too weak to complete the interview.

INTRODUCTION

Metabolic syndrome (MS) is a metabolic disorder, mainly related to insulin resistance and abdominal obesity.¹ It is a non-communicable disease. In developed countries, the prevalence of MS is higher and shows a trend of increase in every year,² which is inseparable from people's daily living habits.² MS is not an independent disease, but it is a risk factor for multiple cardiovascular diseases.^{3 4} Moreover, there is a significant difference in the prevalence of MS between men and women. And the risk factors that affect MS vary by gender.⁵ This paper aims to analyze the differences in the prevalence of MS between men and women in the population in northeast China.

POTULATION and METHODS

Data source and study participants

This population-based cross-sectional study was a part of the Stroke Screening and Prevention Program of the National Health and Family Planning Commission of China (CNSSS), among the resident population aged 40 years or above from January 2016 to March 2016. CNSSS is a national epidemiological survey of cerebrovascular diseases to obtain timely and reliable information on the morbidity, prevalence, and mortality of stroke in Chinese people over the age of 40.⁶ The sampling method in this experiment has been described in detail in other articles.⁷ The sample size (N) for this survey was acquired by calculation on a 2.37% stroke prevalence (p) among adults aged above 40 years in China,⁷ using the formula N=(Z_{α}^2 pq)/d² (where Z_{α} =1.96, α =0.05, g=1-p, and d=0.2p).

A multistage stage stratified random cluster sampling method was applied to obtain the sample population. In the first stage, 30 villages and 10 towns were randomly selected from 308 villages (rural) and 14 towns (urban) in the Dehui City using the probability proportional to size (PPS) sampling method. In the second stage, 5

villagers' groups or communities were randomly sampled from both rural and urban strata using PPS. In the third stage, 1 participant aged \geq 40 years was randomly selected from each household of the selected villagers' groups or communities. Respondents who were unwilling to participate in the survey or judged to be very frail were excluded. We had selected permanent residents aged \geq 40 years to attend the study (a calculated total of 4445 participants with added 10% loss rate), and then, 4100 participants of them completed the face-to-face survey, with a good response rate of 92.2%. In this sub-study of the CNSSS, we used data from participants who finally completed the study. After excluding 48 participants with incomplete questionnaire information or laboratory examinations, a total of 4052 participants were included in this analysis. The sample selection framework is presented in Figure 1. The study protocol was approved by the Human Ethics and Research Ethics committees of the First Hospital of Jilin University. Written informed consent was obtained from all study participants before recruitment and data collection.

Patient and public involvement

Patients and the public were not involved in the development of the research questionnaire or outcome measures, study design, or recruitment to and conduct of this study. There is no plan to disseminate the research findings to the participants.

Data collection and measurement

All patients completed a questionnaire that included general information (sociodemographic and health-related information). Physical examination included height, weight, neck circumference, waist circumference, hip circumference, and blood pressure. Height and weight were measured according to the standard. Subjects removed their shoes and hats and wore light clothes. The measurement accuracy was 0.1cm and 0.1kg. Blood pressure was measured by doctors using the OMRON

BMJ Open

automatic sphygmomanometer (OMRON HEM-7200, KYOTO, Japan). Blood pressure was measured on the right arm, parallel to the heart. The subjects rested for 20 minutes, and then blood pressure was measured twice, and the mean value was taken. Blood samples were measured overnight (at least 8 hours) on an empty stomach for fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). The samples were sent to the clinical laboratory of Changchun Kingmed center for testing.

Screening protocol and assessment criteria

The definition of MS we adopted in this study was published by International Diabetes Federation (IDF) and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI).⁸ The presence of any 3 of the 5 risk factors constitutes a diagnosis of MS: 1. Waist circumference: \geq 90cm for men, \geq 80cm for women; 2. TG: \geq 1.70mmol/L (drug treatment for elevated TG is an alternate indicator) ; 3. HDL-C: <1.0mmol/L for men, <1.3mmol/ L for women, (drug treatment for reduced HDL-C is an alternate indicator); 4. Blood pressure: systolic blood pressure (SBP) \geq 130 and/or diastolic blood pressure (DBP) \geq 85mmHg (antihypertensive drug treatment in a patient with a history of hypertension is an alternate indicator); and 5. FPG: \geq 5.6mmol/l (drug treatment of elevated glucose is an alternate indicator).

In addition to gender grouping, the participants were divided into the middle-aged group (40-64 years old) and the elderly group (\geq 65 years old). Evaluation criteria for other factors are shown in supplementary table S1. Those factors include overweight, physical inactivity, smoking, abnormal neck circumference, and alcohol consumption.

Statistical analysis

Continuous variables were presented as median (IQR). Categorical data were presented as number and proportions. Sex differences were compared using Mann-Whitney U test and χ 2-test. Multivariable binary logistic regressions were used to explore independent prevalence factors of MS among adults, and the OR and 95% confidence intervals (CIs) were calculated. All statistical analyses were performed using IBM SPSS 23.0 (SPSS, Inc., New York, NY, USA). *P* < 0.05 was considered statistically significant.

RESULTS

1. General data

There were 4052 participants in the survey. Among them, there were 1619 males and 2433 females with a median age of 53 (47, 62) years. Compared with the females, age, BMI, waist circumference, hip circumference, neck circumference and blood pressure were higher in males, whereas HDL-C and TC were lower (P <0.001). In addition, the proportion of smoking, exercising, living in the rural areas, and drinking alcohol were higher in men, whereas education level (Junior middle school and above) was higher in men, and the difference was statistically significant (except education level and living region P<0.05, else P<0.001), as shown in Table 1.

Table 1 General characteristics of participa	ants
--	------

	Men (N=1619)	Women (N=2433)	Total (N=4052)	z/χ^2	P value
Age(years)	55(48,63)	53(47,61)	53(47,62)	-4.796	< 0.001
BMI(kg/m2)	24.69(22.48,27.06)	23.97(21.94,26.32)	24.23(22.19,26.64)	-5.883	< 0.001
WC(cm)	89(82,94)	84(77,90)	85(80,92)	14.949	<0.001
HC(cm)	100(94,104)	95(90,100)	96(90,102)	16.774	< 0.001

Page 11 of 30

1

BMJ Open

NC(cm)	36(35,38)	32(31,34)	34(32,36)	39.004	< 0.001
Blood pressure					
SBP (mmHg)	139.5(128.5,155)	136(124,153.5)	137.5(125.5,154.4)	-4.935	< 0.001
2 DBP (mmHg)	91.5(83.5,100)	85.5(79.5,94)	87.5(81,96.5)	-13.862	< 0.001
Lipid (mmol/l)					
HDL-C	1.24(1.11,1.35)	1.25(1.13,1.39)	1.25(1.12,1.36)	-5.549	< 0.001
TC	5.26(4.59,5.96)	5.37(4.7,6.12)	5.34(4.66,6.05)	-3.582	< 0.001
LDL-C	1.89(1.5,2.65)	1.9(1.54,2.63)	1.89(1.52,2.65)	-0.833	0.405
TG	1.57(1.1,2.37)	1.62(1.17,2.38)	1.6(1.14,2.38)	-1.520	0.129
FBG	4.9(4.44,5.6)	5(4.5,5.6)	4.9(4.5,5.6)	-1.583	0.114
n (%)				15.099	< 0.001
2 3 No	1309(80.9)	1841(75.7)	3150(77.7)		
Yes	310(19.1)	592(24.3)	902(22.3)		
Alcohol consumption n (%)		2		1340.38	< 0.001
Never	693(42.8)	2285(93.9)	2978(73.5)		
Heavy	421(26)	12(0.5)	433(10.7)		
Light/moderate	505(31.2)	136(5.6)	641(15.8)		
Region, n (%)				5.907	0.016
Urban	788(48.7)	1279(52.6)	2067(51)		
Rural	831(51.3)	1154(47.4)	1985(49)		
Education, n(%)				12.123	0.006
⁸ ≤Primary school	526(32.5)	920(37.8)	1446(35.7)		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Junior middle school	715(44.2)	981(40.3)	1696(41.9)		
Senior middle school	222(13.7)	315(12.9)	537(13.3)		
College and above	156(9.6)	217(8.9)	373(9.2)		
Fruit consumption n(%)				0.728	0.696
≥ 5days/week	1423(87.9)	2157(88.7)	3580(88.4)		
3-4 days/week	151(9.3)	208(8.5)	359(8.9)		
≤2 days/week	45(2.8)	68(2.8)	113(2.8)		
Smoke, n(%)				249.210	< 0.001
No	563(34.8)	1462(60.1)	2025(50.0)		
Yes	1056(65.2)	971(39.9)	2027(50.0)		

Abbreviations: BMI, body mass index; WC, Waist circumference; HC, Hip circumference; NC, Neck circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; FBG, fasting blood glucose.

Values are expressed as median (IQR) or n (percentage).

2. MS prevalence

Among the 4052 subjects, 2030 met MS diagnosis, with a prevalence of 50.1% (38.4% in males and 57.9% in females). The gender difference was statistically significant (P < 0.001). Among female population, the prevalence of MS in different age groups was 55.3% and 71.7%, respectively. There were statistical differences between the groups (P < 0.001), as shown in Table 2a.

Table 2a	Prevalence of Metabolic Syndrome
----------	----------------------------------

58 50	Characteristics	40-64	40-64 65-		\sim^2	Dyalua
59 60		(N=3370)	(N=682)	(N=4052)	χ-	<i>P</i> value

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Men (N=1619)	501(38.00)	121(40.20)	622(38.40)	0.495	0.481
Women (N=2433)	1135(55.30)	273(71.70)	1408(57.90)	35.197	< 0.001
Total	1636(48.50)	394(57.80)	2030(50.10)	19.309	< 0.001
χ2	96.155	68.194	147.135		
Р	<0.001	<0.001	<0.001		

Values are expressed as n (percentage).

3. Distribution of MS in different genders and different populations

Among middle-aged people (age 40-64), the proportions of waist circumference abnormality in males and females were 84.6% and 91.1%, respectively. The proportions of HDL-C abnormality in males and females were 28.7% and 77.2%, respectively, and the proportions of TG abnormality in males and females were 81.8% and 59.6%, respectively. The proportions of FBG abnormality in males and females were 45.7% and 40.30%, respectively. The proportion of blood pressure abnormality in males and females were 96.6% and 87.2%, respectively. The intergroup statistics were statistically significant (except FBG P < 0.05, residual P < 0.001). In the elderly group, the proportions of HDL-C abnormality were 26.4% and 74.4%, respectively, and inter-group statistics of which were statistically significant (P < 0.001), as shown in Table 2b.

Table 2b The distribution of Metabolic Syndrome in different genders in the populations of age 40-64 and age ≥ 65

	Age 40-64					Age ≥65			
Characteristics (Abnormality)	Men (N=501)	Women (N=1135)	χ^2	P value	Men (N=121)	Women (N=273)	χ^2	P value	
WC, n(%)	424(84.60)	1034(91.10)	15.008	<0.001	107(88.40)	256(93.80)	3.302	0.069	

HDL, n(%)	144(28.70)	876(77.20)	347.384	< 0.001	32(26.40)	203(74.40)	79.961	< 0.001
TG, n(%)	410(81.80)	676(59.60)	77.292	< 0.001	79(65.30)	190(69.60)	0.718	0.397
FBG, n(%)	229(45.70)	457(40.30)	4.231	0.04	59(48.80)	127(46.50)	0.169	0.681
BP, n(%)	484(96.60)	990(87.20)	34.293	< 0.001	117(96.70)	262(96.00)	0.12	0.729

Abbreviations: WC, Waist circumference; HDL, high-density lipoprotein; TC, total cholesterol; FBG, fasting blood glucose.

Values are expressed as n (percentage).

4. Univariate analysis of MS in different genders

In the male group, compared with the non-MS group, BMI, hip circumference and neck circumference of the population with MS were significantly higher. The population with MS was mostly distributed in urban regions, with a higher proportion of abnormal neck circumference, heavier alcohol consumption, less physical exercise, and lower education level. The difference between groups was statistically significant (except in alcohol consumption and education level P < 0.05, residual P < 0.001). In the female group, compared with the non-MS group, the age, BMI, hip circumference, and neck circumference were significantly higher (P < 0.001). The population with MS were mostly distributed in the rural region and had a higher proportion of abnormal neck circumference, lower education level, and no alcohol consumption (except alcohol consumption P < 0.05, residual P < 0.001), as shown in Table 3.

Table 3 Univariate analysis of Metabolic Syndrome in different genders

		Male	Female			
Characteristics	MS (N=622)	Non-MS (N=997)	<i>P</i> value	MS (N=1408)	Non-MS (N=1025)	P value
Age (year)	55(48,63)	55(48,62)	0.828	56(49,63)	50(45,57)	< 0.001

Page 15 of 30

BMI (Kg/m2)	26.85 (25.15,28.51)	23.51 (21.47,25.26)	< 0.001	25.15 (23.34,27.29)	22.41 (20.70,24.16)	< 0.001
HC (cm)	103(100,107)	96(91,100)	< 0.001	97(93,102)	90(84,95)	< 0.001
NC (cm)	38(36,40)	35(34,37)	< 0.001	33(32,35)	32(30,33)	< 0.001
Smoke, n(%)			0.472			<0.001
No	223(35.9)	340(34.1)		798(56.7)	664(64.8)	
Yes	399(64.1)	657(65.9)		610(43.3)	361(35.4)	
Physical inactivity n(%)			< 0.001			0.235
No	153(24.6)	157(15.7)		355(25.2)	237(23.0)	
Yes	469(75.4)	840(84.3)		1053(74.8)	788(77.0)	
Alcohol consumption, n(%)	ľ (2	0.006			0.010
Never	251(40.4)	442(44.3)		1340(95.2)	945(92.2)	
Light/moderate	182(29.3)	323(32.4)		63(4.5)	73(7.1)	
Heavier	189(30.4)	232(23.3)		5(0.4)	7(0.7)	
Region, n(%)			< 0.001			<0.001
Urban	357(57.4)	431(43.2)		666(47.3)	613(59.8)	
Rural	265(42.6)	566(56.8)		742(52.7)	412(40.2)	
Fruit consumption, n(%)			0.690			0.254
≥5days per week	546(87.8)	877(88.0)		1236(87.8)	921(89.9)	
3-4 days per week	61(9.8)	90(9.0)		128(9.1)	80(7.8)	
≤2 days per week	15(2.4)	30(3.0)		44(3.1)	24(2.3)	
BMI, n(%)				< 0.001		< 0.001
Normal	88(14.1)	568(57.0)		465(33.0)	707(69.0)	

BMJ Open

Underweight	3(0.5)	13(1.3)		8(0.6)	40(3.9)	
Overweight	144(23.2)	238(23.9)		377(26.8)	162(15.8)	
Apparently overweight	183(29.4)	106(10.6)		281(20.0)	81(7.9)	
Obesity	204(32.8)	72(7.2)		277(19.7)	35(3.4)	
NC, n(%)			< 0.001			< 0.001
Normal	160(25.7)	662(66.4)		550(39.1)	694(67.7)	
Abnormal	462(74.3)	335(33.6)		858(60.9)	331(32.3)	
Age,n(%)			0.481			< 0.001
40-64 years	501(80.5)	817(81.9)		1135(80.6)	917(89.5)	
≥65 years	121(19.5)	180(18.1)		273(19.4)	108(10.5)	
Education, n(%)			0.006			< 0.001
≤Primary school	176(28.3)	350(35.1)		630(44.7)	290(28.3)	
Junior middle school	280(45.0)	435(43.6)		549(39.0)	432(42.1)	
Senior middle school	104(16.7)	118(11.8)	2	149(10.6)	166(16.2)	
College and above	62(10.0)	94(9.4)		80(5.7)	137(13.4)	
Abbraviations	MS Metabolic	aundromo: Di	11 hade	magg inder:	HC Hin	

Abbreviations: MS, Metabolic syndrome; *BMI, body mass index; HC, Hip circumference; NC, Neck circumference.*

Values are expressed as median (IQR) or n (percentage).

5. Multifactor logistics analysis results

Non-exercising males were more likely to develop MS than those with regular exercise (OR=1.437, 95%CI: 1.064-1.941). Elderly men were more likely to develop MS than middle-aged men (OR=1.460, 95%CI: 1.065-2.002). The risk of developing MS in the male group with neck circumference enlargement was higher than the one with normal neck circumference (OR=2.078, 95%CI: 1.569-2.751). People with

higher BMI (overweight) were more likely to develop MS than those with normal BMI (OR=3.324, 95%CI: 2.403-4.598) and the risk of MS was higher for people with higher BMI.

In the female group, elderly women were more likely to develop MS than middle-aged women (OR=1.938, 95%CI: 1.466-2.561). People with higher BMI (overweight) were more likely to develop MS than those with normal BMI (OR=3.273, 95%CI: 2.602-4.116) and the risk of MS was higher for people with higher BMI. People with a lower BMI (underweight) were less likely to develop MS than those with normal BMI (OR=0.238, 95%CI: 0.107-0.529). People with abnormal neck circumference were more likely to develop MS than those with normal neck circumference (OR=1.853, 95%CI: 1.521-2.258). People with a higher education level (at least a junior middle school diploma) were less likely to develop MS than those with a lower education level (primary school diploma and below) (OR=0.633, 95% CI: 0.495-0.809). The risk of MS decreased with higher education level, as shown in Table 4.

 Table 4 Multivariate Logistic Regression Analyses on Risk Factors for the Prevalence

 of Metabolic Syndrome in male and female group

		Men		Women	
Category	Subcategory	OR (95%CI)	P value	OR (95%CI)	P value
Age	40-64	1(reference)		1(reference)	
	≥65	1.460(1.065-2.002)	0.019	1.938(1.466-2.561)	< 0.001
Education	≤Primary school	1(reference)		1(reference)	
	Junior middle school	0.903(0.654-1.247)	0.536	0.633(0.495-0.809)	< 0.001

	Senior middle school	1.062(0.673-1.675)	0.796	0.524(0.368-0.745)	< 0.001
	College and above	0.672(0.401-1.125)	0.130	0.371(0.247-0.557)	< 0.001
Region	Urban	1(reference)		1(reference)	
	Rural	0.878(0.636-1.213)	0.430	1.020(0.787-1.321)	0.883
BMI	Normal	1(reference)		1(reference)	
	Underweight	1.539(0.419-5.653)	0.516	0.238(0.107-0.529)	< 0.001
	Overweight	3.324(2.403-4.598)	< 0.001	3.273(2.602-4.116)	< 0.001
	Apparently overweight	8.470(5.872-12.22)	< 0.001	4.291(3.21-5.737)	< 0.001
	Obesity	11.872(7.929-17.776)	< 0.001	8.025(5.416-11.89)	< 0.001
NC	Normal	1(reference)		1(reference)	
	Abnormal	2.078(1.569-2.751)	< 0.001	1.853(1.521-2.258)	< 0.001
Smoke	No	1(reference)		1(reference)	
Smoke	No Yes	1(reference) 1.248(0.952-1.636)	0.109	1(reference) 1.227(0.982-1.533)	0.071
Smoke Sport frequently			0.109	, , , , , , , , , , , , , , , , , , ,	0.071
Sport	Yes	1.248(0.952-1.636)	0.109	1.227(0.982-1.533)	0.071
Sport	Yes Yes	1.248(0.952-1.636) 1(reference)		1.227(0.982-1.533) 1(reference)	
Sport frequently Alcohol	Yes Yes No	1.248(0.952-1.636) 1(reference) 1.437(1.064-1.941)		1.227(0.982-1.533) 1(reference) 1.203(0.964-1.502)	
Sport frequently Alcohol	Yes Yes No Never	1.248(0.952-1.636) 1(reference) 1.437(1.064-1.941) 1(reference)	0.018	1.227(0.982-1.533) 1(reference) 1.203(0.964-1.502) 1(reference)	0.103

Abbreviations: BMI, body mass index; NC, Neck circumference; OR, odds ratio.

DISCUSSION

MS has become one of the major public health threat in China. In the current study, the prevalence of MS in northeast China is significantly higher than that in entire

BMJ Open

China (33.9%).⁹ However in our study, the prevalence of MS was 50.1%. It is higher than previous study. In our study, it is also found that the prevalence of MS in women (57.9%) was higher than that in men (38.4%). In terms of age groups, the prevalence of MS in women was higher than that in men, no matter in the middle-aged group or the elderly group. In addition to gender differences, the prevalence of MS among female groups showed a trend of increase with the increase in age. The prevalence of MS in the elderly group (57.8%) was significantly higher than that in the middle-aged group (48.5%). In most studies, the prevalence of MS in females was higher than that in males,^{9,10} but Firmann M's study found that the prevalence of MS in Caucasian males is higher than that in females,¹¹ which may be related to the difference in the selected race, the investigated population, and the selection criteria. The prevalence of MS is significantly different between regions and races. The gender difference in MS prevalence is mainly related to the increase in insulin resistance and the abnormal lipid metabolism resulting from the decrease in estrogen level after menopause following the increase in age. This change is related to hormone level, but not with aging.¹² In addition, relevant studies have shown that the prevalence of MS in women is significantly higher than that in men, and such a gender-related correlation was strengthened with the increase in age, which is consistent with our findings.

In this study, we also found that the proportion of abnormal waist circumference and HDL in women was significantly higher than that in men, which was the main reason for the higher prevalence of MS in women than in men. This difference was significant in middle-aged group. This is consistent with the study of Dallongeville, a J.¹³ The increase in waist circumference is significantly correlated with the occurrence of cardiovascular diseases.¹⁴ In our study, the prevalence of abnormal TG in middle-aged men was significantly higher than that in middle-aged women, but there

was no such difference in the elderly population. This is same as reported in the previous studies.^{15,16} Therefore, we should mainly observe the occurrence of abdominal obesity in middle-aged and elderly women.

Multivariate regression analysis showed that the prevalence of MS in men was mainly influenced by BMI, and the risk of MS increases with the increase in BMI. The abnormality of neck circumference, increase in age, and physical inactivity are also the main factors influencing the prevalence risk of MS, which was the same as reported in the research results of Zhou JY.¹⁷ Infrequent physical activity increases the risk of MS in men, but not in women. This finding is similar to that of Díaz-Martínez X.¹⁸ In the female group, both the growth in age and the abnormality of neck circumference increase the risk of MS. There is a significant relationship between MS prevalence in females and age, BMI, and neck circumference. Higher education level of females can reduce the prevalence of MS; however, this correlation is not found in the male population. The prevalence of MS in females shows a correlation with education, whereas a negative correlation trend is observed in males, which is similar to the results of Kim OY.¹⁹

Education level is the most important measure of the social economic status of people, which is not only closely related to the prevalence of cerebrovascular disease,²⁰ but also affects the prevalence of MS. The specific mechanism by which education affects the prevalence of MS is not clear. It has been considered that education affects people's health mainly by influencing lifestyle, positive attitudes toward health, and accessing the chance of preventive health services.²¹ In addition, according to Kim OY's research, the prevalence of MS in South Korea is negatively correlated with education level, which is largely related to the food consumption pattern of Korean people (especially women).¹⁹

Strengths and limitations

There are several limitations in the study. First, some parts of the results are based on the investigators' self-reported data, with the drawback of inevitable recall bias. Second, people who were sick or too weak to complete the interview were excluded in our survey. Despite these limitations, the main advantage of this study is the use of a large population cohort. After rigorous training prior to the survey, we used a uniform pre-coded questionnaire designed by CNSSS. A reliable method was applied to the study.

CONCLUSION

In our study, the prevalence of MS in women is significantly higher than that in men in northeast China. Higher age, larger neck circumference, and higher BMI significantly increase the risk of MS in women and men, whereas physical inactivity increases the risk of MS only in men, higher education level reduces the prevalence of MS in women. It is important to control abnormal BMI and neck circumference in both men and women, particularly, in women with a low level of education and men with physical inactivity. Such a control can be achieved by influencing lifestyle, positive attitudes toward health, and accessing preventive interventions. Collectively, these efforts will help in lowering the prevalence of MS.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge all of the study participants and interviewers from the First Hospital of Jilin University, and acknowledge the support of the Chinese National Center for Stroke Care Quality Control and Management.

CONTRIBUTORS

Conception and design: Y Y, and Z-N G. Acquisition of the data: F-L Z and H-Y L.

Data analysis: F-E L, D L, F-L Z. Drafting and revising the manuscript: F-E L. Critical revision: Z-N G, and Y Y. All of the authors approved the final version for publication.

FUNDING

This project was supported by the National Key R&D Program of China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key Laboratory (20190901005JC) to Yi Yang. Project on research and application of effective intervention techniques for high risk population of stroke from the National Health and Family Planning Commission in China (GN-2016R0010).

CONFLICTS OF INTEREST

None declared.

ETHICS APPROVAL

This subject was approved by the human ethics and research ethics committee of the First Hospital of Jilin University (approval No: 2015-R-250), and written informed consent was obtained from all of the participants.

PROVENANCE AND PEER REVIEW

Not commissioned; externally peer reviewed.

DATA SHARING STATEMENT

The dataset supporting the conclusions of this article can be made available upon request.

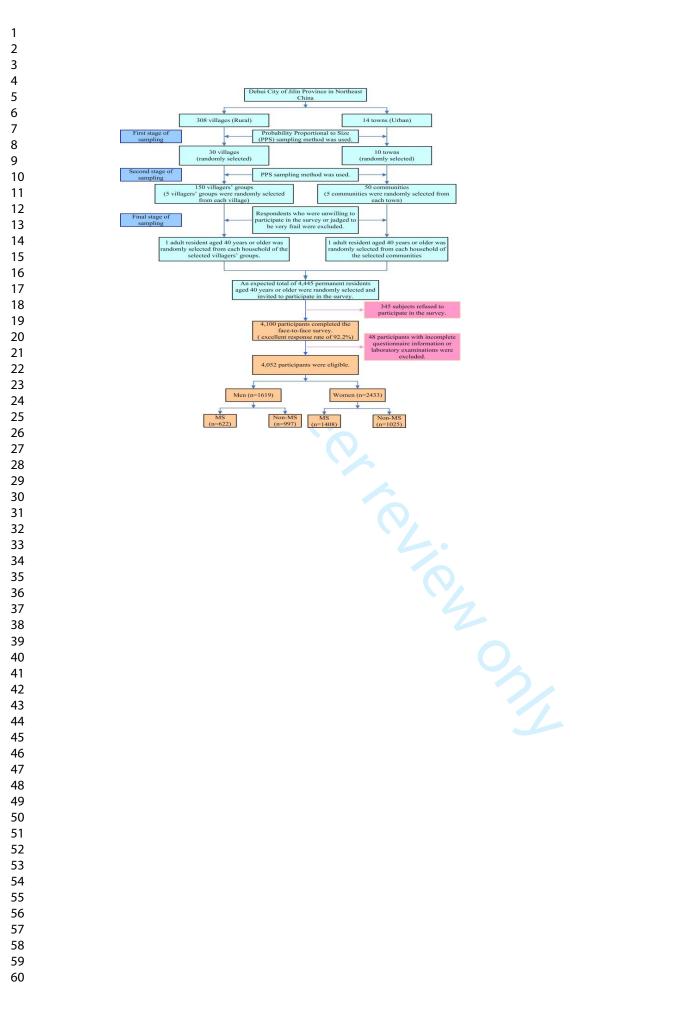
REFERENCES

1. Laaksonen DE, Lakka HM, Niskanen LK, et al. Metabolic syndrome and development of

2	
3	
4	diabetes mellitus: application and validation of recently suggested definitions of the
5	
6	metabolic syndrome in a prospective cohort study. American journal of epidemiology
7	
8	
9	2002;156(11):1070-7. doi: 10.1093/aje/kwf145
10	
11	2. Aquillar M. Dhukat T. Tarras C. at al. Dravalance of the metabolic syndrome in the United
12	2. Aguilar M, Bhuket T, Torres S, et al. Prevalence of the metabolic syndrome in the United
13	
14	States, 2003-2012. <i>Jama</i> 2015;313(19):1973-4. doi: 10.1001/jama.2015.4260
15	
16	
17	3. Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China
18	
19	Noncommunicable Disease Surveillance. The Journal of clinical endocrinology and
20	Noncommunicable Disease Surveinance. The Journal of clinical endocrinology and
21	
22	<i>metabolism</i> 2017;102(2):507-15. doi: 10.1210/jc.2016-2477
23	
24	
25	4. Kokubo Y, Matsumoto C. Hypertension Is a Risk Factor for Several Types of Heart Disease:
26	
27	Review of Prospective Studies. Advances in experimental medicine and biology
28	
29	
30	2017;956:419-26. doi: 10.1007/5584_2016_99
31	
32	E Song O.B. Zhao V. Liu V.O. at al. Say difference in the provalence of matchalic aundrome
33	5. Song Q-B, Zhao Y, Liu Y-Q, et al. Sex difference in the prevalence of metabolic syndrome
34	
35	and cardiovascular-related risk factors in urban adults from 33 communities of China:
36	
37	
38	The CHPSNE study. <i>Diabetes & vascular disease research</i> 2015;12(3):189-98. doi:
39	
40	10.1177/1479164114562410
41	
42	
43	6. Sun H, Zou X, Liu L. Epidemiological factors of stroke: a survey of the current status in
44	
45	aking /aurra/ af atra/ca 2012:15/2):100 11 dai: 10 5852/iaa 2012 15 2 100
46	china. <i>Journal of stroke</i> 2013;15(2):109-14. doi: 10.5853/jos.2013.15.2.109
47	
48	7. Zhang FL, Guo ZN, Wu YH, et al. Prevalence of stroke and associated risk factors: a
49	3 , , ,
50	
51	population based cross sectional study from northeast China. BMJ open
52	
53	2017;7(9):e015758. doi: 10.1136/bmjopen-2016-015758
54	2017, 7(3).6013730. doi: 10.1130/011j0pen-2010-013730
55	
56	8. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint
57	
58	
59	interim statement of the International Diabetes Federation Task Force on
60	

Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;120(16):1640-5. doi: 10.1161/circulationaha.109.192644

- 9. Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China Noncommunicable Disease Surveillance. *The Journal of clinical endocrinology and metabolism* 2017;102(2):507-15. doi: 10.1210/jc.2016-2477
- Rochlani Y, Pothineni NV, Mehta JL. Metabolic Syndrome: Does it Differ Between Women and Men? *Cardiovascular drugs and therapy* 2015;29(4):329-38. doi: 10.1007/s10557-015-6593-6
- Firmann M, Mayor V, Vidal PM, et al. The CoLaus study: a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. *BMC cardiovascular disorders* 2008;8:6. doi: 10.1186/1471-2261-8-6
- Janssen I, Powell LH, Crawford S, et al. Menopause and the metabolic syndrome: the Study of Women's Health Across the Nation. *Archives of internal medicine* 2008;168(14):1568-75. doi: 10.1001/archinte.168.14.1568
- Dallongeville J, Cottel D, Arveiler DTauber JP, et al. The association of metabolic disorders with the metabolic syndrome is different in men and women. 2004;48(1):43-50.
- 14. Tian J, Qiu M, Li Y, et al. Contribution of birth weight and adult waist circumference to cardiovascular disease risk in a longitudinal study. *Scientific reports* 2017;7(1):9768.


3	
4	doi: 10.1038/s41598-017-10176-6
5	
6	
7	15. Chen YC, Wu HP, Hwang SJ, et al. Exploring the components of metabolic syndrome with
8	
9	and the second
10	respect to gender difference and its relationship to health-promoting lifestyle
11	behaviour: a study in Taiwanese urban communities. Journal of clinical nursing
12	benaviour. a study in raiwanese urban communities. Journal of cimical nursing
13	
14	2010;19(21-22):3031-41. doi: 10.1111/j.1365-2702.2010.03280.x
15	
16	
17	16. Lee S, Ko Y, Kwak C, et al. Gender differences in metabolic syndrome components
18	
19	
20	among the Korean 66-year-old population with metabolic syndrome. BMC geriatrics
21	
22	
	2016;16:27. doi: 10.1186/s12877-016-0202-9
23	
24	47. Zhave N/ Call Zhv. ME at al Maale size of an an independent modiative
25	17. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive
26	
27	contributor to cardio-metabolic syndrome. Cardiovascular diabetology 2013;12:76. doi:
28	contributor to cardio-metabolic syndrome. Cardiovascular diabetology 2013, 12.10. doi.
29	
30	10.1186/1475-2840-12-76
31	
32	18. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with
32 33	18. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with
32 33 34	
32 33 34 35	18. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the chilean population].
32 33 34 35 36	
32 33 34 35	obesity, diabetes, hypertension and metabolic syndrome in the chilean population].
32 33 34 35 36	
32 33 34 35 36 37	obesity, diabetes, hypertension and metabolic syndrome in the chilean population].
32 33 34 35 36 37 38	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95.
32 33 34 35 36 37 38 39 40	obesity, diabetes, hypertension and metabolic syndrome in the chilean population].
32 33 34 35 36 37 38 39 40 41	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95.
32 33 34 35 36 37 38 39 40 41 42	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association
32 33 34 35 36 37 38 39 40 41 42 43	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95.
32 33 34 35 36 37 38 39 40 41 42 43 44	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association
32 33 34 35 36 37 38 39 40 41 42 43 44 45	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853 20. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853 20. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	 obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853 20. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853 20. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	 obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. <i>Rev Med Chil</i> 2018;146(5):585-95. 19. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. <i>Ann Nutr Metab</i> 2017;70(2):122-31. doi: 10.1159/000470853 20. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i>

21. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J

Public Health 1992;82(6):816-20.

Fig. 1 Sampling process in the study

<text>

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Supplementary Table S1 Definitions of metabolic syndrome-related risk factors in the survey.

Variables	Criteria	References
BMI	BMI was grouped into five categories for our study: underweight (BMI< 18.5 kg/m ²), normal (18.5 \leq BMI< 24 kg/m ²), overweight (24 \leq BMI< 26 kg/m ²), apparently overweight (26 \leq BMI < 28 kg/m ²), obesity (BMI \geq 28 kg/m ²).	Guidelines for diabetes prevention and treatment in China ¹
Abnormal neck circumference	≥37cm for male and ≥33cm for female	Neck circumference as an independent predictive contributor of cardio-metabolic syndrome ²
Physical inactivity	Physical inactivity is defined as insufficient physical activity; Physical activity is defined as the performance of heavy physical labor or regular physical exercise for more than one year, more than 3 times per week, and for at least 30 minutes per session.	CHNS guidelines ³
Smoking	A smoker was defined as one who reported smoking one or more cigarettes or was passively exposed to tobacco smoke every day in general for more than 6 consecutive months. A non-smoker was defined as the one who had never smoked, nor passively exposed to tobacco smoke; or, had history of smoking but quit smoking for at least 6 consecutive months previous to the study.	Technical specification of stroke screening and prevention in China ⁴
Drinking	The NIAAA sets the standard drink size at about 14g of absolute ethanol, advising limits of no more than three drinks per day or seven drinks per week for men and women. Drinking status was divided into three categories according to the participants' self-report in the previous 6 months: non-drinkers: had never drunk alcoholic beverage; light/moderate drinkers: less than or upto NIAAA limits; heavier drinkers: in excess of NIAAA limits.	NIAAA guidelines ⁵
Fruit consumption	Fruit consumption was grouped into three categories for our study: less than or equal to two days per week (≤ 2 d/w), three to four days per week (3–4 d/w), and greater than or equal to five days per week (≥ 5 d/w). And the weight of consumed fruits should reach or exceed two servings per day, and the definition of a serving of a fruit was calculated as 80g.	Fruit and vegetable consumption and stroke: meta-analysis of cohort studies ⁶

BMJ Open

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Abbreviation: BMI, body mass index; CHNS, China Health and Nutrition Survey; NIAAA, National Institute on Alcohol Abuse and Alcoholism.

References

- 1. Department of disease control Moh. Guidelines for diabetes prevention and treatment in China. *Chin J Prev Non-commun Dis* 2004;12:283-85. doi: 10.3969/j.issn.1004-6194.2004.06.022
- 2. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. *Cardiovascular diabetology* 2013;12:76. doi: 10.1186/1475-2840-12-76
- 3. The Nutrition and Health Status of the Chinese People. China Healthcare & Nutrition 2004
- 4. Stroke Screening and Prevention Project Committee NHaFPCoC. Technical specification of stroke screening and prevention in China. *Chinese Journal of the Frontiers* of Medical Science (Electronic Version) 2013(9):44-50. doi: 10.3969/j.issn.1674-7372.2013.09.017
- 5. of Health and Human Services: Helping patients who drink too much. a clinician's guide. Bethesda, MD, National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; 2005.
- 6. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet (London, England) 2006;367(9507):320-6. doi: 10.1016/s0140-6736(06)68069-0 [published Online First: 2006/01/31]

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3,4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6-8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	7-8
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	6, 7
		(e) Describe any sensitivity analyses	NA
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9-11
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	(7)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	13-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses NA	
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from 18,19 similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sex differences and risk factors for Metabolic syndrome in adults aged more than 40 years in Northeast China: Results from the National Stroke Screening Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038671.R1
Article Type:	Original research
Date Submitted by the Author:	29-Nov-2020
Complete List of Authors:	Li, Feng-e ; Jilin University First Hospital, Stroke Center, Department of Neurology; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Zhang, Fu-Liang; The First Hospital of Jilin University, Stroke Center, Department of Neurology Zhang, Peng; The First Hospital of Jilin University, Liu, Dong; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Liu, Hao-Yuan; Jilin University First Hospital, Stroke Center, Department of Neurology Guo, Zhen-Ni ; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology Yang, Yi; Jilin University First Hospital, Stroke Center, Department of Neurology; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Diabetes and endocrinology, Sports and exercise medicine, Health services research
Keywords:	Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PUBLIC HEALTH, EDUCATION & TRAINING (see Medical Education & Training), HEALTH SERVICES ADMINISTRATION & MANAGEMENT, Valvular heart disease < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
59
~

1 Original Article

- 2 Title Page
- 3 Sex differences and risk factors for metabolic syndrome in adults

aged more than 40 years in Northeast China: Results from the

- 5 National Stroke Screening Survey
- 6 Feng-e Li^{1,2}, MD; Fu-Liang Zhang¹, MD, PhD; Peng Zhang³, MD; Dong Liu², MD;
- 7 Hao-Yuan Liu¹; MD; Zhen-Ni Guo³, MD, PhD[#]; Yi Yang^{1, 3}, MD, PhD[#].

8 ¹ Stroke Center, Department of Neurology, The First Hospital of Jilin University,

- 9 Chang Chun, Jilin, 130021, China.
- 10 ² Stroke Center, Department of Neurology, The Affiliated Hospital of Beihua
- 11 University, JiLin, Jilin, 132011, China.
- ³ Clinical Trail and Research Center for Stroke, Department of Neurology, The First
- 13 Hospital of Jilin University, Chang Chun, Jilin, 130021, China.

14 * These authors contributed equally to the manuscript.

- [#] Correspondence and reprint requests should be addressed to: Yi Yang, MD, PhD.
- 16 Stroke Center & Clinical Trail and Research Center for Stroke, Department of
- 17 Neurology, the First Hospital of Jilin University, Xinmin Street 71#, 130021, Chang
- 18 Chun, Jilin, China. Telephone: +86-13756661217; Fax: +86-431-88782378; Primary
- 19 E-mail: yang_yi@jlu.edu.cn; Secondary E-mail: doctoryangyi@163.com.

20

- 21 Authors contributions: Conception and design: Y Y, and Z-N G. Acquisition of the
- data: F-L Z and H-Y L. Statistical methods and data analysis: F-e L, P Z, D L, F-L Z.

Page 3 of 37

BMJ Open

1	
2	
2 3	
4	
5	
0 7	
, 8	
5 6 7 8 9	
10	
11	
12	
13	
14	
15	
12 13 14 15 16 17	
18	
19	
20	
21	
22	
25 24	
20 21 22 23 24 25	
26	
27	
28	
26 27 28 29 30	
31	
32	
33	
34	
35 36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54 55	
55 56	
57	
58	
59	
60	

1	Drafting and revising the manuscript: F-e L. Critical revision: Z-N G, and Y Y. All of
2	the authors approved the final version for publication.
3	Disclosure: The authors declare no conflict of interest.
4	Study Funding: This project was supported by the National Key R&D Program of
5	China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key
6	Laboratory (20190901005JC) to Yi Yang. Project on research and application of
7	effective intervention techniques for high risk population of stroke from the National
8	Health and Family Planning Commission in China (GN-2016R0010).
9	Search terms: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
10	factor.
11	Word count: abstract 300 words; text 3429 words; 48 references; 5 tables and
12	figures.
13	
14	figures.

1 ABSTRACT

Objectives Low levels of income and education are also risk factors for metabolic
syndrome (MS) in the population Northeast China, which has a high incidence of MS
and cardiovascular diseases. This study aimed to determine sex-specific differences
associated with the prevalence of and risk factors for MS among people older than 40
years in Northeast China, which has not been previously investigated.

Study design This study analyzed a portion of the large sample data of the national cross-sectional screening of China from 2016. MS was defined as the presence of any three of the following five risk factors: abnormal waist circumference, high concentrations of triglycerides, high-density lipoprotein cholesterol, or fasting plasma glucose, and elevated blood pressure. Multiple regression analysis was used to investigate sex-specific differences in the prevalence of and risk factors for MS.

13 Setting The study was conducted in Dehui City, Jilin Province, China.

Participants A total of 4052 participants with complete questionnaire information and
laboratory examinations were included.

Results The prevalence of MS was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). High body mass index (BMI) and neck circumference significantly increased the risk of MS for both sexes. In addition, physical inactivity and alcohol consumption in males (odds ratios [ORs] 95%CIs: 1.506[1.117-2.031]; p=0.007 and 1.341[1.001-1.796]; p=0.049) and advanced age in females (ORs 95%CIs: 1.999[1.516-2.634]; p < 0.001) were factors associated with MS. Women who had a level of education above junior middle school and those who were underweight (BMI $<18.5 \text{ kg/m}^2$) were less likely to develop MS, whereas for men, college education was a protective factor against MS.

25 Conclusions It is necessary to understand sex-specific differences and accurately

2		
3	1	identify high-risk groups, which could help formulate better public health policies and
4	•	racially ingli fisk groups, which could help formulate oction public health policies and
5	2	educational initiatives to fundamentally reduce the incidence of MS and cardiovascular
6	2	educational initiatives to fundamentarily reduce the incidence of Wis and cardiovascular
7	2	diagona
8	3	diseases.
9		
10 11	4	
12		
13	5	Key words: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
14	÷	
15	6	factor.
16	7	
17	1	
18	•	
19	8	
20		
21	9	
22		
23	10	
24 25		
26	11	
27		
28	12	
29		
30	13	
31	10	
32	14	
33	14	
34	45	
35	15	
36		
37 38	16	
39		
40	17	
41		
42	18	
43		
44	19	
45		
46	20	
47		
48	21	
49 50		
50 51	22	
52		
53	23	
54	20	
55	24	
56	24	
57	<u> </u>	
58	25	
59 60	00	
60	26	

1		
2 3		
4	1	Strengths and limitations of this study
5 6 7	2	1. This cross-sectional study included a large, representative sample of Chinese
7 8 9	3	population.
10 11	4	2. We used a uniform, pre-coded questionnaire designed by the Stroke Screening and
12 13	5	Prevention Program of the National Health and Family Planning Commission of China
14 15 16	6	(CNSSS).
17 18	7	3. Some results were partially based on self-reported data collected by investigators,
19 20 21	8	which inevitably increased the risk of recall bias.
21 22 23	9	4. Our survey excluded participants who were sick or too weak to complete the
24 25	10	interview.
26 27 28	11	5. As a major limitation of all epidemiological investigations, conclusions based on
29 30	12	cross-sectional studies cannot be used for causal inferences.
31 32 33	13	
33 34 35	14	
36 37	15	
38 39 40	16 17	
41 42	18	
43 44 45	19	
46 47	20	
48 49 50	21	
51 52	22	
53 54 55	23	
55 56 57	24	
58 59 60	25	

2 INTRODUCTION

Metabolic syndrome (MS) is associated with a cluster of cardiometabolic risk factors and has become one of the major public health threats in China. The higher prevalence of MS greatly increases the burden of morbidity and mortality of cardiovascular diseases worldwide.¹⁻³ This burden has increased every year, although it is difficult to differentiate it from unhealthy habits of daily living.⁴ There is a significant difference in the prevalence of and risk factors for MS between men and women.⁵ To control and reduce the risk of MS and cardiovascular diseases more effectively, it is necessary to identify high-risk populations and understand the sex-specific, modifiable lifestyle determinants of MS. Northeast China, with its low income level, has a high incidence of MS and cardiovascular diseases, especially the highest incidence and mortality of stroke (365 and 159/100 000 person-years) in China.⁶ Thus, this study aimed to analyze the sex-specific differences in the prevalence of MS and its related risk factors in a population from northeast China.

18 POPULATION and METHODS

Data source and study participants

This population-based cross-sectional study was a part of the Stroke Screening and
Prevention Program of the National Health and Family Planning Commission of China

(CNSSS), which assessed a population of residents aged 40 years or older, from January to March 2016. The CNSSS is a national epidemiological survey of cerebrovascular diseases conducted to obtain timely and reliable information on the morbidity, prevalence, and mortality of stroke in Chinese people over the age of 40.⁷ The sampling method employed in this study has been described in detail in other articles.⁸ The sample size (N) required for this survey was calculated on a 2.37% stroke prevalence (p) among adults 40 years and older in China,⁸ using the formula:

8 N = $(Z_{\alpha}^2 pq)/d^2$ (where $Z_{\alpha} = 1.96$, $\alpha = 0.05$, q = 1-p, and d = 0.2p)

A multistage stratified, random cluster sampling method was applied to obtain the sample population. In the first stage, 30 villages and 10 towns were randomly selected from a total of 308 villages (rural) and 14 towns (urban) in Dehui City using the probability proportional to size (PPS) sampling method. In the second stage, five groups of villages or communities were randomly sampled from both the rural and urban strata using the PPS sampling. In the third stage, one participant aged ≥ 40 years was randomly selected from each household of the selected groups of villages or communities. Respondents who were unwilling to participate in the survey or who were judged to be very frail were excluded. We selected permanent residents aged ≥ 40 years for inclusion in the study (a calculated total of 4445 participants with an additional 10% loss rate); ultimately, 4100 participants completed the face-to-face survey, with a good response rate of 92.2%. In this sub-study of the CNSSS, we used data from participants who completed the study. After excluding 48 participants with incomplete questionnaire information or laboratory examinations, a total of 4052 participants were included in this analysis. The flowchart of the study selection process is shown in Figure 1. The study protocol was approved by the Human Ethics and Research Ethics Committee of the First Hospital of Jilin University, Chang Chun, Jilin, China. Written

1 2 3

informed consent was obtained from all study participants before recruitment and data

4		informed consent was obtained from an study participants before recruitment and data
5 6	2	collection.
7 8 9	3	
10 11 12	4	Patient and public involvement
13 14 15	5	
16 17	6	Patients and the public were not involved in the development of the research
18 19 20	7	questionnaire, its outcome measures, study design, recruitment methods or the conduct
20 21 22	8	of this study. There is no plan to disseminate the research findings to the participants.
23 24 25	9	
25 26 27	10	Data collection and measurement
28 29	11	
30 31	12	All participants completed a questionnaire that included an assessment of general
32 33 34	13	sociodemographic and health-related information. Physical examinations included
35 36	14	assessments of height, weight, neck circumference, waist circumference, hip
37 38	15	circumference, and blood pressure. Height and weight were measured according to the
39 40 41	16	standard methods; the subjects removed their shoes and hats and wore light clothes.
42 43	17	The measurement accuracy was within 0.1 cm and 0.1 kg for the height and weight,
44 45	18	respectively. Blood pressure was measured by physicians using an OMRON automatic
46 47 48	19	sphygmomanometer (OMRON HEM-7200, KYOTO, Japan), on the right arm, after
49 50	20	placing it parallel to the heart. The subjects were made to rest for 20 minutes before the
51 52	21	blood pressure was measured twice, and mean value was recorded. Blood samples were
53 54 55	22	collected following overnight fasting (at least eight hours) on an empty stomach to
56 57	23	assess fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-
58 59	24	density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol
60	25	(HDL-C) concentrations. The samples were sent to the clinical laboratory of

1 Changchun Kingmed Center (Chang Chun, Jilin, China) for testing.

Screening protocol and assessment criteria

The definition of MS used in this study was published by the International Diabetes Federation (IDF) and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI).⁹ The presence of any three of the following five risk factors constituted a diagnosis of MS: 1) Waist circumference: \geq 90 cm for men, and \geq 80 cm for women; 2) TG concentration: ≥ 1.70 mmol/L (drug treatment for elevated TG levels is an alternative indicator); 3) HDL-C concentration: < 1.0 mmol/L for men, and < 1.3mmol/L for women (drug treatment for reduced HDL-C levels is an alternative indicator); 4) blood pressure: systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg (antihypertensive drug treatment in a patient with a history of hypertension is an alternative indicator); and 5) FPG concentration: \geq 5.6 mmol/L (drug treatment for elevated glucose levels is an alternative indicator).

In addition to stratifying by sex, participants were stratified by age into a middleaged group (40–64 years old) and an elderly group (\geq 65 years old). The evaluation criteria for the other factors, including BMI, level of physical inactivity, smoking status, and alcohol consumption are shown in Supplementary Table S1.

22 Statistical analysis

24 The normalities of the data distributions were tested using the Kolmogorov-Smirnov

25 test. Non-normally distributed continuous variables are presented as medians (IQRs).

BMJ Open

The Mann-Whitney U test was used to assess differences between two groups of data with non-normal distributions. Categorical data are presented as numbers and proportions. The differences between groups were assessed using the χ^2 -test. Significant variables (those with P < 0.05) identified in the univariate analysis were selected for the multivariate analyses. Multiple logistic regression analysis was used to explore the independent risk factors of MS in the two sexes, and the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. All statistical analyses were performed using IBM Statistical Package for the Social Sciences (SPSS) version 23.0 (SPSS, Inc., New York, NY, USA). P < 0.05 was considered statistically significant.

RESULTS

Among the 4,100 participants who completed the face-to-face survey, 4,052 were included in the analysis. A total of 2,030 individuals met the criteria for MS, and the prevalence was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). Of all the 4,052 participants, 1,619 were men (40.0%) and 2,433 were women (60.0%), with a median age of 53 (IQR: 47- 62) years. The population were likely to have a lower educational level. In total, 76.7% of the participants had a level of education not higher than that of junior middle school.

21 1. Demographic characteristics of all participants with MS

23 Table 1 shows that compared to males, the female participants with MS had the

following associated risk factors: a primary school and lower level of educational attainment (44.7% vs. 28.3%; p<0.001), living in a rural area, a normal or underweight BMI, an abnormal HDL-C concentration, and a higher concentration of total cholesterol and LDL-C. Women were also less likely to have an abnormal neck or hip circumference, hypertension, abnormal levels of triglycerides and fasting blood glucose, live in urban areas, and smoke and drink alcohol.

Table 1. Sex differences in demographic characteristics and risk factors among participants with metabolic syndrome (MS).

	Total	Male	Female	P value
Participants, n (%)	4052(100)	1619 (40.0)	2433 (60.0)	
Cases, n (%)	2030 (50.1)	622 (38.4)	1408 (57.9)	
Age, years, median (IQR)	56(49,63)	55.72(48,63)	56.19(49,63)	0.216
Age group, n (%)				0.973
40-64 years	1636(80.6)	501(80.5)	1135(80.6)	
≥65 years	394(19.4)	121(19.5)	273(19.4)	
Waist circumference, n (%)	1821(89.7)	531(85.4)	1290(91.6)	< 0.001
Neck circumference,	24(22.27)	20.22(26.40)	22.27(22.25)	-0.001
median (IQR)	34(32,37)	38.23(36,40)	33.27(32,35)	< 0.001
Hip circumference, n (%)	100(95,104)	103.63(100,107)	97.76(93,102)	< 0.001
TCHO, mmol/L, median (IQR)	5.52(4.83,6.25)	5.50(4.73,6.12)	5.63(4.87,6.29)	0.004
LDLC, mmol/L, median (IQR)	1.93(1.56,2.64)	2.08(1.5,2.57)	2.19(1.57,2.65)	0.001
HDLC, n (%)	1255(61.8)	176(28.3)	1079(76.6)	< 0.001
TG , n (%)	1503(74.0)	508(81.7)	995(70.7)	< 0.001
FBG , n (%)	881(43.4)	291(46.8)	590(41.9)	< 0.001
Hypertension, n (%)	1853(91.3)	601(96.6)	1252(88.9)	< 0.001
Education, n (%)				< 0.001
≤Primary school	806(39.7)	176(28.3)	630(44.7)	
Junior middle school	829(40.8)	280(45)	549(39)	
Senior middle school	253(12.5)	104(16.7)	149(10.6)	
College and above	142(7.0)	62(10.0)	80(5.7)	
Region, n (%)				< 0.001
Urban	1023(50.4)	357(57.4)	666(47.3)	
Rural	1007(49.6)	265(42.6)	742(52.7)	
Smoke, n (%)				< 0.001
No	1021(50.3)	223(35.9)	798(56.7)	
Yes	1009(49.7)	399(64.1)	610(43.3)	
Physical inactivity, n (%)				0.768

No	1522(75.0)	469(75.4)	1053(74.8)	
Yes	508(25.0)	153(24.6)	355(25.2)	
Alcohol consumption, n (%)				< 0.001
Never	1591(78.4)	251(40.4)	1340(95.2)	
Light/moderate	245(12.1)	182(29.3)	63(4.5)	
Heavier	194(9.6)	189(30.4)	5(0.4)	
Fruit consumption, n (%)				0.609
≥5days per week	1782(87.8)	546(87.8)	1236(87.8)	
3-4 days per week	189(9.3)	61(9.8)	128(9.1)	
≤2 days per week	59(2.9)	15(2.4)	44(3.1)	
BMI , n (%)				< 0.001
Normal	553(27.2)	88(14.1)	465(33.0)	
Underweight	11(0.5)	3(0.5)	8(0.6)	
Overweight	521(25.7)	144(23.2)	377(26.8)	
Apparently overweight	464(22.9)	183(29.4)	281(20.0)	
Obesity	481(23.7)	204(32.8)	277(19.7)	

Abbreviations: TCHO, total serum cholesterol; LDLC, Low Density Lipoprotein
 Cholesterol; HDLC, high-density lipoprotein; TG, triglyceride; FBG, fasting blood
 glucose; BMI, body mass index.

4 Values are expressed as n (percentage).

6 2. Univariate analysis of factors associated with MS by sex

Table 2 shows the prevalence of MS according to different demographic characteristics and risk factors in men and women. The prevalence of MS in woman was significantly higher than that in men (P < 0.001). The prevalence of MS was higher in the elderly (men: 40.2%; women: 71.7%), especially in older women (Figure 2). In the female group, age, BMI, hip and neck circumference, smoking, alcohol drinking, geographical region, and level of educational attainment were associated with MS, whereas physical inactivity and fruit consumption were not. In men, the risk factors associated with MS were similar, except for age and smoking. Unlike in women, physical inactivity was also a risk factor in men.

18 Table 2 Distribution of metabolic syndrome (MS) in men and women according to

19 different demographic characteristics

Chava stari stics		Male			Female	
Characteristics	Total	case, (n%)	P value	Total	case, (n%)	P valu
Cases, n (%)	1619	622(38.4)	-	2433	1408(57.9)	-
Age, year, median (IQR)	55(48,63)	55(48,63)	0.828	53(47,61)	56(49,63)	< 0.00
Age group, n (%)			0.481			< 0.00
40-64 years	1318	501(38.0)		2052	1135(55.3)	
≥65 years	301	121(40.2)		381	273(71.7)	
BMI, Kg/m2, median (IQR)	24.69 (22.48,27.06)	26.85 (25.15,28.51)	< 0.001	23.97 (21.94,26.32)	25.15 (23.34,27.29)	< 0.00
BMI , n (%)			< 0.001			< 0.00
Normal	656	88(13.4)		1172	465(39.7)	
Underweight	16	3(18.8)		48	8(16.7)	
Overweight	382	144(37.7)		539	377(69.9)	
Apparently overweight	289	183(63.3)		362	281(77.6)	
Obesity	276	204(73.9)		312	277(88.8)	
HC, cm, median (IQR)	100(94,104)	103(100,107)) <0.001	95(90,100)	97(93,102)	< 0.00
NC, cm, median (IQR)	36(35,38)	38(36,40)	< 0.001	32(31,34)	33(32,35)	< 0.00
Smoke, n (%)			0.472			< 0.00
No	563	223(39.6)		1462	798(54.6)	
Yes	1056	399(37.8)		971	610(62.8)	
Physical inactivity n (%)			< 0.001			0.235
Yes	1309	153(49.4)		1841	355(60.0)	
No	310	469(35.8)		592	1053(57.2)	
Alcohol consumption n (%)			0.006			0.010
Never	693	251(36.2)		2285	1340(58.6)	
Light/moderate	505	182(36.0)		136	63(46.3)	
Heavier	421	189(44.9)		12	5(41.7)	
Region, n (%)			< 0.001			< 0.00
Urban	788	357(45.3)		1279	666(53.1)	
Rural	831	265(31.9)		1154	742(64.3)	
Fruit consumption n (%)			0.690			0.254
\geq 5days per week	1423	546(38.4)		2157	1236(57.3)	
3-4 days per week	151	61(40.4)		208	128(61.5)	
≤2 days per week	45	15(33.3)		68	44(64.7)	
Education, n (%)			0.006			< 0.00
≤Primary school	526	176(33.5)		920	630(68.5)	
Junior middle school	715	280(39.2)		981	549(56.0)	
Senior middle school	222	104(46.8)		315	149(47.3)	
College and above	156	62(39.7)		217	80(36.9)	
		mass index	к; <i>НС</i> , .	Hip circum		C, Ne

circumference.

3 Values are expressed as median (IQR) or n (percentage).

BMJ Open

1	3. Relationship between risk factors and MS in the multivariate logistic regression
2	analysis

The multivariate analysis in Table 3 shows that BMI and neck circumference were
significantly associated with MS in both men and women. Higher educational
attainment and an underweight BMI were not associated with MS in either sex.

In the male group, the ORs (95% CIs) were 3.202 (2.321-4.419; p < 0.001) for the overweight BMI, 7.932 (5.530–11.376; p <0.001) for the apparently overweight BMI, and 11.059 (7.431–16.459; p <0.001) for the obese BMI groups compared to the reference value for a normal BMI; for neck circumference, it was 2.095 (1.584–2.772; p < 0.001). Physical inactivity and higher alcohol consumption were associated with MS in men (OR 1.506, 95% CI [1.117–2.031], p=0.007; and OR 1.341, 95% CI [1.001– 1.796], p = 0.049, respectively). An OR of 0.584 (0.353–0.968; p=0.037) was observed for a college level of education and higher compared to the reference value for primary school education.

In the female group, the ORs (95% CIs) were 3.262 (2.594–4.101; p < 0.001) for the overweight BMI, 4.251 (3.181–5.680; p < 0.001) for the apparently overweight BMI, and 8.023 (5.415–11.885; p < 0.001) for the obese BMI groups compared to the reference value for a normal BMI. For neck circumference, the OR was 1.865 (1.531-2.272; p < 0.001). Advanced age (≥ 65 years) was associated with MS in women (OR 1.999, 95% CI [1.516–2.634]; p < 0.001). For the underweight BMI, the OR (95% CI) was 0.238 ([0.107–0.529]; p < 0.001). In women, for a level of educational attainment of junior middle school, the OR was 0.630 ([0.492–0.805]; p < 0.001); for senior middle school, it was 0.526 ([0.370-0.748]; p < 0.001), and for college and above, it was 0.376 ([0.251-0.564]; p < 0.001).

2 Table 3 Multivariate logistic regression analyses on risk factors for the prevalence of

3 metabolic syndrome (MS) in males and females.

		Male		Female	
Category	Reference	OR (95% CI)	Р	OR (95% CI)	Р
Age group	40-64 years				
≥65years		-	-	1.999(1.516-2.634)	< 0.001
Education	≤Primary sc	hool			
Junior middle school		0.859(0.624-1.183)	0.351	0.630(0.492-0.805)	< 0.001
Senior middle school		0.986(0.629-1.548)	0.952	0.526(0.370-0.748)	< 0.001
College and above		0.584(0.353-0.968)	0.037	0.376(0.251-0.564)	< 0.001
Region	urban				
Rural		0.889(0.647-1.221)	0.466	0.994(0.769-1.285)	0.963
BMI	Normal				
Overweight		3.202(2.321-4.419)	< 0.001	3.262(2.594-4.101)	< 0.001
Apparently overweight		7.932(5.530-11.376)	< 0.001	4.251(3.181-5.680)	< 0.001
Obesity		11.059(7.431-16.459)	< 0.001	8.023(5.415-11.885)	< 0.001
Neck circumference	-	2.095(1.584-2.772)	< 0.001	1.865(1.531-2.272)	< 0.001
Smoke	No				
Yes		<u>N</u> -	-	1.217(0.975-1.519)	0.083
Physical inactivity	Physical acti	vity			
Yes		1.506(1.117-2.031)	0.007	-	-
Alcohol consumption	Never				
Light/moderate drinking		0.883(0.667-1.170)	0.386	0.701(0.473-1.040)	0.077
Higher drinking		1.341(1.001-1.796)	0.049	0.435(0.120-1.575)	0.205
		00 11 .			

Abbreviations: BMI, body mass index; OR, odds ratio.

DISCUSSION

9 In this study, we evaluated sex differences in the prevalence of MS and its relative 10 determinants in a low-income population from Northeast China. We found that a high 11 BMI and large neck circumstance were risk factors for MS, and a higher BMI was 12 associated with a higher prevalence of MS in both sexes. In addition, higher educational 13 attainment was a protective factor against MS in both sexes, although the effect was 14 greater in women. An underweight BMI was also a protective factor in women. 15 Advanced age (≥ 65 years) was a risk factor only for women, whereas physical

Page 17 of 37

BMJ Open

1	inactivity and excessive alcohol consumption were risk factors only in men.
2	The prevalence of MS has been steadily increasing due to unhealthy lifestyles in low-

and high-income regions,¹⁰ ¹¹ and there are known sex differences. The prevalence of MS in those living in the Chinese mainland for both the low-middle- and high-income populations was shown to be 33.9% in 2010; ¹ however, in our study, it was 50.1%. This may be due to the fact that most of the participants in our study population had a lower educational level and income, which may have had an additive effect on the main, increasing trend. In most studies, the prevalence of MS in females was higher than that in males;^{1 12} for example, in Mexico, the prevalence in females was 55.6%, whereas in males, it was 38.2%.¹³ Similar sex disparities have been found in Middle Eastern countries, although few sex differences have been reported in populations from the European Union that have a lower MS prevalence.¹⁴ Contrarily, there are also studies, which have reported that the prevalence of MS in males is higher than that in females in Caucasian,¹⁵ in American adolescents,¹⁶ and in Far East Asian and Japanese population, and the rate was twice as high as that in women from Macau.¹⁷ These differences may be related to race, the period in which the studies were conducted, the geographic region, and the selection criteria used.¹⁸ ¹⁹ ²⁰ Our results were consistent with those reported in most countries that women had a higher prevalence of MS than men, $^{21 22 23 24}$ (57.9% in females and 38.4% in males; p < 0.001). In addition, these sex-

related differences were shown to be greater in women of advanced age, but remained relatively stable with respect to age in men in East China,²⁵ consistent with our own findings. Females \geq 65 years old had a 1.999- fold risk of MS and 95%CI(1.516-2.634) compared to younger ones (40-65 years old). The sex differences may be mainly related to the increase in insulin resistance and abnormal lipid metabolism resulting from the decrease in estrogen levels after menopause as women age. Thus, this change may be

1 related to changes in hormone levels, rather than aging itself.²⁶

It is well known that MS prevalence increases as BMI increases,²⁷ and a previous study found a BMI over 30.0 kg/m² was a risk factor;²⁸ our study also found that higher BMI, the higher the risk of MS. Compared to a normal BMI, the risk was 3.262-, 4.251-, and 8.023-fold higher in overweight, significantly overweight, and obese women, respectively; in men, the risk increased 3.202-, 7.932-, and 11.059-fold, respectively. These findings suggest that weight gain in men (BMI \geq 24) increases the risk of MS more significantly than it does in women; this has been reported in both sexes in a study of Turkish adults.²⁹ An Israeli cohort study claimed that a normal BMI had a high negative predictive value in both men (98%) and women (96%) with respect to MS.³⁰ As reported in a 2018 meta-analysis, neck circumference was not associated with MS;³¹ however, a 2018 Chinese community-based study of those over 50 years old showed that neck circumference was associated with MS, although the two studies used different definitions.³² In our study, the risk of MS increased by 1.865-fold in women and 2.095-fold in men for every 1 cm increase in neck circumference. Neck circumference combined with BMI are effective indicators of being overweight or obese, and such individuals are more prone to developing MS.

Educational level is the most important measure of socioeconomic status, which has been shown to not only affect the prevalence of MS, but is also closely related to the prevalence of cerebrovascular disease.³³ The specific mechanism by which education affects the prevalence of MS is unclear, although it has been considered that education Page 19 of 37

BMJ Open

1	affects people's health mainly by influencing their lifestyles and positive attitudes
2	toward health, and by increasing their access to preventive health services. ³⁴ In addition,
3	MS prevalence has been negatively correlated with educational level in South Korea,
4	which is largely related to the dietary patterns of Koreans (especially in women). ³⁵ In
5	the female group in our study, compared to a level of education of primary school or
6	less, the ORs indicated a 0.630-fold, 0.526-fold, and 0.376-fold risk of developing MS
7	in those who had completed junior middle-school, senior middle-school, and college
8	and above, respectively. This suggested that a higher educational level can reduce the
9	risk of MS; however, in the male population, this advantage was found only in those
10	who had a college education, with an OR of 0.584 (95% CI: 0.353–0.968). The negative
11	association between MS prevalence and educational level was significant in females,
12	which is similar to the results of a previous study. ³⁵ A study of the third National Health
13	and Nutrition Examination Survey found that low income and educational levels were
14	associated with a higher prevalence of MS in females than in males. ³⁶ Our study
15	population is characterized by having both a low income and a low level of education,
16	both of which contribute to a higher MS prevalence. The high percentage of females
17	and males with a primary school education or below was 37.8% and 32.5%,
18	respectively, which may partially explain the high prevalence of MS in women. ²⁴
19	Alcohol consumption and physical inactivity were the main risk factors in the male

results in a 1.506-fold increased risk of MS in men, but not in women, in agreement

22 with previous findings;³⁸ however, physical activity has been suggested to be a low risk

group, consistent with the findings of a previous study.³⁷ Infrequent physical activity

1	factor for MS, as has beer consumption. ³⁹ Conversely, it has also been shown that heavy
2	alcohol consumption with binge drinking increased the risk of MS in Korean men,
3	regardless of their BMI. ⁴⁰ Similarly, our study also showed that the population with
4	higher consumption of alcohol had a 1.341- fold increased risk of MS incidence and
5	95%CI(1.001-1.796), compared to the population that never consumed alcohol.
6	Additionally, the population with physical inactivity had a 1.506- fold increased risk of
7	MS and 95%CI(1.117-2.031), compared to the population with physical activity.
8	Chinese studies have found that smoking was associated with increased MS prevalence,
9	regardless of sex or BMI classification. ⁴¹ In addition, smoking was independently
10	associated with MS ⁴² in a dose-dependent manner, ⁴³ and increased cigarette
11	consumption of more than 20 pack-years is associated with a 1.81-fold increased MS
12	prevalence compared to that in non-smokers in women. ³⁹ The association between fruit
13	consumption, geographical region, hip circumference, and MS risk remains unclear; in
14	our study, there was no significant differences in MS risk related to these factors
15	between men and women.

Lifestyle interventions resulted in a 2.61-fold reduced risk of MS compared with the control group in a previous study,⁴⁴ and an investigation of dietary patterns showed that the Chinese pattern (high in grains, vegetables, fruit, salted fish and eggs, soyabean, and etc.) was associated with a lower risk of MS than the animal food pattern (high in meats, fish and shrimp, eggs, seafood, alcoholic beverages, etc.).⁴⁵ Sex differences in the ways dietary patterns were associated with increased MS prevalence have been reported; for example, an increased prevalence was observed in men consuming an Page 21 of 37

BMJ Open

"animal and fried food" diet, and women consuming a "high-salt and energy" diet.¹⁹ Muscle strength and cardiorespiratory fitness may independently and jointly reduce the incidence of MS,⁴⁶ as increased physical activity decreased the risk by 19–24%,⁴⁷ in men, every hour of exercise may decrease MS risk by 2%.⁴⁸ Weekly exercise while consuming > 2,000 kcal per day may strongly protect middle-aged men not only from obesity, but also from MS. To prevent the onset of MS, a better understanding of modifiable lifestyle factors is needed in high-risk populations; for example, in men who are physically inactive and regularly consume alcohol, further effort should be made to control body weight, especially by focusing on reducing high BMI and neck circumference. For women, especially the elderly, efforts should be made to control their weight more actively to maintain their BMI and neck circumference at a normal level or below to reduce the risk of MS, and a focus should be directed at changes in hormone levels. In the long run, a higher level of educational attainment can reduce the risk of MS. Understanding these factors and the sex differences between them, as well as accurately identify high-risk groups could help to develop better public health policies and educational initiatives and reduce the incidence of MS and vascular diseases.

19 CONCLUSION

In our study, the prevalence of MS in women was significantly higher than that in men
in Northeast China. It is necessary to accurately identify groups at high risk of MS
based on sex-specific factors. We observed that those at the highest risk were elderly

women with a low level of education and men with physical inactivity, excessive alcohol consumption, and a lower than college level of education. Abnormal BMI and large neck circumference were risk factors in both sexes. Health management and disease prevention organizations need to actively publicize such information to increase public attention and encourage those at risk to actively change their lifestyle and reduce the impact of preventable risk factors. These changes could fundamentally reduce the growing incidence of MS and the cardiovascular disease burden. These changes could fundamentally reduce the growing incidence of MS and the cardiovascular disease burden. There were also several limitations to this study, such as some self-reported data collected, blood samples measured only once, a lack of consideration of certain lifestyle factors or residual confounders, people sick or too weak excluded. Besides, the conclusion from cross-sectional studies cannot be used for causal inferences, and prospective and randomized studies are needed.

- **15 ACKNOWLEDGEMENTS**

The authors gratefully acknowledge all of the study participants and interviewers from
the First Hospital of Jilin University, and acknowledge the support of the Chinese
National Center for Stroke Care Quality Control and Management. *We would like to thank Editage (www.editage.cn) for English language editing.*

20 FUNDING

This project was supported by the National Key R&D Program of China
(2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key Laboratory

1		
2		
3	4	(2010000100510) to Vi Vang Droiget on reasonab and emplication of effective
4 5	1	(20190901005JC) to Yi Yang. Project on research and application of effective
6	_	
7	2	intervention techniques for high risk population of stroke from the National Health and
8		
9	3	Family Planning Commission in China (GN-2016R0010).
10 11		
12	4	CONFLICTS OF INTEREST
13		
14	5	None declared.
15	U	
16 17	6	ETHICS APPROVAL
18	0	ETHICS AFFROVAL
19	_	
20	7	This subject was approved by the human ethics and research ethics committee of the
21		
22	8	First Hospital of Jilin University (approval No: 2015-R-250), and written informed
23 24		
25	9	consent was obtained from all of the participants.
26		
27	10	PROVENANCE AND PEER REVIEW
28		
29 30	4.4	Not commissioned: externally near reviewed
30 31	11	Not commissioned; externally peer reviewed.
32		
33	12	DATA SHARING STATEMENT
34		
35	13	The dataset supporting the conclusions of this article can be made available upon
36 37		
38	14	request.
39		
40	15	
41 42		
42 43	16	
44		
45	17	
46	17	
47 48		
48 49	18	
50		
51	19	
52		
53 54	20	
54 55		
56	21	
57		
58 50	22	
59 60	00	
~~	23	

1	
2	
3	REFERENCES
4	1. Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China
5	Noncommunicable Disease Surveillance. The Journal of clinical endocrinology and
6	<i>metabolism</i> 2017;102(2):507-15. doi: 10.1210/jc.2016-2477
7	2. Kokubo Y, Matsumoto C. Hypertension Is a Risk Factor for Several Types of Heart Disease:
8	Review of Prospective Studies. Advances in experimental medicine and biology
9	2017;956:419-26. doi: 10.1007/5584_2016_99
10	3. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with
11	the metabolic syndrome. <i>Diabetes Care</i> 2001;24(4):683-9. doi: 10.2337/diacare.24.4.683
12	[published Online First: 2001/04/24]
13	4. Aguilar M, Bhuket T, Torres S, et al. Prevalence of the metabolic syndrome in the United
14	States, 2003-2012. <i>Jama</i> 2015;313(19):1973-4. doi: 10.1001/jama.2015.4260
15	5. Song Q-B, Zhao Y, Liu Y-Q, et al. Sex difference in the prevalence of metabolic syndrome
16	and cardiovascular-related risk factors in urban adults from 33 communities of China: The
17	CHPSNE study. <i>Diabetes & vascular disease research</i> 2015;12(3):189-98. doi:
18	10.1177/1479164114562410
19	6. Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and Mortality of Stroke in China:
20	Results from a Nationwide Population-Based Survey of 480 687 Adults. Circulation
21	2017;135(8):759-71. doi: 10.1161/circulationaha.116.025250 [published Online First:
22	2017/01/06]

BMJ Open

1	7. Sun H, Zou X, Liu L. Epidemiological factors of stroke: a survey of the current status in china.
2	Journal of stroke 2013;15(2):109-14. doi: 10.5853/jos.2013.15.2.109
3	8. Zhang FL, Guo ZN, Wu YH, et al. Prevalence of stroke and associated risk factors: a
4	population based cross sectional study from northeast China. <i>BMJ open</i> 2017;7(9):e015758.
5	doi: 10.1136/bmjopen-2016-015758
6	9. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim
7	statement of the International Diabetes Federation Task Force on Epidemiology and
8	Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World
9	Heart Federation; International Atherosclerosis Society; and International Association for
10	the Study of Obesity. <i>Circulation</i> 2009;120(16):1640-5. doi:
11	10.1161/circulationaha.109.192644
12	10. Suliga E, Kozieł D, Ciesla E, et al. Consumption of Alcoholic Beverages and the Prevalence
13	of Metabolic Syndrome and Its Components. <i>Nutrients</i> 2019;11(11) doi:
14	10.3390/nu11112764 [published Online First: 2019/11/20]
15	11. Ansarimoghaddam A, Adineh HA, Zareban I, et al. Prevalence of metabolic syndrome in
16	Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab Syndr
17	2018;12(2):195-201. doi: 10.1016/j.dsx.2017.11.004 [published Online First: 2017/12/06]
18	12. Rochlani Y, Pothineni NV, Mehta JL. Metabolic Syndrome: Does it Differ Between Women
19	and Men? Cardiovascular drugs and therapy 2015;29(4):329-38. doi: 10.1007/s10557-015-
20	6593-6
21	13. Mendoza-Caamal EC, Barajas-Olmos F, García-Ortiz H, et al. Metabolic syndrome in
22	indigenous communities in Mexico: a descriptive and cross-sectional study. BMC Public

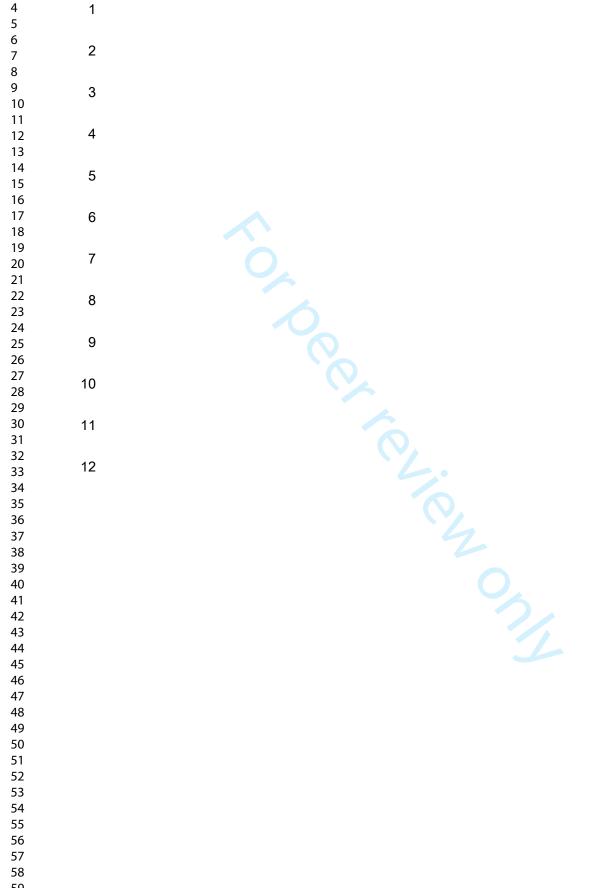
1	<i>Health</i> 2020;20(1):339. doi: 10.1186/s12889-020-8378-5 [published Online First:
2	2020/03/19]
3	14. Patel A, Huang KC, Janus ED, et al. Is a single definition of the metabolic syndrome
4	appropriate?A comparative study of the USA and Asia. Atherosclerosis 2006;184(1):225-
5	32. doi: 10.1016/j.atherosclerosis.2005.04.012 [published Online First: 2005/06/07]
6	15. Firmann M, Mayor V, Vidal PM, et al. The CoLaus study: a population-based study to
7	investigate the epidemiology and genetic determinants of cardiovascular risk factors and
8	metabolic syndrome. BMC cardiovascular disorders 2008;8:6. doi: 10.1186/1471-2261-8-6
9	16. Miller JM, Kaylor MB, Johannsson M, et al. Prevalence of metabolic syndrome and
10	individual criterion in US adolescents: 2001-2010 National Health and Nutrition Examination
11	Survey. <i>Metab Syndr Relat Disord</i> 2014;12(10):527-32. doi: 10.1089/met.2014.0055
12	[published Online First: 2014/09/24]
13	17. Ishii S, Tanaka T, Akishita M, et al. Metabolic syndrome, sarcopenia and role of sex and
14	age: cross-sectional analysis of Kashiwa cohort study. <i>PLoS One</i> 2014;9(11):e112718. doi:
14 15	age: cross-sectional analysis of Kashiwa cohort study. <i>PLoS One</i> 2014;9(11):e112718. doi: 10.1371/journal.pone.0112718 [published Online First: 2014/11/19]
15	10.1371/journal.pone.0112718 [published Online First: 2014/11/19]
15 16	10.1371/journal.pone.0112718 [published Online First: 2014/11/19] 18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among
15 16 17	10.1371/journal.pone.0112718 [published Online First: 2014/11/19] 18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. <i>Diabetes Care</i> 2011;34(1):216-9. doi:
15 16 17 18 19 20	 10.1371/journal.pone.0112718 [published Online First: 2014/11/19] 18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. <i>Diabetes Care</i> 2011;34(1):216-9. doi: 10.2337/dc10-0879 [published Online First: 2010/10/05]
15 16 17 18 19	 10.1371/journal.pone.0112718 [published Online First: 2014/11/19] 18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. <i>Diabetes Care</i> 2011;34(1):216-9. doi: 10.2337/dc10-0879 [published Online First: 2010/10/05] 19. Mabry RM, Reeves MM, Eakin EG, et al. Gender differences in prevalence of the metabolic

Page 27 of 37

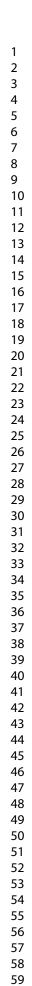
BMJ Open

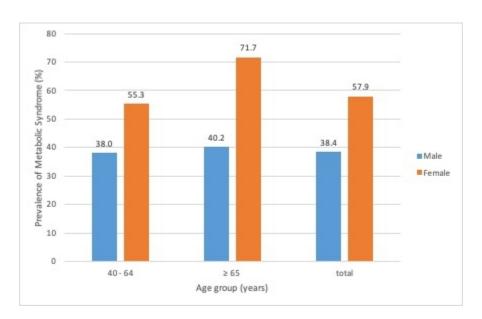
3 4 5	1	20. Erem C, Hacihasanoglu A, Deger O, et al. Prevalence of metabolic syndrome and
6 7 8	2	associated risk factors among Turkish adults: Trabzon MetS study. Endocrine 2008;33(1):9-
8 9 10	3	20. doi: 10.1007/s12020-008-9044-3 [published Online First: 2008/03/14]
11 12 13	4	21. Yu S, Guo X, Yang H, et al. An update on the prevalence of metabolic syndrome and its
14 15	5	associated factors in rural northeast China. BMC Public Health 2014;14:877. doi:
16 17 18	6	10.1186/1471-2458-14-877 [published Online First: 2014/08/28]
19 20 21	7	22. Xi B, He D, Hu Y, et al. Prevalence of metabolic syndrome and its influencing factors among
22 23	8	the Chinese adults: the China Health and Nutrition Survey in 2009. Prev Med
24 25 26	9	2013;57(6):867-71. doi: 10.1016/j.ypmed.2013.09.023 [published Online First: 2013/10/10]
27 28	10	23. Jiang B, Li B, Wang Y, et al. The nine-year changes of the incidence and characteristics of
29 30 31	11	metabolic syndrome in China: longitudinal comparisons of the two cross-sectional surveys
32 33 34	12	in a newly formed urban community. <i>Cardiovasc Diabetol</i> 2016;15:84. doi: 10.1186/s12933-
35 36	13	016-0402-9 [published Online First: 2016/06/04]
37 38 39	14	24. Wu LT, Shen YF, Hu L, et al. Prevalence and associated factors of metabolic syndrome in
40 41	15	adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public
42 43 44	16	<i>Health</i> 2020;20(1):133. doi: 10.1186/s12889-020-8207-x [published Online First:
45 46 47	17	2020/02/01]
48 49	18	25. Jiang B, Zheng Y, Chen Y, et al. Age and gender-specific distribution of metabolic syndrome
50 51 52	19	components in East China: role of hypertriglyceridemia in the SPECT-China study. Lipids
53 54	20	Health Dis 2018;17(1):92. doi: 10.1186/s12944-018-0747-z [published Online First:
55 56 57	21	2018/04/22]
58 59 60	22	26. Janssen I, Powell LH, Crawford S, et al. Menopause and the metabolic syndrome: the Study

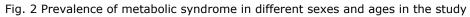
1	of Women's Health Across the Nation. Arch Intern Med 2008;168(14):1568-75. doi:
2	10.1001/archinte.168.14.1568 [published Online First: 2008/07/30]
3	27. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by
4	sex, age, race and ethnicity, and body mass index: United States, 2003-2006. Natl Health
5	Stat Report 2009(13):1-7. [published Online First: 2009/07/29]
6	28. Horáková D, Cízek L, Koutná J, et al. [Assessment of the incidence of metabolic syndrome].
7	Cas Lek Cesk 2005;144(7):478-81; discussion 82. [published Online First: 2005/09/16]
8	29. Gundogan K, Bayram F, Gedik V, et al. Metabolic syndrome prevalence according to ATP
9	III and IDF criteria and related factors in Turkish adults. Arch Med Sci 2013;9(2):243-53. doi:
10	10.5114/aoms.2013.34560 [published Online First: 2013/05/15]
11	30. Kobo O, Leiba R, Avizohar O, et al. Normal body mass index (BMI) can rule out metabolic
12	syndrome: An Israeli cohort study. <i>Medicine (Baltimore)</i> 2019;98(9):e14712. doi:
13	10.1097/md.000000000014712 [published Online First: 2019/03/01]
14	31. Namazi N, Larijani B, Surkan PJ, et al. The association of neck circumference with risk of
15	metabolic syndrome and its components in adults: A systematic review and meta-analysis.
16	Nutr Metab Cardiovasc Dis 2018;28(7):657-74. doi: 10.1016/j.numecd.2018.03.006
17	[published Online First: 2018/05/22]
18	32. Lin S, Hu L, Li P, et al. Utility of Neck Circumference for Identifying Metabolic Syndrome by
19	Different Definitions in Chinese Subjects over 50 Years Old: A Community-Based Study.
20	2018;2018:3708939. doi: 10.1155/2018/3708939
21	33. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
22	sex, and stroke subtype: a nationwide study in Korea. J Prev Med Public Health


Page 2	29 of 37	BMJ Open
1 2		
3 4 5	1	2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104
6 7 8	2	34. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education,
9 10	3	income, and occupation contribute to risk factors for cardiovascular disease. Am J Public
11 12 13	4	<i>Health</i> 1992;82(6):816-20.
14 15	5	35. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association
16 17 18	6	between Education Level and Metabolic Syndrome in Korean Adults. Ann Nutr Metab
19 20 21	7	2017;70(2):122-31. doi: 10.1159/000470853
22 23	8	36. Loucks EB, Rehkopf DH, Thurston RC, et al. Socioeconomic disparities in metabolic
24 25 26	9	syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 2007;17(1):19-26.
27 28	10	doi: 10.1016/j.annepidem.2006.07.002 [published Online First: 2006/12/05]
29 30 31	11	37. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor
32 33 34	12	to cardio-metabolic syndrome. Cardiovascular diabetology 2013;12:76. doi: 10.1186/1475-
35 36	13	2840-12-76
37 38 39	14	38. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with
40 41 42	15	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. Rev Med
42 43 44	16	<i>Chil</i> 2018;146(5):585-95.
45 46 47	17	39. Liu Y, Huang J, Xu G, et al. Prevalence and Determinants of Metabolic Syndrome-identified
48 49	18	by Three Criteria among Men in Rural China: A Population-based Cross-sectional Study
50 51 52	19	Conducted during 2007-2008. J Nutr Health Aging 2016;20(5):574-82. doi: 10.1007/s12603-
53 54 55	20	015-0615-8 [published Online First: 2016/04/23]
56 57	21	40. Oh JE. Relationship between heavy drinking, binge drinking, and metabolic syndrome in
58 59 60	22	obese and non-obese Korean male adults. Nutr Res Pract 2018;12(2):166-72. doi:
		28

Page 30 of 37


1	10.4162/nrp.2018.12.2.166 [published Online First: 2018/04/10]
2	41. Slagter SN, van Vliet-Ostaptchouk JV, Vonk JM, et al. Associations between smoking,
3	components of metabolic syndrome and lipoprotein particle size. BMC Med 2013;11:195.
4	doi: 10.1186/1741-7015-11-195 [published Online First: 2013/11/16]
5	42. Masulli M, Vaccaro O. Association between cigarette smoking and metabolic syndrome.
6	<i>Diabetes Care</i> 2006;29(2):482; author reply 82-3. doi: 10.2337/diacare.29.02.06.dc05-2077
7	[published Online First: 2006/02/18]
8	43. Chen CC, Li TC, Chang PC, et al. Association among cigarette smoking, metabolic
9	syndrome, and its individual components: the metabolic syndrome study in Taiwan.
10	Metabolism 2008;57(4):544-8. doi: 10.1016/j.metabol.2007.11.018 [published Online First:
11	2008/03/11]
12	44. Guzmán A, Navarro E, Obando L, et al. Effectiveness of interventions for the reversal of a
13	metabolic syndrome diagnosis: An update of a meta-analysis of mixed treatment
14	comparison studies. <i>Biomedica</i> 2019;39(4):647-62. doi: 10.7705/biomedica.4684
15	[published Online First: 2019/12/21]
16	45. Wei ZY, Liu JJ, Zhan XM, et al. Dietary patterns and the risk of metabolic syndrome in
17	Chinese adults: a population-based cross-sectional study. Public Health Nutr
18	2018;21(13):2409-16. doi: 10.1017/s1368980018001088 [published Online First:
19	2018/05/03]
20	46. Jurca R, Lamonte M, Barlow C, et al. Association of muscular strength with incidence of
21	metabolic syndrome in men. 2005;37(11):1849-55. doi:
22	10.1249/01.mss.0000175865.17614.74
	29


BMJ Open


2		
3		
4	1	47. Xiao J, Wu CL, Gao YX, et al. Prevalence of metabolic syndrome and its risk factors among
5		
6 7	2	rural adults in Nantong, China. Sci Rep 2016;6:38089. doi: 10.1038/srep38089 [published
8		
9	2	
10	3	Online First: 2016/12/03]
11		
12	4	48. Renninger M, Hansen BH, Steene-Johannessen J, et al. Associations between
13		
14	5	accelerometry measured physical activity and sedentary time and the metabolic syndrome:
15	•	
16	~	
17 18	6	A meta-analysis of more than 6000 children and adolescents. Pediatr Obes
19		
20	7	2020;15(1):e12578. doi: 10.1111/ijpo.12578 [published Online First: 2019/11/12]
21		
22	8	
23		
24	0	
25	9	
26		
	10	Fig. 1 Sampling process in the study
28		
29 30	11	Fig. 2 Prevalence of metabolic syndrome in different sexes and ages in the study
30		
32	12	
33		
34	13	
35		
36	14	
37		
38	15	
	15	
40 41		
42	16	
43		
	17	
45		
46	10	
T /	18	
48		
49	19	
50 51		
52	20	
53	-	
Г 4	21	
55	Z I	
56		
	22	
58		
59 60	23	
60		

156x99mm (72 x 72 DPI)

BMJ Open

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Supplementary Table S1 Definitions of metabolic syndrome-related risk factors in the survey.

Variables	Criteria	References	
BMI	BMI was grouped into five categories for our study: underweight (BMI< 18.5 kg/m ²), normal (18.5 \leq BMI< 24 kg/m ²), overweight (24 \leq BMI< 26 kg/m ²), apparently overweight (26 \leq BMI < 28 kg/m ²), obesity (BMI \geq 28 kg/m ²).	Guidelines for diabetes prevention and treatment in China ¹	
Abnormal neck circumference	≥37cm for male and ≥33cm for female	Neck circumference as an independent predictive contributor of cardio-metabolic syndrome ²	
Physical inactivity	Physical inactivity is defined as insufficient physical activity; Physical activity is defined as the performance of heavy physical labor or regular physical exercise for more than one year, more than 3 times per week, and for at least 30 minutes per session.	CHNS guidelines ³	
Smoking	A smoker was defined as one who reported smoking one or more cigarettes or was passively exposed to tobacco smoke every day in general for more than 6 consecutive months. A non-smoker was defined as the one who had never smoked, nor passively exposed to tobacco smoke; or, had history of smoking but quit smoking for at least 6 consecutive months previous to the study.	Technical specification of stroke screening and prevention in China ⁴	
Drinking	The NIAAA sets the standard drink size at about 14g of absolute ethanol, advising limits of no more than three drinks per day or seven drinks per week for men and women. Drinking status was divided into three categories according to the participants' self-report in the previous 6 months: non-drinkers: had never drunk alcoholic beverage; light/moderate drinkers: less than or upto NIAAA limits; heavier drinkers: in excess of NIAAA limits.	_	
Fruit consumption	Fruit consumption was grouped into three categories for our study: less than or equal to two days per week ($\leq 2 \text{ d/w}$), three to four days per week (3–4 d/w), and greater than or equal to five days per week ($\geq 5 \text{ d/w}$). And the weight of consumed fruits should reach or exceed two servings per day, and the definition of a serving of a fruit was calculated as 80g.	Fruit and vegetable consumption and stroke: meta-analysis of cohort studies ⁶	

Abbreviation: BMI, body mass index; CHNS, China Health and Nutrition Survey; NIAAA, National Institute on Alcohol Abuse and Alcoholism.

References

- 1. Department of disease control Moh. Guidelines for diabetes prevention and treatment in China. *Chin J Prev Non-commun Dis* 2004;12:283-85. doi: 10.3969/j.issn.1004-6194.2004.06.022
- 2. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. *Cardiovascular diabetology* 2013;12:76. doi: 10.1186/1475-2840-12-76
- 3. The Nutrition and Health Status of the Chinese People. China Healthcare & Nutrition 2004
- 4. Stroke Screening and Prevention Project Committee NHaFPCoC. Technical specification of stroke screening and prevention in China. *Chinese Journal of the Frontiers* of Medical Science (Electronic Version) 2013(9):44-50. doi: 10.3969/j.issn.1674-7372.2013.09.017
- 5. of Health and Human Services: Helping patients who drink too much. a clinician's guide. Bethesda, MD, National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; 2005.
- 6. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. *Lancet (London, England)* 2006;367(9507):320-6. doi: 10.1016/s0140-6736(06)68069-0 [published Online First: 2006/01/31]

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3,4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6-8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	7-8
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	6, 7
		(e) Describe any sensitivity analyses	NA

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9-11
		confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	(7)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	11,12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	13-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18,19
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Sex-based differences in and risk factors for metabolic syndrome in adults aged 40 years and above in Northeast China: Results from the National Stroke Screening Survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038671.R2
Article Type:	Original research
Date Submitted by the Author:	21-Jan-2021
Complete List of Authors:	Li, Feng-e ; Jilin University First Hospital, Stroke Center, Department of Neurology; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Zhang, Fu-Liang; The First Hospital of Jilin University, Stroke Center, Department of Neurology Zhang, Peng; The First Hospital of Jilin University, Liu, Dong; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Liu, Hao-Yuan; Jilin University First Hospital, Stroke Center, Department of Neurology Guo, Zhen-Ni ; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology Yang, Yi; Jilin University First Hospital, Stroke Center, Department of Neurology; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Sports and exercise medicine, Public health, Health informatics
Keywords:	Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE, Sex steroids & HRT < DIABETES & ENDOCRINOLOGY, Lipid disorders < DIABETES & ENDOCRINOLOGY, Hypertension < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2
2
3
Δ
- -
5
6
7
, o
0
9
10
11
12
13
14
14
14 15
16 17 18
17
10
19
20
21
22
23
24
25
26
26 27
28
29
30
31
32
33
34
35
36
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Original Article

2	TITLE PAGE
3	Sex-based differences in and risk factors for metabolic syndrome in
4	adults aged 40 years and above in Northeast China: Results from the
5	National Stroke Screening Survey
6	Feng-e Li ^{1,2} , MD; Fu-Liang Zhang ¹ , MD, PhD; Peng Zhang ³ , MD; Dong Liu ² , MD;
7	Hao-Yuan Liu ¹ ; MD; Zhen-Ni Guo ³ , MD, PhD [#] ; Yi Yang ^{1, 3} , MD, PhD [#] .
8	¹ Stroke Center, Department of Neurology, The First Hospital of Jilin University,
9	Chang Chun, Jilin, 130021, China.
10	² Stroke Center, Department of Neurology, The Affiliated Hospital of Beihua
11	University, JiLin, Jilin, 132011, China.
12	³ Clinical Trail and Research Center for Stroke, Department of Neurology, The First
13	Hospital of Jilin University, Chang Chun, Jilin, 130021, China.
14	* These authors contributed equally to the manuscript.
15	# Correspondence and reprint requests should be addressed to: Yi Yang, MD, PhD.
16	Stroke Center & Clinical Trail and Research Center for Stroke, Department of
17	Neurology, the First Hospital of Jilin University, Xinmin Street 71#, 130021, Chang
18	Chun, Jilin, China. Telephone: +86-13756661217; Fax: +86-431-88782378; Primary
19	E-mail: yang_yi@jlu.edu.cn; Secondary E-mail: doctoryangyi@163.com.
20	
21	Authors contributions: Conception and design: Y Y, and Z-N G. Acquisition of the
22	data: F-L Z and H-Y L. Statistical methods and data analysis: F-e L, P Z, D L, F-L Z.

Page 3 of 32

BMJ Open

1	
2	
2	
ر ۸	
4 7	
5	
3 4 5 6 7 8 9 10	
7	
8	
9	
10	
11	
12	
12	
13	
11 12 13 14 15 16 17	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
 18 19 20 21 22 23 24 25 26 27 28 29 	
29	
30	
31	
32	
33	
34	
35	
33 34 35 36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Drafting and revising the manuscript: F-e L. Critical revision: Z-N G, and Y Y. All of
2	the authors approved the final version for publication.
3	Disclosure: The authors declare no conflict of interest.
4	Study Funding: This project was supported by the National Key R&D Program of
5	China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key
6	Laboratory (20190901005JC) to Yi Yang. Project on research and application of
7	effective intervention techniques for high risk population of stroke from the National
8	Health and Family Planning Commission in China (GN-2016R0010).
9	Search terms: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
10	factor.
11	Word count: abstract 282 words; text 3359 words; 52 references; 3 tables and 2
12	figures.
13	
14	figures.

1 ABSTRACT

Objectives

Low levels of income and education are risk factors for metabolic syndrome (MS) in the population of Northeast China, which has a high incidence of MS and cardiovascular diseases. This study aimed to determine sex-based differences associated with the prevalence of and risk factors for MS among people older than 40 years in Northeast China; this has not been previously investigated.

9 Study design

This study analyzed a portion of the large sample data of the national cross-sectional screening of China from 2016. MS was defined as the presence of any three of the following five risk factors: abnormal waist circumference; high levels of triglycerides, high-density lipoprotein cholesterol, or fasting plasma glucose; and elevated blood pressure. Multiple regression analysis was used to investigate sex-based differences in the prevalence of and risk factors for MS.

16 Setting The study was conducted in Dehui City, Jilin Province, China.

Participants A total of 4052 participants with complete questionnaire information and
laboratory examination results were included.

Results The prevalence of MS was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). High body mass index (BMI) and hip circumference were associated with MS in both sexes. In addition, physical inactivity (odds ratio [OR] and 95% confidence interval [CI]: 1.441 [1.055, 1.969]; p = 0.022) in males and advanced age (OR and 95% CI: 1.536 [1.154, 2.043]; p = 0.003) in females were factors associated with MS. Women with junior high school education or above and living in

BMJ Open

2		
3 4	1	rural areas were less likely to have MS, unlike men.
5	I	fural areas were less likely to have lwis, unlike men.
6		
7	2	Conclusions The risk factors for MS have both similarities and differences in different
8		
9	3	sexes; thus, the prevention and treatment of MS should be based on these sex
10		
11 12	4	differences.
13		
14	F	
15	5	
16	c	Van wandar matabalia aundrama provalance any difference areas sostional risk
17	6	Key words: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
18	7	factor.
19 20		
20	8	
22	•	factor.
23	9	
24		
25	10	
26		
27 28	11	
28		
30	12	
31		
32	13	
33		
34	14	
35 36	. –	
37	15	
38	4.0	
39	16	
40	47	
41	17	
42 43	4.0	
44	18	
45	40	
46	19	
47	20	
48	20	
49 50	04	
50	21	
52	<u></u>	
53	22	
54	<u></u>	
55	23	
56 57	24	
57 58	24	
59	25	
60	20	

1		
2 3		
4	1	Strengths and limitations of this study
5 6 7	2	1. This cross-sectional study included a large, representative sample of Chinese
7 8 9	3	population.
10 11	4	2. We used a uniform, pre-coded questionnaire designed by the Stroke Screening and
12 13	5	Prevention Program of the National Health and Family Planning Commission of China
14 15 16	6	(CNSSS).
17 18	7	3. Some results were partially based on self-reported data collected by investigators,
19 20 21	8	which inevitably increased the risk of recall bias.
21 22 23	9	4. Our survey excluded participants who were sick or too weak to complete the
24 25	10	interview.
26 27 28	11	5. As a major limitation of all epidemiological investigations, conclusions based on
29 30	12	cross-sectional studies cannot be used for causal inferences.
31 32	13	
33 34 35	14	
36 37	15	
38 39 40	16	
40 41 42	17 18	
43 44	19	
45 46 47	20	
48 49	21	
50 51 52	22	
53 54	23	
55 56 57	24	
58 59 60	25	

INTRODUCTION

Metabolic syndrome (MS) is associated with a cluster of cardiometabolic risk factors and has become one of the major public health threats in China. The higher prevalence of MS greatly increases the burden of morbidity and mortality of cardiovascular diseases worldwide.¹⁻³ This burden has increased every year, although it is difficult to differentiate it from unhealthy habits of daily living.⁴ There is a significant difference in the prevalence of and risk factors for MS between men and women.⁵ To control and reduce the risk of MS and cardiovascular diseases more effectively, it is necessary to identify high-risk populations and understand the sex-specific, modifiable lifestyle determinants of MS. Northeast China, with its low income level, has a high incidence of MS and cardiovascular diseases, especially the highest incidence and mortality of stroke (365 and 159/100 000 person-years) in China.⁶ Thus, this study aimed to analyze the sex-specific differences in the prevalence of MS and its related risk factors in a population from Northeast China.

- **17 POPULATION and METHODS**
- 19 Data source and study participants

This population-based cross-sectional study was a part of the Stroke Screening and
Prevention Program of the National Health and Family Planning Commission of China
(CNSSS), which assessed a population of residents aged 40 years or older, from January

to March 2016. The CNSSS is a national epidemiological survey of cerebrovascular diseases conducted to obtain timely and reliable information on the morbidity, prevalence, and mortality of stroke in Chinese people over the age of 40.⁷ The sampling method employed in this study has been described in detail in other articles.⁸ The sample size (N) required for this survey was calculated on a 2.37% stroke prevalence (p) among adults 40 years and older in China,⁸ using the formula:

7 N = $(Z_{\alpha}^2 pq)/d^2$ (where $Z_{\alpha} = 1.96$, $\alpha = 0.05$, q = 1-p, and d = 0.2p)

A multistage stratified, random cluster sampling method was applied to obtain the sample population. In the first stage, 30 villages and 10 towns were randomly selected from a total of 308 villages (rural) and 14 towns (urban) in Dehui City using the probability proportional to size (PPS) sampling method. In the second stage, five groups of villages or communities were randomly sampled from both the rural and urban strata using the PPS sampling. In the third stage, one participant aged ≥ 40 years was randomly selected from each household of the selected groups of villages or communities. Respondents who were unwilling to participate in the survey or who were judged to be very frail were excluded. We selected permanent residents aged ≥ 40 years for inclusion in the study (a calculated total of 4445 participants with an additional 10%) loss rate); ultimately, 4100 participants completed the face-to-face survey, with a good response rate of 92.2%. In this sub-study of the CNSSS, we used data from participants who completed the study. After excluding 48 participants with incomplete questionnaire information or laboratory examinations, a total of 4052 participants were included in this analysis. The flowchart of the study selection process is shown in Figure 1. The study protocol was approved by the Human Ethics and Research Ethics Committee of the First Hospital of Jilin University, Chang Chun, Jilin, China. Written informed consent was obtained from all study participants before recruitment and data

collection.

 BMJ Open

Patient and public involvement Patients and the public were not involved in the development of the research questionnaire, its outcome measures, study design, recruitment methods or the conduct of this study. There is no plan to disseminate the research findings to the participants. Data collection and measurement All participants completed a questionnaire that included an assessment of general sociodemographic and health-related information. Physical examinations included assessments of height, weight, neck circumference, waist circumference, hip circumference, and blood pressure. Height and weight were measured according to the standard methods; the subjects removed their shoes and hats and wore light clothes. The measurement accuracy was within 0.1 cm and 0.1 kg for the height and weight, respectively. Blood pressure was measured by physicians using an OMRON automatic sphygmomanometer (OMRON HEM-7200, KYOTO, Japan), on the right arm, after placing it parallel to the heart. The subjects were made to rest for 20 minutes before the blood pressure was measured twice, and mean value was recorded. Blood samples were collected on an empty stomach following overnight fasting (at least 8 hours) to assess fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) concentrations. The samples were sent to the clinical laboratory of Changchun Kingmed Center (Chang Chun, Jilin, China) for testing.

2	Screening protocol	and assessment	criteria
---	--------------------	----------------	----------

The definition of MS used in this study was published by the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI).⁹ The presence of any three of the following five risk factors constituted a diagnosis of MS: 1) Waist circumference: \geq 90 cm for men, and \geq 80 cm for women; 2) TG concentration: ≥ 1.70 mmol/L (drug treatment for elevated TG levels is an alternative indicator); 3) HDL-C concentration: < 1.0 mmol/L for men, and <1.3 mmol/L for women (drug treatment for reduced HDL-C levels is an alternative indicator); 4) blood pressure: systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg (antihypertensive drug treatment in a patient with a history of hypertension is an alternative indicator); and 5) FPG concentration: \geq 5.6 mmol/L (drug treatment for elevated glucose levels is an alternative indicator).

In addition to stratifying by sex, participants were stratified by age into a middleaged group (40–64 years old) and an elderly group (≥ 65 years old). The evaluation
criteria for the other factors, including BMI, level of physical inactivity, smoking status,
and alcohol consumption are shown in Supplementary Table S1.

21 Statistical analysis

The normality of the data was tested using the Kolmogorov–Smirnov test. Nonnormally distributed continuous variables are presented as medians (IQRs). The Mann-Whitney U test was used to assess differences between two groups of data with non-

BMJ Open

normal distributions. Categorical data are presented as numbers and proportions. The differences between groups were assessed using the χ^2 -test. Significant variables (those with P < 0.05) identified in the univariate analysis were selected for the multivariate analyses. Multiple logistic regression analysis was used to explore the independent risk factors of MS in the two sexes, and the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. All statistical analyses were performed using IBM Statistical Package for the Social Sciences (SPSS) version 23.0 (SPSS, Inc., New York, NY, USA). P < 0.05 was considered statistically significant.

RESULTS

Among the 4,100 participants who completed the face-to-face survey, 4,052 were included in the analysis. A total of 2,030 individuals met the criteria for MS, and the prevalence was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). Of all the 4,052 participants, 1,619 were men (40.0%) and 2,433 were women (60.0%), with a median age of 53 years (IQR: 47–62). Overall, 76.7% of the participants had a level of education not higher than that of junior middle school.

19 1. Demographic characteristics of all participants with MS

Table 1 shows that compared with that in males (38.4%), the prevalence of MS in females (57.9%) was significantly higher. Among the 2,030 individuals with MS, the median age was 56 years (IQR: 49–63) and more than 80% of participants with MS,

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
53 54	
54 55	
55 56	
57	
58	
50 59	
59	

60

9

1 2

> both males and females, were in the group of 40-64 years. The rate of abnormal waist 1 2 circumference in females (91.6%) was higher than that in males (85.4%). The median 3 neck circumference and hip circumference in males were higher than those in females. Compared with males, females were more likely to have the following associated risk 4 5 factors: a lower level of educational attainment, living in a rural area, a normal BMI, 6 an abnormal HDL-C concentration, and higher concentrations of TC and LDL-C. Men 7 were also more likely to have hypertension, abnormal levels of triglycerides and fasting blood glucose, live in urban areas, and smoke and drink alcohol. 8

Table 1. Sex differences in demographic characteristics and risk factors amongparticipants with metabolic syndrome (MS).

	Total	Male	Female
Participants, n (%)	4052(100)	1619 (40.0)	2433 (60.0)
Cases, n (%)	2030 (50.1)	622 (38.4)	1408 (57.9)
Age, years, median (IQR)	56.00(49, 63)	55.72(48, 63)	56.19(49, 63)
Age group, n (%)			
40-64 years	1636(80.6)	501(80.5)	1135(80.6)
≥65 years	394(19.4)	121(19.5)	273(19.4)
Waist circumference, n (%)	1821(89.7)	531(85.4)	1290(91.6)
Neck circumference, median (IQR)	34.00(32, 37)	38.23(36, 40)	33.27(32, 35)
Hip circumference, n (%)	100.00(95, 104)	103.63(100, 107)	97.76(93, 102)
TCHO, mmol/L, median (IQR)	5.52(4.83, 6.25)	5.50(4.73, 6.12)	5.63(4.87, 6.29)
LDLC, mmol/L, median (IQR)	1.93(1.56, 2.64)	2.08(1.5, 2.57)	2.19(1.57, 2.65)
HDLC, n (%)	1255(61.8)	176(28.3)	1079(76.6)
TG , n (%)	1503(74.0)	508(81.7)	995(70.7)
FBG , n (%)	881(43.4)	291(46.8)	590(41.9)
Hypertension, n (%)	1853(91.3)	601(96.6)	1252(88.9)
Education, n (%)			
≤Primary school	806(39.7)	176(28.3)	630(44.7)
Junior middle school	829(40.8)	280(45)	549(39)
Senior middle school	253(12.5)	104(16.7)	149(10.6)
College and above	142(7.0)	62(10.0)	80(5.7)
Region, n (%)			
Urban	1023(50.4)	357(57.4)	666(47.3)
Rural	1007(49.6)	265(42.6)	742(52.7)
Smoke , n (%)			

No	1021(50.3)	223(35.9)	798(56.7)
Yes	1009(49.7)	399(64.1)	610(43.3)
Physical inactivity, n (%)			
No	1522(75.0)	469(75.4)	1053(74.8)
Yes	508(25.0)	153(24.6)	355(25.2)
Alcohol consumption, n (%)			
Never	1591(78.4)	251(40.4)	1340(95.2)
Light/moderate	245(12.1)	182(29.3)	63(4.5)
Heavier	194(9.6)	189(30.4)	5(0.4)
Fruit consumption, n (%)			
≥5days per week	1782(87.8)	546(87.8)	1236(87.8)
3-4 days per week	189(9.3)	61(9.8)	128(9.1)
≤2 days per week	59(2.9)	15(2.4)	44(3.1)
BMI , n (%)			
Normal	553(27.2)	88(14.1)	465(33.0)
Underweight	11(0.5)	3(0.5)	8(0.6)
Overweight	521(25.7)	144(23.2)	377(26.8)
Apparently overweight	464(22.9)	183(29.4)	281(20.0)
Obesity	481(23.7)	204(32.8)	277(19.7)

1 Abbreviations: TCHO, total serum cholesterol; LDLC, Low Density Lipoprotein

2 Cholesterol; HDLC, high-density lipoprotein; TG, triglyceride; FBG, fasting blood

3 glucose; BMI, body mass index.

4 Values are expressed as n (percentage).

2. Univariate analysis of factors associated with MS by sex

MS in men and women. The prevalence of MS was higher in the elderly (men: 40.2%;
women: 71.7%), especially in older women (Figure 2; OR [95% CI] = 2.042 [1.608,
2.594]; $P < 0.001$). For females, age, BMI, hip and neck circumference, smoking,
higher alcohol consumption, geographical region, and level of educational attainment
were associated with MS, whereas physical inactivity and fruit consumption were not.
For males, the risk factors associated with MS were similar, except for age, smoking,
and higher alcohol consumption. Unlike in women, physical inactivity and
light/moderate alcohol consumption were also risk factors in men.

- 1 Table 2 Univariate logistic regression analyses on risk factors for the prevalence of
- 2 metabolic syndrome (MS) in males and females

		Male		Female	
Category	Reference	OR (95% CI)	Р	OR (95% CI)	Р
Age group	40-64 years				
≥65years		1.096(0.849, 1.416)	0.482	2.042(1.608, 2.594)	< 0.001
HP	-	1.199(1.175, 1.224)	< 0.001	1.157(1.141, 1.173)	< 0.001
NC	-	1.442(1.378, 1.509)	< 0.001	1.365(1.31, 1.422)	< 0.001
Region	Urban				
Rural		0.565(0.462, 0.692)	< 0.001	1.658(1.408, 1.951)	< 0.001
Smoke	No				
Yes		0.926(0.751, 1.142)	0.472	1.406(1.191, 1.660)	< 0.001
Physical inactivity	Physical activity				
Yes		1.745(1.360, 2.240)	< 0.001	1.121(0.928, 1.354)	0.235
Alcohol consumption	Never				
Light/moderate drinking		1.435(1.121, 1.836)	0.004	0.504(0.159, 1.592)	0.243
Higher drinking		0.992(0.782, 1.260)	0.949	0.609(0.430, 0.861)	0.005
Fruit consumption	≥5days/week				
3-4 days per week		1.089(0.773, 1.533)	0.627	1.192(0.890, 1.597)	0.238
≤2 days per week		0.803(0.428, 1.506)	0.494	1.366(0.825, 2.263)	0.226
Education	≤Primary school				
Junior middle school		1.280(1.012, 1.620)	0.040	0.585(0.485, 0.706)	< 0.001
Senior middle school		1.753(1.273, 2.413)	0.001	0.413(0.318, 0.537)	< 0.001
College and above		1.312(0.908, 1.896)	0.149	0.269(0.197, 0.366)	< 0.001
BMI	Normal				
Underweight		1.490(0.416, 5.332)	0.540	0.304(0.141, 0.655)	0.002
Overweight		3.905(2.878, 5.300)	< 0.001	3.538(2.845, 4.401)	< 0.001
Apparently overweight		11.143(8.026, 15.470)	< 0.001	5.275(4.013, 6.934)	< 0.001
Obesity		18.288(12.885, 25.955)	< 0.001	12.033(8.307, 17.431)	< 0.001
3 <i>Abbreviations</i> :	BMI, body n	nass index; HC,	Hip	circumference; NC	, Neck

circumference.

5 Values are expressed as median (IQR) or n (percentage).

8 3. Relationship between risk factors and MS in the multivariate logistic regression

9 analysis

10 Multivariate analysis reveals that BMI and hip circumference were significantly 11 associated with MS in both men and women (Table 3). Age, region, and educational 12 attainment were associated with MS in females, while physical inactivity was

Page 15 of 32

BMJ Open

associated with MS in males. Neck circumference, an underweight BMI, smoking, and
 alcohol consumption were not associated with MS in either sex.
 For males, BMI, hip circumference, and physical inactivity were associated with MS.

The ORs (95% CIs) were 2.067 (1.475, 2.896; p < 0.001) for overweight BMI, 3.771
(2.539, 6.601; p < 0.001) for apparently overweight BMI, and 3.253 (2.019, 5.241; p <
0.001) for obese BMI. For hip circumference, the OR (95% CI) was 1.115 (1.086, 1.146;
p < 0.001). Physical inactivity was associated with MS in males (OR 1.441, 95% CI
[1.055, 1.969], p = 0.022).

For females, BMI, hip circumference, and advanced age were associated with MS. Rural residence and junior middle school education or above were negatively associated with MS. The higher the education attainment, the lower the risk of MS. The ORs (95% CIs) were 2.091 (1.633, 2.677; *p* < 0.001) for overweight BMI, 2.014 (1.455, 2.786; *p* < 0.001) for apparently overweight BMI, and 2.546 (1.623, 3.995; p < 0.001) for obese BMI groups. For hip circumference, the OR (95% CI) was 1.098 (1.077, 1.119; p <0.001). The OR (95% CI) for advanced age (> 65 years) was 1.536 (1.154, 2.043); p =0.003). The OR (95% CI) for living in a rural region was 0.737 (0.561, 0.967; p = 0.028). For an educational level of junior middle school, the OR (95% CI) was 0.616 (0.479, 0.791; p < 0.001); for senior middle school, it was 0.580 (0.404, 0.833; p = 0.003), and for college and above, it was 0.434 (0.286, 0.660; p < 0.001).

21 Table 3 Multivariate logistic regression analyses on risk factors for the prevalence of

22 metabolic syndrome (MS) in males and females.

		Male		Female	
Category	Reference	OR (95% CI)	Р	OR (95% CI)	Р
Age group	40-64 years				
≥65years		-	-	1.536(1.154,2.043)	0.003
Education	≤Primary sch	ool			
Junior middle school		0.918(0.662, 1.272)	0.606	0.616(0.479, 0.791)	< 0.001

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Senior middle school		1.014(0.639, 1.609)	0.953	0.580(0.404, 0.833)	0.003
College and above		0.727(0.431, 1.225)	0.231	0.434(0.286, 0.660)	< 0.001
Region	Urban				
Rural		0.815(0.586, 1.133)	0.223	0.737(0.561, 0.967)	0.028
BMI	Normal				
Underweight		2.464(0.578, 10.502)	0.223	0.569(0.248, 1.304)	0.183
Overweight		2.067(1.475, 2.896)	< 0.001	2.091(1.633, 2.677)	< 0.001
Apparently overweight		3.771(2.539, 5.601)	< 0.001	2.014(1.455, 2.786)	< 0.001
Obesity		3.253(2.019, 5.241)	< 0.001	2.546(1.623, 3.995)	< 0.001
Neck circumference	-	1.193(0.951, 1.498)	0.128	1.193(0.951, 1.498)	0.128
Smoke	No				
Yes		-	-	1.193(0.951, 1.498)	0.128
Physical inactivity	Physical ac	tivity			
Yes		1.441(1.055, 1.969)	0.022	-	-
Alcohol consumption	Never				
Light/moderate drinking		0.883(0.662, 1.179)	0.4	0.720(0.479, 1.080)	0.112
Higher drinking		1.320(0.978, 1.783)	0.07	0.431(0.114, 1.628)	0.215
Hip circumference		1.115(1.086, 1.146)	< 0.001	1.098(1.077, 1.119)	< 0.001
	-				

- Abbreviations: BMI, body mass index; OR, odds ratio.
- **DISCUSSION**

6 In this study, we evaluated sex-based differences in the prevalence of MS and its 7 relative determinants in a low income population from Northeast China. We found that 8 in addition to being significantly more prevalent in females than in males, a high BMI 9 and large hip circumstance were risk factors for MS in both sexes. In addition, advanced 10 age (≥ 65 years) was a risk factor only for females, whereas physical inactivity was a 11 risk factor only for males. Furthermore, educational attainment and living in a rural 12 region were negatively associated with MS in women, but not in men.

The prevalence of MS has been steadily increasing due to unhealthy lifestyles in lowand high-income regions,^{10 11} and there are known sex differences. The prevalence of MS in those living in the Chinese mainland for both the low-middle- and high-income populations was shown to be 33.9% in 2010; ¹ however, in our study, it was 50.1%. This may be due to the fact that most of the participants in our study population had a lower educational level and income, which may have had an additive effect on the primary, Page 17 of 32

BMJ Open

increasing trend. In most studies, the prevalence of MS in females was higher than that in males:^{1 12} for example, in Mexico, the prevalence in females was 55.6%, whereas in males, it was 38.2%.¹³ Similar sex disparities were observed in Middle Eastern countries, but few sex differences have been reported in the European Union which has a lower MS prevalence overall.¹⁴ Contrarily, the prevalence of MS in males is higher than that in females in Caucasians,¹⁵ American adolescents,¹⁶ and Far East Asian and Japanese populations, and twice that in women from Macau.¹⁷ These differences may be related to race, the period in which the studies were conducted, the geographic region, and the selected criteria used.¹⁸ ¹⁹ ²⁰ Our results were consistent with those reported in most countries that women had a higher prevalence of MS than men^{21 22 23 24}. In addition, these sex-related differences were shown to be greater in women of advanced age, but remained relatively stable with respect to age in men in East China.²⁵ This was consistent with our own findings that females aged ≥ 65 years had a 1.536-fold higher risk of MS than those aged 40–65 years. As estrogen levels decrease in women after menopause, an increase in insulin resistance and abnormal lipid metabolism result. Thus, the sex differences observed may be related to changes in hormone levels, rather than aging itself.²⁶

It is well known that MS prevalence increases when BMI ($\geq 24 \text{ kg/m}^2$) is higher than normal. Compared with that with a normal BMI, the risk of metabolic syndrome with an overweight and obese BMI was 3.11- and 17.18-fold in Korean females and 4.30and 10.91-fold in Korean males without diabetes mellitus, respectively.²⁷ Our study also found that compared with a normal BMI, a higher BMI was associated with higher odds of MS. The risk was 2.091-, 2.014-, and 2.546-fold higher in overweight, significantly overweight, and obese females, respectively; in males, the risk increased

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21 22
23
24
25
26
27
28
29
30
31
32
33
34
34 35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

1	2.067-, 3.771-, and 3.253-fold, respectively. These findings also suggest that weight
2	gain in males (BMI \ge 26 kg/m ²) increases the risk of MS more substantially than it does
3	in females; this positive association has also been reported in a study of Turkish
4	adults. ²⁸ An Israeli cohort study claimed that a normal BMI had a high negative
5	predictive value in both men (98%) and women (96%) with respect to MS. ²⁹ The
6	inverse association was found between hip circumference and metabolic risk factors in
7	Tehranian women. ³⁰ Further, weak predictive ability was found for hip circumference.
8	In our study, the risk of MS increased 1.098-fold in women and 1.115-fold in men for
9	every 1 cm increase in hip circumference but not in neck circumference. Thus, BMI
10	combined with hip circumference is an effective indicator of being overweight or obese,
11	and such individuals are more prone to developing MS. Whether obesity or insulin
12	resistance is a cause or consequence of MS is still under debate. ³¹ Adipokines produced
13	by abnormal adipocytes cause insulin resistance, and visceral obesity may be a causal
14	factor of metabolic disease. ³²

Physical inactivity was a main risk factor for males in our study, consistent with the 15 findings of a previous study.³³ Infrequent physical activity results in a 1.441-fold 16 increased risk of MS in men, but not in women, in agreement with previous findings;³⁴ 17 and physical activity has been suggested to be associated with a low risk for MS.³⁵ 18 19 Studies have also found that binge drinking and smoking were associated with increased MS prevalence, regardless of sex or BMI.36,37 The association between fruit 20 21 consumption, neck circumference, and MS risk remains unclear; in our study, no significant associations were observed among alcohol consumption, smoking, fruit 22

BMJ Open

1 consumption, or neck circumference.

Educational level is the most important measure of socioeconomic status, which has been shown to not only affect the prevalence of MS, but is also closely related to the prevalence of cerebrovascular disease.³⁸ The specific mechanism by which education affects the prevalence of MS is unclear, although it has been considered that education influences people's lifestyles and positive attitudes toward health, and increases their access to preventive health services.³⁹ In addition, it is reported in South Korea that negative correlation between educational level and MS prevalence is largely related to the dietary patterns of Koreans (especially in women).⁴⁰ For females in our study, the ORs indicated a 0.616-fold, 0.580-fold, and 0.434-fold risk of developing MS in those who had completed junior middle-school, senior middle-school, and college and above, respectively. This suggests that a higher educational level can reduce the risk of MS; however, this relationship was not found in males. The negative association between MS prevalence and educational level was significant in females, which is similar to the results of a previous study.⁴⁰ A National Survey found that low income and educational levels were associated with a higher prevalence of MS in females than in males.⁴¹ Our study population is characterized by having both a low income and a low level of education, both of which contribute to a higher MS prevalence. The high percentage of included females with a primary school education or below was 37.8%, which may partially explain the high prevalence of MS in women.²⁴ Urban adults (\geq 18 years old) in China were more likely to have MS than those in rural areas in 2009,⁴² but the opposite was true among urban adults in Jiangxi province, China in 2015, and rural

2
3
4
5
6
7
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
47
49
50
51
52
53
54
55
56
57
57 58
59

60

1 2

1

2

3

4

5

females were more likely to have MS than urban ones, unlike males.⁴³ In our study, MS was negatively associated with living in rural regions (OR: 0.737 [0.561, 0.967], p = 0.028) but not with living in urban regions. The differences may be caused by the degree of economic development, life habits, and dietary patterns; for example, rural women have lower fat intake and more activity than urban women.⁴⁴

6 Lifestyle interventions resulted in a 2.61-fold reduced risk of MS compared with the control group in a previous study,⁴⁵ and an investigation of dietary patterns showed that 7 the Chinese pattern (high in grains, vegetables, fruit, salted fish and eggs, soyabean, 8 9 and etc.) was associated with a lower risk of MS than the animal food pattern (high in 10 meats, fish and shrimp, eggs, seafood, alcoholic beverages, etc.).⁴⁶ Sex differences in the ways dietary patterns were associated with increased MS prevalence have been 11 12 reported; for example, an increased prevalence was observed in men consuming an "animal and fried food" diet, and women consuming a "high-salt and energy" diet.¹⁹ 13 Muscle strength and cardiorespiratory fitness may independently and jointly reduce the 14 incidence of MS,⁴⁷ as increased physical activity decreased the risk by 19–24%;⁴⁸ in 15 men, every hour of exercise may decrease MS risk by 2%.49 Whereas the daily 16 sedentary behavior linearly increases the risk of metabolic syndrome by 1.09 times per 17 hour.⁵⁰ To prevent the onset of MS, a better understanding of modifiable lifestyle 18 factors is needed in high-risk populations; for example, in men who are physically 19 20 inactive, further effort should be made to control body weight, especially by focusing on reducing high BMI and hip circumference. Moreover, exercise can result in high 21 22 brain insulin sensitivity, which can help to lose more body weight and body fat with a

BMJ Open

lower regain.⁵¹ For women, especially the elderly outside rural regions, efforts should be made to control weight to maintain BMI and hip circumference at normal levels to reduce the risk of MS, and a focus should be directed at changes in hormone levels, especially low concentrations of sex hormone-binding globulin and testosterones, which increase the odds of MS.⁵² In the long run, a higher level of educational attainment can reduce the risk of MS. Understanding these factors and the sex differences between them, as well as accurately identifying high-risk groups, could help to develop better public health policies and educational initiatives and reduce the incidence of MS and vascular diseases.

11 Strengths and limitations

There were also several limitations to this study. Some data was self-reported, each parameter in blood was only sampled and measured once, and some lifestyle factors and potential residual confounders were not assessed. Furthermore, people who were sick or too weak to participate were excluded, which may impact the generalizability of the results. Moreover, cross-sectional studies cannot be used to make causal inferences, and subsequent prospective and randomized studies are needed.

19 CONCLUSION

In our study, we found that risk factors for MS have both sex-based similarities and differences; thus, the prevention and treatment of MS should consider patients' sex.

1 ACKNOWLEDGEMENTS

The authors gratefully acknowledge all of the study participants and interviewers from
the First Hospital of Jilin University, and acknowledge the support of the Chinese
National Center for Stroke Care Quality Control and Management. *We would like to thank Editage (www.editage.cn) for English language editing.*

7 FUNDING

8 This project was supported by the National Key R&D Program of China 9 (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key Laboratory 10 (20190901005JC) to Yi Yang. Project on research and application of effective 11 intervention techniques for high risk population of stroke from the National Health and 12 Family Planning Commission in China (GN-2016R0010).

14 CONFLICTS OF INTEREST

15 None declared.

17 ETHICS APPROVAL

18 This subject was approved by the human ethics and research ethics committee of the

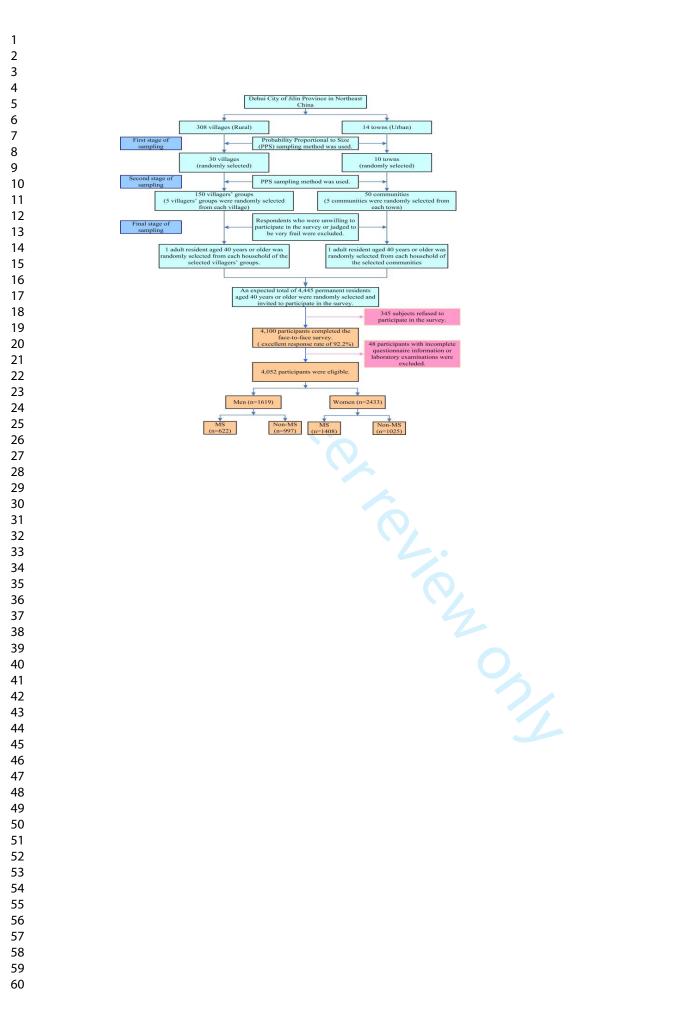
19 First Hospital of Jilin University (approval No: 2015-R-250), and written informed

20 consent was obtained from all of the participants.

PROVENANCE AND PEER REVIEW

22 Not commissioned; externally peer reviewed.

1		
2		
3		
4	1	
5		
6	2	DATA SHARING STATEMENT
7	2	
8		
9	3	The dataset supporting the conclusions of this article can be made available upon
10		
11	4	mo guy o st
12	4	request.
13		
14	5	
15	-	
16		
17	6	
18		
19	7	
20	•	
21		
22 23	8	
23 24		
24 25	9	
26	Ũ	
20		
28	10	
29		
30	11	
31		
32	12	
33		
34	13	
35		
36	14	
37		
38	15	
39	15	
40	40	
41	16	
42	. –	
43	17	
44 45		
45 46	18	
46 47		
47 48	19	
40 49		
49 50	20	
50	20	
52	04	
52	21	
54		
55	22	
56		
57	23	
58		
59	24	
60		


1 REFERENCES

- Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China
 Noncommunicable Disease Surveillance. *The Journal of clinical endocrinology and metabolism* 2017;102(2):507-15. doi: 10.1210/jc.2016-2477
- 5 2. Kokubo Y, Matsumoto C. Hypertension Is a Risk Factor for Several Types of Heart Disease: Review
 6 of Prospective Studies. *Advances in experimental medicine and biology* 2017;956:419-26. doi:
 7 10.1007/5584 2016 99
- 8 3. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the
 9 metabolic syndrome. *Diabetes Care* 2001;24(4):683-9. doi: 10.2337/diacare.24.4.683 [published
 10 Online First: 2001/04/24]
- 4. Aguilar M, Bhuket T, Torres S, et al. Prevalence of the metabolic syndrome in the United States, 2003-2012. *Jama* 2015;313(19):1973-4. doi: 10.1001/jama.2015.4260
- 5. Song Q-B, Zhao Y, Liu Y-Q, et al. Sex difference in the prevalence of metabolic syndrome and cardiovascular-related risk factors in urban adults from 33 communities of China: The CHPSNE
 study. *Diabetes & vascular disease research* 2015;12(3):189-98. doi: 10.1177/1479164114562410
- 6. Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and Mortality of Stroke in China: Results from
 a Nationwide Population-Based Survey of 480 687 Adults. *Circulation* 2017;135(8):759-71. doi:
 10.1161/circulationaha.116.025250 [published Online First: 2017/01/06]
- 7. Sun H, Zou X, Liu L. Epidemiological factors of stroke: a survey of the current status in china. *Journal of stroke* 2013;15(2):109-14. doi: 10.5853/jos.2013.15.2.109
- 8. Zhang FL, Guo ZN, Wu YH, et al. Prevalence of stroke and associated risk factors: a population based
 cross sectional study from northeast China. *BMJ open* 2017;7(9):e015758. doi: 10.1136/bmjopen2016-015758
- 9. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. *Circulation* 2009;120(16):1640-5. doi: 10.1161/circulationaha.109.192644
 - 29 10. Suliga E, Kozieł D, Ciesla E, et al. Consumption of Alcoholic Beverages and the Prevalence of
 30 Metabolic Syndrome and Its Components. *Nutrients* 2019;11(11) doi: 10.3390/nu11112764
 31 [published Online First: 2019/11/20]
- 32 11. Ansarimoghaddam A, Adineh HA, Zareban I, et al. Prevalence of metabolic syndrome in Middle 33 East countries: Meta-analysis of cross-sectional studies. *Diabetes Metab Syndr* 2018;12(2):195-201.
 34 doi: 10.1016/j.dsx.2017.11.004 [published Online First: 2017/12/06]
 - Rochlani Y, Pothineni NV, Mehta JL. Metabolic Syndrome: Does it Differ Between Women and
 Men? *Cardiovascular drugs and therapy* 2015;29(4):329-38. doi: 10.1007/s10557-015-6593-6
- 37 13. Mendoza-Caamal EC, Barajas-Olmos F, García-Ortiz H, et al. Metabolic syndrome in indigenous
 38 communities in Mexico: a descriptive and cross-sectional study. *BMC Public Health* 2020;20(1):339.
 39 doi: 10.1186/s12889-020-8378-5 [published Online First: 2020/03/19]
- 40 14. Patel A, Huang KC, Janus ED, et al. Is a single definition of the metabolic syndrome appropriate?-41 A comparative study of the USA and Asia. *Atherosclerosis* 2006;184(1):225-32. doi: 10.1016/j.atherosclerosis.2005.04.012 [published Online First: 2005/06/07]
 - 43 15. Firmann M, Mayor V, Vidal PM, et al. The CoLaus study: a population-based study to investigate
 44 the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome.

1		
2		
3	1	BMC cardiovascular disorders 2008;8:6. doi: 10.1186/1471-2261-8-6
4 5	2	16. Miller JM, Kaylor MB, Johannsson M, et al. Prevalence of metabolic syndrome and individual
6	3	criterion in US adolescents: 2001-2010 National Health and Nutrition Examination Survey. Metab
7	4	-
8		Syndr Relat Disord 2014;12(10):527-32. doi: 10.1089/met.2014.0055 [published Online First:
9	5	2014/09/24]
10	6	17. Ishii S, Tanaka T, Akishita M, et al. Metabolic syndrome, sarcopenia and role of sex and age: cross-
11	7	sectional analysis of Kashiwa cohort study. PLoS One 2014;9(11):e112718. doi:
12	8	10.1371/journal.pone.0112718 [published Online First: 2014/11/19]
13	9	18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults:
14 15		
15 16	10	NHANES III to NHANES 1999-2006. Diabetes Care 2011;34(1):216-9. doi: 10.2337/dc10-0879
17	11	[published Online First: 2010/10/05]
18	12	19. Mabry RM, Reeves MM, Eakin EG, et al. Gender differences in prevalence of the metabolic
19	13	syndrome in Gulf Cooperation Council Countries: a systematic review. <i>Diabet Med</i> 2010;27(5):593-7.
20	14	doi: 10.1111/j.1464-5491.2010.02998.x [published Online First: 2010/06/12]
21	15	20. Erem C, Hacihasanoglu A, Deger O, et al. Prevalence of metabolic syndrome and associated risk
22		
23	16	factors among Turkish adults: Trabzon MetS study. Endocrine 2008;33(1):9-20. doi:
24 25	17	10.1007/s12020-008-9044-3 [published Online First: 2008/03/14]
25 26	18	21. Yu S, Guo X, Yang H, et al. An update on the prevalence of metabolic syndrome and its associated
27	19	factors in rural northeast China. BMC Public Health 2014;14:877. doi: 10.1186/1471-2458-14-877
28	20	[published Online First: 2014/08/28]
29	21	22. Xi B, He D, Hu Y, et al. Prevalence of metabolic syndrome and its influencing factors among the
30		
31	22	Chinese adults: the China Health and Nutrition Survey in 2009. Prev Med 2013;57(6):867-71. doi:
32	23	10.1016/j.ypmed.2013.09.023 [published Online First: 2013/10/10]
33	24	23. Jiang B, Li B, Wang Y, et al. The nine-year changes of the incidence and characteristics of metabolic
34 35	25	syndrome in China: longitudinal comparisons of the two cross-sectional surveys in a newly formed
36	26	urban community. Cardiovasc Diabetol 2016;15:84. doi: 10.1186/s12933-016-0402-9 [published
37	27	Online First: 2016/06/04]
38	28	24. Wu LT, Shen YF, Hu L, et al. Prevalence and associated factors of metabolic syndrome in adults: a
39		
40	29	population-based epidemiological survey in Jiangxi province, China. BMC Public Health
41	30	2020;20(1):133. doi: 10.1186/s12889-020-8207-x [published Online First: 2020/02/01]
42 43	31	25. Jiang B, Zheng Y, Chen Y, et al. Age and gender-specific distribution of metabolic syndrome
45 44	32	components in East China: role of hypertriglyceridemia in the SPECT-China study. Lipids Health
45	33	Dis 2018;17(1):92. doi: 10.1186/s12944-018-0747-z [published Online First: 2018/04/22]
46	34	26. Janssen I, Powell LH, Crawford S, et al. Menopause and the metabolic syndrome: the Study of
47		
48	35	Women's Health Across the Nation. Arch Intern Med 2008;168(14):1568-75. doi:
49	36	10.1001/archinte.168.14.1568 [published Online First: 2008/07/30]
50	37	27. Lee K, Lee H, Park J, et al. Sex differences in factors associated with metabolic syndrome among
51 52	38	Korean adults without diabetes mellitus: results from the Korea National Health and Nutrition
53	39	Examination Survey from 2010 to 2013. 2019;36(2):140-46. doi: 10.1093/fampra/cmy053
54	40	28. Gundogan K, Bayram F, Gedik V, et al. Metabolic syndrome prevalence according to ATP III and
55	41	IDF criteria and related factors in Turkish adults. <i>Arch Med Sci</i> 2013;9(2):243-53. doi:
56		
57	42	10.5114/aoms.2013.34560 [published Online First: 2013/05/15]
58	43	29. Kobo O, Leiba R, Avizohar O, et al. Normal body mass index (BMI) can rule out metabolic syndrome:
59	44	An Israeli cohort study. Medicine (Baltimore) 2019;98(9):e14712. doi:
60		

10.1097/md.00000000014712 [published Online First: 2019/03/01] 30. Esmaillzadeh A, Mirmiran P, Moeini S, et al. Larger hip circumference independently contributed to reduced metabolic risks in Tehranian adult women. 2006;108(3):338-45. doi: 10.1016/j.ijcard.2005.05.019 31. Xu H, Li X, Adams H, et al. Etiology of Metabolic Syndrome and Dietary Intervention. 2018;20(1) doi: 10.3390/ijms20010128 32. Svensson H, Odén B, Edén S, et al. Adiponectin, chemerin, cytokines, and dipeptidyl peptidase 4 are released from human adipose tissue in a depot-dependent manner: an in vitro system including human serum albumin. 2014;14:7. doi: 10.1186/1472-6823-14-7 33. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. Cardiovascular diabetology 2013;12:76. doi: 10.1186/1475-2840-12-76 34. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. Rev Med Chil 2018;146(5):585-95. 35. Liu Y, Huang J, Xu G, et al. Prevalence and Determinants of Metabolic Syndrome-identified by Three Criteria among Men in Rural China: A Population-based Cross-sectional Study Conducted during 2007-2008. J Nutr Health Aging 2016;20(5):574-82. doi: 10.1007/s12603-015-0615-8 [published Online First: 2016/04/23] 36. Oh JE. Relationship between heavy drinking, binge drinking, and metabolic syndrome in obese and non-obese Korean male adults. Nutr Res Pract 2018;12(2):166-72. doi: 10.4162/nrp.2018.12.2.166 [published Online First: 2018/04/10] 37. Slagter SN, van Vliet-Ostaptchouk JV, Vonk JM, et al. Associations between smoking, components of metabolic syndrome and lipoprotein particle size. BMC Med 2013;11:195. doi: 10.1186/1741-7015-11-195 [published Online First: 2013/11/16] 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. J Prev Med Public Health 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104 39. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 1992;82(6):816-20. 40. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association between Education Level and Metabolic Syndrome in Korean Adults. Ann Nutr Metab 2017;70(2):122-31. doi: 10.1159/000470853 41. Loucks EB, Rehkopf DH, Thurston RC, et al. Socioeconomic disparities in metabolic syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 2007;17(1):19-26. doi: 10.1016/j.annepidem.2006.07.002 [published Online First: 2006/12/05] 42. Xi B, He D, Hu Y, et al. Prevalence of metabolic syndrome and its influencing factors among the Chinese adults: the China Health and Nutrition Survey in 2009. 2013;57(6):867-71. doi: 10.1016/j.ypmed.2013.09.023 43. Wu L, Shen Y, Hu L, et al. Prevalence and associated factors of metabolic syndrome in adults: a population-based epidemiological survey in Jiangxi province, China. 2020;20(1):133. doi: 10.1186/s12889-020-8207-x 44. Chung S, Han Y, Lee S, et al. Urban and rural differences in the prevalence of gender and age specific obesity and related health behaviors in Korea. 2005;20(5):713-20. doi: 10.3346/jkms.2005.20.5.713

1		
2		
3 4	1	45. Guzmán A, Navarro E, Obando L, et al. Effectiveness of interventions for the reversal of a metabolic
5	2	syndrome diagnosis: An update of a meta-analysis of mixed treatment comparison studies. Biomedica
6	3	2019;39(4):647-62. doi: 10.7705/biomedica.4684 [published Online First: 2019/12/21]
7	4	46. Wei ZY, Liu JJ, Zhan XM, et al. Dietary patterns and the risk of metabolic syndrome in Chinese
8	5	adults: a population-based cross-sectional study. Public Health Nutr 2018;21(13):2409-16. doi:
9 10	6	10.1017/s1368980018001088 [published Online First: 2018/05/03]
10	7	
12		47. Jurca R, Lamonte M, Barlow C, et al. Association of muscular strength with incidence of metabolic
13	8	syndrome in men. 2005;37(11):1849-55. doi: 10.1249/01.mss.0000175865.17614.74
14	9	48. Xiao J, Wu CL, Gao YX, et al. Prevalence of metabolic syndrome and its risk factors among rural
15	10	adults in Nantong, China. Sci Rep 2016;6:38089. doi: 10.1038/srep38089 [published Online First:
16 17	11	2016/12/03]
18	12	49. Renninger M, Hansen BH, Steene-Johannessen J, et al. Associations between accelerometry
19	13	measured physical activity and sedentary time and the metabolic syndrome: A meta-analysis of more
20	14	than 6000 children and adolescents. Pediatr Obes 2020;15(1):e12578. doi: 10.1111/ijpo.12578
21	15	[published Online First: 2019/11/12]
22 23	16	50. Gennuso K, Gangnon R, Thraen-Borowski K, et al. Dose-response relationships between sedentary
24	17	behaviour and the metabolic syndrome and its components. 2015;58(3):485-92. doi: 10.1007/s00125-
25	18	
26		014-3453-z
27	19	51. Kullmann S, Valenta V, Wagner R, et al. Brain insulin sensitivity is linked to adiposity and body fat
28 29	20	distribution. 2020;11(1):1841. doi: 10.1038/s41467-020-15686-y
29 30	21	52. Li C, Ford E, Li B, et al. Association of testosterone and sex hormone-binding globulin with
31	22	metabolic syndrome and insulin resistance in men. 2010;33(7):1618-24. doi: 10.2337/dc09-1788
32	23	
33		Fig. 1 Sampling process in the study
34 25	24	
35 36	25	Fig. 1 Sampling process in the study
37	26	Fig. 2 Prevalence of metabolic syndrome in different sexes and ages in the study
38	27	
39	28	
40	29	
41 42	30	
43	31	
44		
45	32	
46 47	33	
47 48	34	
49	35	
50	36	
51	37	
52 53	38	
53 54	39	
55	40	
56	41	
57	42	
58	42	
59 60		
00		

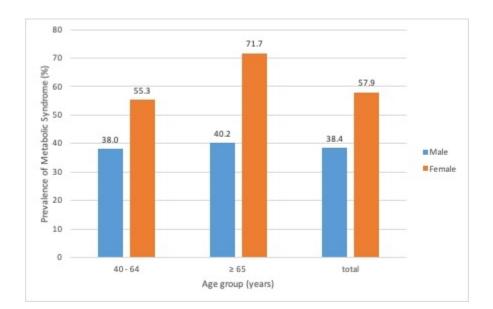


Fig. 2 Prevalence of metabolic syndrome in different sexes and ages in the study

156x99mm (72 x 72 DPI)

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Supplementary Table S1 Definitions of metabolic syndrome-related risk factors in the survey.

Variables	Criteria	References
BMI	BMI was grouped into five categories for our study: underweight (BMI< 18.5 kg/m ²), normal (18.5 \leq BMI< 24 kg/m ²), overweight (24 \leq BMI< 26 kg/m ²), apparently overweight (26 \leq BMI < 28 kg/m ²), obesity (BMI \geq 28 kg/m ²).	Guidelines for diabetes prevention and treatment in China ¹
Abnormal neck circumference	≥37cm for male and ≥33cm for female	Neck circumference as an independent predictive contributor of cardio-metabolic syndrome ²
Physical inactivity	Physical inactivity is defined as insufficient physical activity; Physical activity is defined as the performance of heavy physical labor or regular physical exercise for more than one year, more than 3 times per week, and for at least 30 minutes per session.	CHNS guidelines ³
Smoking	A smoker was defined as one who reported smoking one or more cigarettes or was passively exposed to tobacco smoke every day in general for more than 6 consecutive months. A non-smoker was defined as the one who had never smoked, nor passively exposed to tobacco smoke; or, had history of smoking but quit smoking for at least 6 consecutive months previous to the study.	Technical specification of stroke screening and prevention in China ⁴
Drinking	The NIAAA sets the standard drink size at about 14g of absolute ethanol, advising limits of no more than three drinks per day or seven drinks per week for men and women. Drinking status was divided into three categories according to the participants' self-report in the previous 6 months: non-drinkers: had never drunk alcoholic beverage; light/moderate drinkers: less than or upto NIAAA limits; heavier drinkers: in excess of NIAAA limits.	NIAAA guidelines ⁵
Fruit consumption	Fruit consumption was grouped into three categories for our study: less than or equal to two days per week (≤ 2 d/w), three to four days per week (3–4 d/w), and greater than or equal to five days per week (≥ 5 d/w). And the weight of consumed fruits should reach or exceed two servings per day, and the definition of a serving of a fruit was calculated as 80g.	Fruit and vegetable consumption and stroke: meta-analysis of cohort studies ⁶

BMJ Open

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Abbreviation: BMI, body mass index; CHNS, China Health and Nutrition Survey; NIAAA, National Institute on Alcohol Abuse and Alcoholism.

References

- 1. Department of disease control Moh. Guidelines for diabetes prevention and treatment in China. *Chin J Prev Non-commun Dis* 2004;12:283-85. doi: 10.3969/j.issn.1004-6194.2004.06.022
- 2. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. *Cardiovascular diabetology* 2013;12:76. doi: 10.1186/1475-2840-12-76
- 3. The Nutrition and Health Status of the Chinese People. China Healthcare & Nutrition 2004
- 4. Stroke Screening and Prevention Project Committee NHaFPCoC. Technical specification of stroke screening and prevention in China. *Chinese Journal of the Frontiers* of Medical Science (Electronic Version) 2013(9):44-50. doi: 10.3969/j.issn.1674-7372.2013.09.017
- 5. of Health and Human Services: Helping patients who drink too much. a clinician's guide. Bethesda, MD, National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; 2005.
- 6. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet (London, England) 2006;367(9507):320-6. doi: 10.1016/s0140-6736(06)68069-0 [published Online First: 2006/01/31]

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3,4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6-8
Variables	7	 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 	
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	6, 7
		(e) Describe any sensitivity analyses	NA

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9-11
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	(7)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	11,12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	13-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18,19
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Sex-based differences in and risk factors for metabolic syndrome in adults aged 40 years and above in Northeast China: Results from the cross-sectional China national stroke screening survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-038671.R3
Article Type:	Original research
Date Submitted by the Author:	23-Feb-2021
Complete List of Authors:	Li, Feng-e ; Jilin University First Hospital, Stroke Center, Department of Neurology; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Zhang, Fu-Liang; The First Hospital of Jilin University, Stroke Center, Department of Neurology Zhang, Peng; The First Hospital of Jilin University, Liu, Dong; The Affiliated Hospital of Beihua University, Stroke Center, Department of Neurology Liu, Hao-Yuan; Jilin University First Hospital, Stroke Center, Department of Neurology Guo, Zhen-Ni ; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology Yang, Yi; Jilin University First Hospital, Stroke Center, Department of Neurology; Jilin University First Hospital, Clinical Trail and Research Center for Stroke, Department of Neurology
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Nutrition and metabolism, Epidemiology, Sports and exercise medicine, Public health, Health informatics
Keywords:	Other metabolic, e.g. iron, porphyria < DIABETES & ENDOCRINOLOGY, Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, PREVENTIVE MEDICINE, Sex steroids & HRT < DIABETES & ENDOCRINOLOGY, Lipid disorders < DIABETES & ENDOCRINOLOGY, Hypertension < CARDIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4
4 5
6
0
/ 8
9
10
11
12
13
14
15
16
17
18
19
20
21
21 22 23 24
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Original Article

2 TITLE PAGE

3 Sex-based differences in and risk factors for metabolic syndrome in

4 adults aged 40 years and above in Northeast China: Results from the

5 cross-sectional China national stroke screening survey

- 6 Feng-e Li^{1,2}, MD; Fu-Liang Zhang¹, MD, PhD; Peng Zhang³, MD; Dong Liu², MD;
- 7 Hao-Yuan Liu¹; MD; Zhen-Ni Guo³, MD, PhD[#]; Yi Yang^{1, 3}, MD, PhD[#].
- ⁸ ¹ Stroke Center, Department of Neurology, The First Hospital of Jilin University,
- 9 Chang Chun, Jilin, 130021, China.
- 10 ² Stroke Center, Department of Neurology, The Affiliated Hospital of Beihua
- 11 University, JiLin, Jilin, 132011, China.
- ³ Clinical Trail and Research Center for Stroke, Department of Neurology, The First
- 13 Hospital of Jilin University, Chang Chun, Jilin, 130021, China.
 - 14 * These authors contributed equally to the manuscript.
- [#] Correspondence and reprint requests should be addressed to: Yi Yang, MD, PhD.
- 16 Stroke Center & Clinical Trail and Research Center for Stroke, Department of
- 17 Neurology, the First Hospital of Jilin University, Xinmin Street 71#, 130021, Chang
- 18 Chun, Jilin, China. Telephone: +86-13756661217; Fax: +86-431-88782378; Primary
- 19 E-mail: yang_yi@jlu.edu.cn; Secondary E-mail: doctoryangyi@163.com.

- 21 Authors contributions: Conception and design: Y Y, and Z-N G. Acquisition of the
- 22 data: F-L Z and H-Y L. Statistical methods and data analysis: F-e L, P Z, D L, F-L Z.

Page 3 of 36

BMJ Open

1	
2	
2 3 4 5 6 7	
4	
5	
6	
0	
/	
8	
8 9 10	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
18	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
33 34 35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

1	Drafting and revising the manuscript: F-e L. Critical revision: Z-N G, and Y Y. All of
2	the authors approved the final version for publication.
3	Disclosure: The authors declare no conflict of interest.
4	Study Funding: This project was supported by the National Key R&D Program of
5	China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key
6	Laboratory (20190901005JC) to Yi Yang. Project on research and application of
7	effective intervention techniques for high risk population of stroke from the National
8	Health and Family Planning Commission in China (GN-2016R0010).
9	Search terms: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
10	factor.
11	Word count: abstract 300 words; text 3339 words; 52 references; 3 tables and 2
12	figures.
13	
14	figures.
14	
14	
14	
14	
14	
14	
14	
14	

1 ABSTRACT

Objectives Low levels of income and education are risk factors for metabolic syndrome in the population of Northeast China, which has a high incidence of metabolic syndrome and cardiovascular diseases. This study aimed to determine sex-based differences associated with the prevalence of and risk factors for metabolic syndrome among people older than 40 years in Northeast China; this has not been previously investigated.

Design This study analyzed a portion of the large sample data of the national crosssectional screening of China from 2016. Metabolic syndrome was defined as the presence of any three of the following five risk factors: abnormal waist circumference; high levels of triglycerides, high-density lipoprotein cholesterol, or fasting plasma glucose; and elevated blood pressure. Multiple regression analysis was used to investigate sex-based differences in the prevalence of, and risk factors for metabolic syndrome.

Setting The study was conducted in Dehui City, Jilin Province, China.

Participants A total of 4052 participants with complete questionnaire information and
laboratory examination results were included.

Results The prevalence of metabolic syndrome was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). High body mass index and hip circumference were associated with metabolic syndrome in both sexes. In addition, physical inactivity (odds ratio [OR] and 95% confidence interval [CI]: 1.441 [1.055, 1.969]; p = 0.022) in males and advanced age (OR and 95% CI: 1.536 [1.154, 2.043]; p = 0.003) in females were factors associated with metabolic syndrome. Women with junior high school education or above and living in rural areas were less likely to have metabolic syndrome. For men, education and rural or urban living had no association with metabolic syndrome.

1 2		
3		
4 5	1	Conclusions The risk factors for metabolic syndrome have similarities and differences
6	0	in different cover thus, the movestion and treatment of metabolic symplectic should be
7 8	2	in different sexes; thus, the prevention and treatment of metabolic syndrome should be
9	3	based on these sex differences.
10	U	bused on these sex differences.
11 12	4	
13		
14 15	5	Key words: metabolic syndrome, prevalence, sex difference, cross-sectional, risk
16	6	factor.
17 18	7	
19		
20 21	8	
22	9	
23	0	
24 25	10	
26		
27 28	11	
29	12	
30 31		
32	13	
33	14	
34 35	••	
36	15	
37 38	10	
39	16	
40 41	17	
42		
43	18	
44 45	19	
46	10	
47 48	20	
49		
50 51	21	
52	22	
53		
54 55	23	
56	24	
57 58	∠4	
59	25	
60		

2		
3	1	Strengths and limitations of this study
4		o v
5	2	
6	2	
7		
8	3	1. This cross-sectional study included a large, representative sample of the Chinese
9		
10	4	population.
11		
12	5	2. We used a uniform, pre-coded questionnaire designed by the national stroke
13	Ũ	2. We used a annorm, pre coded questionnane designed by the national stoke
14	c	corresping survey of China
15	6	screening survey of China.
16		
17	7	3. Some results were partially based on self-reported data collected by investigators,
18		
19 20	8	which inevitably increased the risk of recall bias.
20		
21 22	9	4. Our survey excluded participants who were sick or too weak to complete the
	Ū	
23 24	10	interview
24	10	interview.
26		
27	11	5. As a major limitation of all epidemiological investigations, conclusions based on
28		
29	12	cross-sectional studies cannot be used for causal inferences.
30		
31	13	
32		
33	14	
34	17	
35	45	
36	15	
37		
38	16	
39		
40	17	
41		
42	18	
43	-	
44	19	
45	15	
46	20	
47	20	
48		
49 50	21	
51		
52	22	
53		
55	23	
55		
56	24	
57	<u> </u>	
58	25	
59	25	
60		

2 INTRODUCTION

Metabolic syndrome (MS) is associated with a cluster of cardiometabolic risk factors and has become one of the major public health threats in China. Higher prevalence of MS greatly increases the burden of morbidity and mortality due to cardiovascular diseases worldwide.¹⁻³ This burden has increased every year, although it is difficult to differentiate it from unhealthy habits of daily living.⁴ There is a significant difference in the prevalence of, and risk factors for MS between men and women.⁵ To control and reduce the risk of MS and cardiovascular diseases more effectively, it is necessary to identify high-risk populations and understand the sex-specific, modifiable lifestyle determinants of MS. Northeast China, with its low-income level, has a high incidence of MS and cardiovascular diseases, Specifically, it has the highest incidence and mortality rate of stroke (365 and 159/100 000 person-years) in China.⁶ Thus, this study aimed to analyze the sex-specific differences in the prevalence of MS and its related risk factors in a population from Northeast China.

18 POPULATION and METHODS

- 20 Data source and study participants

This population-based cross-sectional study was a part of the Stroke Screening andPrevention Program of the National Health and Family Planning Commission of China

(CNSSS). It assessed a population of residents aged 40 years or older, from January to
March 2016. The CNSSS is a national epidemiological survey of cerebrovascular
diseases conducted to obtain timely and reliable information on the morbidity,
prevalence, and mortality of stroke in Chinese people over the age of 40.⁷ The sampling
method employed in this study has been described in detail in other articles.⁸ The
sample size (N) required for this survey was calculated on a 2.37% stroke prevalence
(p) among adults 40 years and older in China,⁸ using the formula:

8 N = $(Z_{\alpha}^2 pq)/d^2$ (where $Z_{\alpha} = 1.96$, $\alpha = 0.05$, q = 1-p, and d = 0.2p)

A multistage stratified, random cluster sampling method was applied to obtain the sample population. In the first stage, 30 villages and 10 towns were randomly selected from a total of 308 villages (rural) and 14 towns (urban) in Dehui City, using the probability proportional to size (PPS) sampling method. In the second stage, five groups of villages or communities were randomly sampled from both the rural and urban strata using PPS sampling. In the third stage, one participant aged ≥ 40 years was randomly selected from each household of the selected groups of villages or communities. Respondents who were unwilling to participate in the survey or who were judged to be very frail were excluded. We selected permanent residents aged \geq 40 years for inclusion in the study (a calculated total of 4445 participants with an additional 10% loss rate); ultimately, 4100 participants completed the face-to-face survey, with a good response rate of 92.2%. In this sub-study of the CNSSS, we used data from participants who completed the study. After excluding 48 participants with incomplete questionnaire information or laboratory examinations, a total of 4052 participants were included in this analysis. The flowchart of the study selection process is shown in Figure 1. The study protocol was approved by the Human Ethics and Research Ethics Committee of the First Hospital of Jilin University, Chang Chun, Jilin, China (2015-R-250). Written

2		
3	1	informed consent was obtained from all study participants before recruitment and data
4		
5	2	collection.
6	-	
7	3	
8	3	
9 10		
	4	Patient and public involvement
11 12	4	Patient and public involvement
12		
13	5	
15		
16	6	Detionts and the public wars not involved in the development of the research
17	0	Patients and the public were not involved in the development of the research
18		
19	7	questionnaire, its outcome measures, study design, recruitment methods, or the conduct
20		
21	8	of this study. There is no plan to disseminate the research findings to the participants.
22	0	of this study. There is no plan to disseminate the research findings to the participants.
23		
24	9	
25	40	
26	10	Data collection and measurement
27		
28	11	
29 30		
30 31	12	All participants completed a questionnaire that included an assessment of general
32		
33	13	sociodemographic and health-related information. Physical examinations included
34		
35	14	assessments of height, weight, neck, waist, and hip circumferences, and blood pressure.
36		
37	15	Height and weight were measured according to the standard methods; the subjects
38	10	Theight and weight were measured decording to the standard methods, the subjects
39	16	removed their shoes and hats and wore light clothes. The measurement accuracy was
40	10	Temoved then shoes and hats and wore right clothes. The measurement accuracy was
41	. –	
42	17	within 0.1 cm and 0.1 kg for the height and weight, respectively. Blood pressure was
43		
44	18	measured by physicians using an OMRON automatic sphygmomanometer (OMRON
45 46		
40 47	19	HEM-7200, KYOTO, Japan), on the right arm, after placing it parallel to the heart. The
47		
49	20	subjects were made to rest for 20 minutes before the blood pressure was measured twice,
50		5
51	21	and mean value was recorded. Blood samples were collected on an empty stomach
52	21	and mean value was recorded. Brood samples were concered on an empty stomatin
53	22	following overnight fasting (at least 8 hours) to assess fasting plasma glucose (FPG),
54	22	tonowing overnight fasting (at least 8 hours) to assess fasting plasma glucose (110),
55	00	
56	23	triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C),
57	_	
58	24	and high-density lipoprotein cholesterol (HDL-C) concentrations. The samples were
59		
60	25	sent to the clinical laboratory of Changchun Kingmed Center (Chang Chun, Jilin, China)

1 for testing.

3 Screening protocol and assessment criteria

The definition of MS used in this study was published by the International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI).⁹ The presence of any three of the following five risk factors constituted a diagnosis of MS: 1) Waist circumference: \geq 90 cm for men, and \geq 80 cm for women; 2) TG concentration: ≥ 1.70 mmol/L (drug treatment for elevated TG levels was an alternative indicator); 3) HDL-C concentration: < 1.0 mmol/L for men, and < 1.3mmol/L for women (drug treatment for reduced HDL-C levels was an alternative indicator); 4) blood pressure: systolic blood pressure (SBP) \geq 130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg (antihypertensive drug treatment in a patient with a history of hypertension was an alternative indicator); and 5) FPG concentration: \geq 5.6 mmol/L (drug treatment for elevated glucose levels was an alternative indicator).

In addition to stratification by sex, participants were also stratified by age into a
middle-aged group (40–64 years old) and an elderly group (≥ 65 years old). The
evaluation criteria for other factors, including BMI, level of physical inactivity,
smoking status, and alcohol consumption are shown in Supplementary Table S1.

- 22 Statistical analysis

The normality of the data was tested using the Kolmogorov–Smirnov test. Nonnormally distributed continuous variables are presented as medians (IQRs). Categorical

BMJ Open

data are presented as numbers and proportions. Significant variables (those with P <0.05) identified in the single variable analysis were selected for the multivariable analyses. Multiple logistic regression analysis was used to explore the independent risk factors of MS in the two sexes, and the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. All statistical analyses were performed using IBM Statistical Package for the Social Sciences (SPSS) version 23.0 (SPSS, Inc., New York, NY, USA). P < 0.05 was considered statistically significant. RESULTS Among the 4,100 participants who completed the face-to-face survey, 4,052 were included in the analysis. A total of 2,030 individuals met the criteria for MS, and the prevalence was 50.1% overall (38.4% in males and 57.9% in females; p < 0.001). Of all the 4,052 participants, 1,619 were men (40.0%) and 2,433 were women (60.0%), with a median age of 53 years (IQR: 47–62). Overall, 76.7% of the participants were educated up to either primary and below or junior middle-school level. 1. Demographic characteristics of all participants with MS Table 1 shows that compared with that in males (38.4%), the prevalence of MS in

1 able 1 shows that compared with that in males (38.4%), the prevalence of MS in
females (57.9%) was significantly higher. Among the 2,030 individuals with MS, the
median age was 56 years (IQR: 49–63), and for both males and females, more than 80%
of the participants with MS were in the group of 40–64 years. The rate of abnormal
waist circumference in females (91.6%) was higher than that in males (85.4%). The

median neck and hip circumferences in males were higher than those in females were.
Compared with males, females had a higher proportion of the following associated risk
factors: a lower level of educational attainment, living in a rural area, an abnormal
HDL-C concentration, and higher concentrations of TC and LDL-C. However, a higher
proportion of men than women had hypertension, abnormal levels of triglycerides and
fasting blood glucose, abnormal BMI, resided in urban areas, had a smoke habit, and
cousumed alcohol.

9 Table 1. Sex differences in demographic characteristics and risk factors among10 participants with metabolic syndrome (MS).

	Total	Male	Female
Participants, n (%)	4052(100)	1619 (40.0)	2433 (60.0)
Cases, n (%)	2030 (50.1)	622 (38.4)	1408 (57.9)
Age, years, median (IQR)	56.00(49, 63)	55.72(48, 63)	56.19(49, 63)
Age group, n (%)			
40-64 years	1636(80.6)	501(80.5)	1135(80.6)
≥65 years	394(19.4)	121(19.5)	273(19.4)
Waist circumference, n (%)	1821(89.7)	531(85.4)	1290(91.6)
Neck circumference, median (IQR)	34.00(32, 37)	38.23(36, 40)	33.27(32, 35)
Hip circumference, n (%)	100.00(95, 104)	103.63(100, 107)	97.76(93, 102)
TCHO, mmol/L, median (IQR)	5.52(4.83, 6.25)	5.50(4.73, 6.12)	5.63(4.87, 6.29)
LDL-C, mmol/L, median (IQR)	1.93(1.56, 2.64)	2.08(1.5, 2.57)	2.19(1.57, 2.65)
HDL-C, n (%)	1255(61.8)	176(28.3)	1079(76.6)
TG , n (%)	1503(74.0)	508(81.7)	995(70.7)
FBG , n (%)	881(43.4)	291(46.8)	590(41.9)
Hypertension, n (%)	1853(91.3)	601(96.6)	1252(88.9)
Education, n (%)			
≤Primary school	806(39.7)	176(28.3)	630(44.7)
Junior middle-school	829(40.8)	280(45)	549(39)
Senior middle-school	253(12.5)	104(16.7)	149(10.6)
College and above	142(7.0)	62(10.0)	80(5.7)
Region, n (%)			
Urban	1023(50.4)	357(57.4)	666(47.3)
Rural	1007(49.6)	265(42.6)	742(52.7)
Smoke, n (%)			
No	1021(50.3)	223(35.9)	798(56.7)
Yes	1009(49.7)	399(64.1)	610(43.3)
Physical inactivity, n (%)			
No	1522(75.0)	469(75.4)	1053(74.8)

Yes	508(25.0)	153(24.6)	355(25.2)
Alcohol consumption, n (%)			
Never	1591(78.4)	251(40.4)	1340(95.2)
Light/moderate	245(12.1)	182(29.3)	63(4.5)
Heavier	194(9.6)	189(30.4)	5(0.4)
Fruit consumption, n (%)			
≥5days per week	1782(87.8)	546(87.8)	1236(87.8)
3-4 days per week	189(9.3)	61(9.8)	128(9.1)
≤2 days per week	59(2.9)	15(2.4)	44(3.1)
BMI , n (%)			
Normal	553(27.2)	88(14.1)	465(33.0)
Underweight	11(0.5)	3(0.5)	8(0.6)
Overweight	521(25.7)	144(23.2)	377(26.8)
Apparently overweight	464(22.9)	183(29.4)	281(20.0)
Obesity	481(23.7)	204(32.8)	277(19.7)

Abbreviations: TCHO, total serum cholesterol; LDL-C, low-Density Lipoprotein
 Cholesterol; HDL-C, high-density lipoprotein; TG, triglyceride; FBG, fasting blood
 glucose; BMI, body mass index.

4 Values are expressed as n (percentage).

2. Univariable analysis of factors associated with MS stratified by sex

Table 2 shows the results of univariable logistic regression for factors associated with MS in men and women. The prevalence of MS was higher in the elderly (men: 40.2%; women: 71.7%), especially in older women (Figure 2; OR [95% CI] = 2.042 [1.608, 2.594]; P < 0.001). For females, age, BMI, hip and neck circumference, smoking, higher alcohol consumption, geographical region, and level of educational attainment were associated with MS, whereas physical inactivity and fruit consumption were not. For males, the risk factors associated with MS were similar, except for age, smoking, and higher alcohol consumption. Unlike in women, physical inactivity and light/moderate alcohol consumption were also risk factors in men.

18 Table 2 Univariable logistic regression analyses on risk factors for the prevalence of

19 metabolic syndrome (MS) in males and females

	Male		Female		
Category	Reference	OR (95% CI)	Р	OR (95% CI)	Р
Age group	40-64 years				
≥65years		1.10(0.85, 1.42)	0.482	2.04(1.61, 2.59)	< 0.00
HP	-	1.20(1.18, 1.22)	< 0.001	1.16(1.14, 1.17)	< 0.00
NC	-	1.44(1.38, 1.51)	< 0.001	1.37(1.31, 1.42)	< 0.00
Region	Urban				
Rural		0.57(0.46, 0.69)	< 0.001	1.66(1.41, 1.95)	< 0.00
Smoke	No				
Yes		0.93(0.75, 1.14)	0.472	1.41(1.19, 1.66)	< 0.00
Physical inactivity	Physical activity				
Yes		1.75(1.36, 2.24)	< 0.001	1.12(0.93, 1.35)	0.235
Alcohol consumption	Never				
Light/moderate drinking		1.44(1.12, 1.84)	0.004	0.50(0.16, 1.59)	0.243
Higher drinking		0.99(0.78, 1.26)	0.949	0.61(0.43, 0.86)	0.005
Fruit consumption	≥5days/week				
3-4 days per week		1.09(0.77, 1.53)	0.627	1.19(0.89, 1.60)	0.238
≤2 days per week		0.80(0.43, 1.51)	0.494	1.37(0.83, 2.26)	0.220
Education	≤Primary school				
Junior middle-school		1.28(1.01, 1.62)	0.040	0.59(0.49, 0.71)	< 0.00
Senior middle-school		1.75(1.27, 2.41)	0.001	0.41(0.32, 0.54)	< 0.00
College and above		1.31(0.91, 1.90)	0.149	0.27(0.20, 0.37)	< 0.00
BMI	Normal				
Underweight		1.49(0.42, 5.33)	0.540	0.30(0.14, 0.66)	0.002
Overweight		3.91(2.88, 5.30)	< 0.001	3.54(2.85, 4.40)	< 0.00
Apparently overweight		11.143(8.03, 15.47)	< 0.001	5.28(4.01, 6.93)	< 0.00
Obesity		18.29(12.89, 25.96)	<0.001	12.03(8.31, 17.43)	< 0.00

Abbreviations: BMI, body mass index; HC, Hip circumference; NC, Neck 2 *circumference.*

3 Values are expressed as median (IQR) or n (percentage).

3. Relationship between risk factors and MS in the multivariable logistic

7 regression analysis

8 Multivariable analysis revealed that BMI and hip circumference were significantly 9 associated with MS in both men and women (Table 3). Age, region, and educational 10 attainment were associated with MS in females, while physical inactivity was 11 associated with MS in males. Neck circumference, an underweight BMI, smoking, and 12 alcohol consumption were not associated with MS in either sex.

BMJ Open

1	For males, BMI, hip circumference, and physical inactivity were associated with MS.
2	The ORs (95% CIs) were 2.067 (1.475, 2.896; p < 0.001) for overweight BMI, 3.771
3	(2.539, 6.601; p < 0.001) for apparently overweight BMI, and 3.253 (2.019, 5.241; p <
4	0.001) for obese BMI. For hip circumference, the OR (95% CI) was 1.115 (1.086, 1.146;
5	p < 0.001). Physical inactivity was associated with MS in males (OR 1.441, 95% CI
6	[1.055, 1.969], p = 0.022).
7	For females, BMI, hip circumference, and advanced age were associated with MS.
8	Rural residence and junior middle-school education or above were negatively
9	associated with MS. The higher the education attainment, the lower the risk of MS. The
10	ORs (95% CIs) were 2.091 (1.633, 2.677; <i>p</i> < 0.001) for overweight BMI, 2.014 (1.455,
11	2.786; $p < 0.001$) for apparently overweight BMI, and 2.546 (1.623, 3.995; $p < 0.001$)
12	for obese BMI groups. For hip circumference, the OR (95% CI) was 1.098 (1.077, 1.119;
13	$p < 0.001$). The OR (95% CI) for advanced age (≥ 65 years) was 1.536 (1.154, 2.043);
14	p = 0.003). The OR (95% CI) for living in a rural region was 0.737 (0.561, 0.967; p =
15	0.028). For an educational level of junior middle-school, the OR (95% CI) was 0.616
16	(0.479, 0.791; p < 0.001); for senior middle-school, it was 0.580 (0.404, 0.833; p =
17	0.003), and for college and above, it was 0.434 (0.286, 0.660; p < 0.001).

19 Table 3 Multivariable logistic regression analyses on risk factors for the prevalence of

20 metabolic syndrome (MS) in males and females.

		Male		Female	
Category	Reference	OR (95% CI)	Р	OR (95% CI)	Р
Age group	40-64 years				
≥65years		-	-	1.54(1.15,2.04)	0.003
Education <pre> Selection</pre> Education		ool			
Junior middle-school		0.92(0.66, 1.27)	0.606	0.616(0.48, 0.79)	< 0.001
Senior middle-school		1.01(0.64, 1.61)	0.953	0.58(0.40, 0.83)	0.003
College and above		0.73(0.43, 1.23)	0.231	0.43(0.29, 0.66)	< 0.001
Region	Urban				
Rural		0.82(0.59, 1.13)	0.223	0.74(0.56, 0.97)	0.028

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMI	Normal				
Underweight		2.46(0.58, 10.50)	0.223	0.57(0.25, 1.30)	0.183
Overweight		2.07(1.48, 2.90)	< 0.001	2.09(1.63, 2.68)	< 0.001
Apparently overweight		3.77(2.54, 5.60)	< 0.001	2.01(1.46, 2.79)	< 0.001
Obesity		3.25(2.02, 5.24)	< 0.001	2.55(1.62, 4.00)	< 0.001
Neck circumference	-	1.19(0.95, 1.50)	0.128	1.19(0.95, 1.50)	0.128
Smoke	No				
Yes		-	-	1.19(0.95, 1.50)	0.128
Physical inactivity	Physical act	tivity			
Yes		1.44(1.06, 1.97)	0.022	-	-
Alcohol consumption	Never				
Light/moderate drinking		0.88(0.66, 1.18)	0.400	0.72(0.48, 1.08)	0.112
Higher drinking		1.32(0.98, 1.78)	0.07	0.431(0.11, 1.63)	0.215
Hip circumference		1.12(1.09, 1.15)	< 0.001	1.10(1.08, 1.12)	< 0.001

Abbreviations: BMI, body mass index; OR, odds ratio.

DISCUSSION

In this study, we evaluated sex-based differences in the prevalence of MS and its relative determinants in a low-income population from Northeast China. We found that in addition to being significantly more prevalent in females than in males, a high BMI, and large hip circumference were risk factors for MS in both sexes. In addition, advanced age (\geq 65 years) was a risk factor only for females, whereas physical inactivity was a risk factor only for males. Furthermore, educational attainment and living in a rural region were negatively associated with MS in women, but not in men. The prevalence of MS has been steadily increasing due to unhealthy lifestyles in lowand high-income regions,¹⁰ ¹¹ and there are known sex differences.

The prevalence of MS in those living in the Chinese mainland for both the low–, middle-, and high-income populations was shown to be 33.9% in 2010; ¹ however, in our study, it was 50.1%. This may be because most of the participants in our study population had a lower educational level and income, which may have had an additive effect on the primary, increasing trend. In most studies, the prevalence of MS in females was higher than that in males;^{1 12} for example, in Mexico, the prevalence in females Page 17 of 36

BMJ Open

was 55.6%, whereas in males, it was 38.2%.¹³ Similar sex disparities were observed in Middle Eastern countries, but few sex differences have been reported in the European Union, which has a lower MS prevalence overall.¹⁴ In Contrast, the prevalence of MS in males is higher than that in females in Caucasians,¹⁵ American adolescents,¹⁶ Far East Asian and Japanese populations, and in Macau, it is twice that in women from.¹⁷ These differences may be related to race, the period in which the studies were conducted, the geographic region, and the selection criteria used.^{18 19 20} Our results were consistent with those reported in most countries that women had a higher prevalence of MS than men²¹ ²² ²³ ²⁴. In addition, these sex-related differences were shown to be greater in women of advanced age, but remained relatively stable with respect to age in men in East China.²⁵ This was consistent with our own findings that females aged ≥ 65 years had a 1.536-fold higher risk of MS than those aged 40–65 years. A decrease in estrogen levels in women after menopause, results in an increase in insulin resistance and abnormal lipid metabolism result. Thus, the sex differences observed may be related to changes in hormone levels, rather than aging itself.²⁶

It is well known that MS prevalence increases when BMI ($\geq 24 \text{ kg/m}^2$) is higher than normal. Compared with individuals with a normal BMI, the risk of metabolic syndrome with an overweight and obese BMI was 3.11- and 17.18-fold in Korean females, and 4.30- and 10.91-fold in Korean males without diabetes mellitus, respectively.²⁷ Our study also found that compared with a normal BMI, a higher BMI was associated with higher odds of MS. The risk was 2.091-, 2.014-, and 2.546-fold higher in overweight, significantly overweight, and obese females, respectively. In males, the risk increased 2.067-, 3.771-, and 3.253-fold, respectively. These findings also suggest that weight gain in males (BMI \ge 26 kg/m²) increases the risk of MS more substantially than it does in females; this positive association has also been reported in a study of Turkish

adults.²⁸ An Israeli cohort study claimed that a normal BMI had a high negative predictive value in both men (98%) and women (96%) with respect to MS.²⁹ The inverse association was found between hip circumference and metabolic risk factors in Tehranian women.³⁰ Further, weak predictive ability was found for hip circumference. In our study, the risk of MS increased 1.098-fold in women and 1.115-fold in men for every 1 cm increase in hip circumference but not in neck circumference. Thus, BMI combined with hip circumference is an effective indicator of being overweight or obese, and such individuals are more prone to developing MS. Whether obesity or insulin resistance is a cause or consequence of MS is still under debate.³¹ Adipokines produced by abnormal adipocytes cause insulin resistance, and visceral obesity may be a causal factor of metabolic disease.³²

Physical inactivity was a main risk factor for males in our study, consistent with the findings of a previous study.³³ Infrequent physical activity results in a 1.441-fold increased risk of MS in men, but not in women, this is consistent with previous findings.³⁴ Moreover, physical activity has been suggested to be associated with a low risk for MS.³⁵ Studies have also found that binge drinking and smoking were associated with increased MS prevalence, regardless of sex or BMI.^{36, 37} The association between fruit consumption, neck circumference, and MS risk remains unclear; in our study, no significant associations were observed among alcohol consumption, smoking, fruit consumption, or neck circumference.

Educational level is the most important measure of socioeconomic status, which has been shown to not only affect the prevalence of MS, but is also closely related to the prevalence of cerebrovascular disease.³⁸ The specific mechanism by which education affects the prevalence of MS is unclear. It has, however, been considered that education influences people's lifestyles and positive attitudes toward health, and increases their Page 19 of 36

BMJ Open

1	access to preventive health services. ³⁹ In addition, it is reported in South Korea, that the
2	negative correlation between educational level and MS prevalence is largely related to
3	the dietary patterns of Koreans (especially in women). ⁴⁰ For females in our study, the
4	ORs indicated a 0.616-fold, 0.580-fold, and 0.434-fold risk of developing MS in those
5	who had completed junior middle-school, senior middle-school, as well as college and
6	above, respectively. This suggests that a higher educational level can reduce the risk of
7	MS; however, this relationship was not found in males. The negative association
8	between MS prevalence and educational level was significant in females, which is
9	similar to the results of a previous study. ⁴⁰ A National Survey found that low income
10	and educational levels were associated with a higher prevalence of MS in females than
11	in males. ⁴¹ Our study population was characterized by having both a low income and a
12	low level of education, both of which contributed to a higher MS prevalence. The
13	percentage of included females with a primary school education or below was 37.8%,
14	which may partially explain the high prevalence of MS in women. ²⁴ Urban adults (≥ 18
15	years old) in China were more likely than rural adults to have MS in 2009,42 The
16	opposite was true among urban adults in Jiangxi province, China in 2015, as females
17	living in rural areas were more likely than urban females to have MS. These findings
18	were not observed among males. ⁴³ In our study, MS was negatively associated with
19	living in rural regions (OR: $0.737 [0.561, 0.967]$, $p = 0.028$) but not with living in urban
20	regions. The differences may be caused by the degree of economic development,
21	lifestyle habits, and dietary patterns; for example, rural women have lower fat intake
22	and more activity than urban women.44
23	Lifestyle interventions resulted in a 2 61-fold reduced risk of MS compared with the

Lifestyle interventions resulted in a 2.61-fold reduced risk of MS compared with the
 control group in a previous study.⁴⁵ Aninvestigation of dietary patterns showed that the
 Chinese pattern (high in grains, vegetables, fruit, salted fish and eggs, soyabean, and

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
26
27
28
29
30
31
32
33
34
35
36
37
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<u> </u>

60

1	etc.) was associated with a lower risk of MS than the animal food pattern (high in meats,
2	fish and shrimp, eggs, seafood, alcoholic beverages, etc.).46 Sex differences in the
3	dietary patterns were associated with increased MS prevalence; for example, an
4	increased prevalence was observed in men consuming an "animal and fried food" diet,
5	and women consuming a "high-salt and energy" diet.19 Muscle strength and
6	cardiorespiratory fitness may independently and jointly reduce the incidence of MS,47
7	as increased physical activity decreased the risk by 19-24%.48 In men, every hour of
8	exercise may decrease MS risk by 2%.49 In contrast, daily sedentary behavior linearly
9	increases the risk of metabolic syndrome by 1.09 times per hour. ⁵⁰ To prevent the onset
10	of MS, a better understanding of modifiable lifestyle factors is needed in high-risk
11	populations; for example, in men who are physically inactive, further effort should be
12	made to control body weight, especially by focusing on reducing high BMI and hip
13	circumference. Moreover, exercise can result in high brain insulin sensitivity, which
14	can help to lose more body weight and body fat with a lower regain. ⁵¹ For women,
15	especially the elderly outside rural regions, efforts should be made to control weight to
16	maintain BMI and hip circumference at normal levels to reduce the risk of MS. Focus
17	should also be directed at changes in hormone levels, especially the low concentrations
18	of sex hormone-binding globulin and testosterones, which increase the odds of MS.52
19	In the long run, a higher level of educational attainment can reduce the risk of MS.
20	Understanding these factors and the sex differences between them, as well as accurately
21	identifying high-risk groups, could help to develop better public health policies,
22	educational initiatives and reduce the incidence of MS and vascular diseases. There
23	were also several limitations to this study. Some data was self-reported, each parameter
24	in blood was only sampled and measured once, and some lifestyle factors and potential
25	residual confounders were not assessed. Furthermore, people who were sick or too

3	
4	
5	
6	
7	
/	
8 9	
10	
11	
12	
13	
13 14	
15	
16	
16 17	
17	
18	
19	
20	
21	
22	
 19 20 21 22 23 24 25 26 27 28 29 	
24	
25	
26	
20	
27 20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 weak to participate were excluded, which may impact the generalizability of the results.

2 Moreover, cross-sectional studies cannot be used to make causal inferences, and

3 subsequent prospective and randomized studies are needed.

4

5

CONCLUSION

In our study, we found that risk factors for MS have both sex-based similarities and
differences; thus, the prevention and treatment of MS should consider patients' sex.

8

9 ACKNOWLEDGEMENTS

The authors gratefully acknowledge all of the study participants and interviewers from
the First Hospital of Jilin University, and acknowledge the support of the Chinese
National Center for Stroke Care Quality Control and Management. *We would like to thank Editage (www.editage.cn) for English language editing.*

14

15 FUNDING

This project was supported by the National Key R&D Program of China (2016YFC1301600), JLUSTIRT (2017TD-12) and Jilin Provincial Key Laboratory (20190901005JC) to Yi Yang. Project on research and application of effective intervention techniques for high risk population of stroke from the National Health and Family Planning Commission in China (GN-2016R0010).

21

22 CONFLICTS OF INTEREST

23 None declared.

2		
3		
4	1	
5		
6	•	
7	2	ETHICS APPROVAL
8		
9	3	This subject was approved by the human ethics and research ethics committee of the
10	0	This subject was approved by the number entres and research entres committee of the
11		
12	4	First Hospital of Jilin University (approval No: 2015-R-250), and written informed
13		
14	F	concent was obtained from all of the participants
15	5	consent was obtained from all of the participants.
16		
17	6	
18	-	
19		
20	7	PROVENANCE AND PEER REVIEW
21		
22	8	Not commissioned; externally peer reviewed.
23	0	Not commissioned, externally peer reviewed.
24		
25	9	
26		
27	4.0	DATEA CHADINICI CITATIONICI
28	10	DATA SHARING STATEMENT
29	11	The detect supporting the conclusions of this article can be made available upon
30	11	The dataset supporting the conclusions of this article can be made available upon
31		
32	12	request.
33		
34	13	
35		
36	14	
37	14	
38		
39	15	
40		
41	16	
42		
43	17	
44	.,	
45	40	
46	18	
47		
48	19	
49		
50	20	
51		
52	24	
53	21	
54		
55	22	
56		
57	23	
58		
59	24	
60	27	

2 3 4	1	REFERENCES
5 6 7	2	1. Lu J, Wang L, Li M, et al. Metabolic Syndrome Among Adults in China: The 2010 China
8 9 10	3	Noncommunicable Disease Surveillance. The Journal of clinical endocrinology and
11 12	4	<i>metabolism</i> 2017;102(2):507-15. doi: 10.1210/jc.2016-2477
13 14 15	5	2. Kokubo Y, Matsumoto C. Hypertension Is a Risk Factor for Several Types of Heart Disease:
16 17 18	6	Review of Prospective Studies. Advances in experimental medicine and biology
19 20	7	2017;956:419-26. doi: 10.1007/5584_2016_99
21 22 23	8	3. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with
24 25 26	9	the metabolic syndrome. <i>Diabetes Care</i> 2001;24(4):683-9. doi: 10.2337/diacare.24.4.683
27 28	10	[published Online First: 2001/04/24]
29 30 31	11	4. Aguilar M, Bhuket T, Torres S, et al. Prevalence of the metabolic syndrome in the United
32 33	12	States, 2003-2012. <i>Jama</i> 2015;313(19):1973-4. doi: 10.1001/jama.2015.4260
34 35 36	13	5. Song Q-B, Zhao Y, Liu Y-Q, et al. Sex difference in the prevalence of metabolic syndrome
37 38 39	14	and cardiovascular-related risk factors in urban adults from 33 communities of China: The
40 41	15	CHPSNE study. <i>Diabetes & vascular disease research</i> 2015;12(3):189-98. doi:
42 43 44	16	10.1177/1479164114562410
45 46	17	6. Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and Mortality of Stroke in China:
47 48 49	18	Results from a Nationwide Population-Based Survey of 480 687 Adults. Circulation
50 51 52	19	2017;135(8):759-71. doi: 10.1161/circulationaha.116.025250 [published Online First:
53 54	20	2017/01/06]
55 56 57	21	7. Sun H, Zou X, Liu L. Epidemiological factors of stroke: a survey of the current status in china.
58 59 60	22	<i>Journal of stroke</i> 2013;15(2):109-14. doi: 10.5853/jos.2013.15.2.109

Page 24 of 36

1 2	
3 4	
5 6	
7 8	
9 10	
11 12	
13	
14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59	
60	

4	
1	8. Zhang FL, Guo ZN, Wu YH, et al. Prevalence of stroke and associated risk factors: a
2	population based cross sectional study from northeast China. <i>BMJ open</i> 2017;7(9):e015758.
3	doi: 10.1136/bmjopen-2016-015758
4	9. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim
5	statement of the International Diabetes Federation Task Force on Epidemiology and
6	Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World
7	Heart Federation; International Atherosclerosis Society; and International Association for
8	the Study of Obesity. <i>Circulation</i> 2009;120(16):1640-5. doi:
9	10.1161/circulationaha.109.192644
10	10. Suliga E, Kozieł D, Ciesla E, et al. Consumption of Alcoholic Beverages and the Prevalence
11	of Metabolic Syndrome and Its Components. <i>Nutrients</i> 2019;11(11) doi:
12	10.3390/nu11112764 [published Online First: 2019/11/20]
13	11. Ansarimoghaddam A, Adineh HA, Zareban I, et al. Prevalence of metabolic syndrome in
14	Middle-East countries: Meta-analysis of cross-sectional studies. Diabetes Metab Syndr
15	2018;12(2):195-201. doi: 10.1016/j.dsx.2017.11.004 [published Online First: 2017/12/06]
16	12. Rochlani Y, Pothineni NV, Mehta JL. Metabolic Syndrome: Does it Differ Between Women
17	and Men? Cardiovascular drugs and therapy 2015;29(4):329-38. doi: 10.1007/s10557-015-
18	6593-6
19	13. Mendoza-Caamal EC, Barajas-Olmos F, García-Ortiz H, et al. Metabolic syndrome in
20	indigenous communities in Mexico: a descriptive and cross-sectional study. BMC Public
21	<i>Health</i> 2020;20(1):339. doi: 10.1186/s12889-020-8378-5 [published Online First:
22	2020/03/19]

Page 2	5 of 36	BMJ Open
1 2		
3 4 5	1	14. Patel A, Huang KC, Janus ED, et al. Is a single definition of the metabolic syndrome
6 7	2	appropriate?A comparative study of the USA and Asia. Atherosclerosis 2006;184(1):225-
8 9 10	3	32. doi: 10.1016/j.atherosclerosis.2005.04.012 [published Online First: 2005/06/07]
11 12 13	4	15. Firmann M, Mayor V, Vidal PM, et al. The CoLaus study: a population-based study to
14 15	5	investigate the epidemiology and genetic determinants of cardiovascular risk factors and
16 17 18	6	metabolic syndrome. BMC cardiovascular disorders 2008;8:6. doi: 10.1186/1471-2261-8-6
19 20 21	7	16. Miller JM, Kaylor MB, Johannsson M, et al. Prevalence of metabolic syndrome and
22 23	8	individual criterion in US adolescents: 2001-2010 National Health and Nutrition Examination
24 25 26	9	Survey. Metab Syndr Relat Disord 2014;12(10):527-32. doi: 10.1089/met.2014.0055
27 28 29	10	[published Online First: 2014/09/24]
29 30 31	11	17. Ishii S, Tanaka T, Akishita M, et al. Metabolic syndrome, sarcopenia and role of sex and
32 33 34	12	age: cross-sectional analysis of Kashiwa cohort study. <i>PLoS One</i> 2014;9(11):e112718. doi:
35 36	13	10.1371/journal.pone.0112718 [published Online First: 2014/11/19]
37 38 39	14	18. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among
40 41 42	15	U.S. adults: NHANES III to NHANES 1999-2006. Diabetes Care 2011;34(1):216-9. doi:
43 44	16	10.2337/dc10-0879 [published Online First: 2010/10/05]
45 46 47	17	19. Mabry RM, Reeves MM, Eakin EG, et al. Gender differences in prevalence of the metabolic
48 49	18	syndrome in Gulf Cooperation Council Countries: a systematic review. Diabet Med
50 51 52	19	2010;27(5):593-7. doi: 10.1111/j.1464-5491.2010.02998.x [published Online First:
53 54 55	20	2010/06/12]
56 57	21	20. Erem C, Hacihasanoglu A, Deger O, et al. Prevalence of metabolic syndrome and
58 59 60	22	associated risk factors among Turkish adults: Trabzon MetS study. Endocrine 2008;33(1):9-
		24

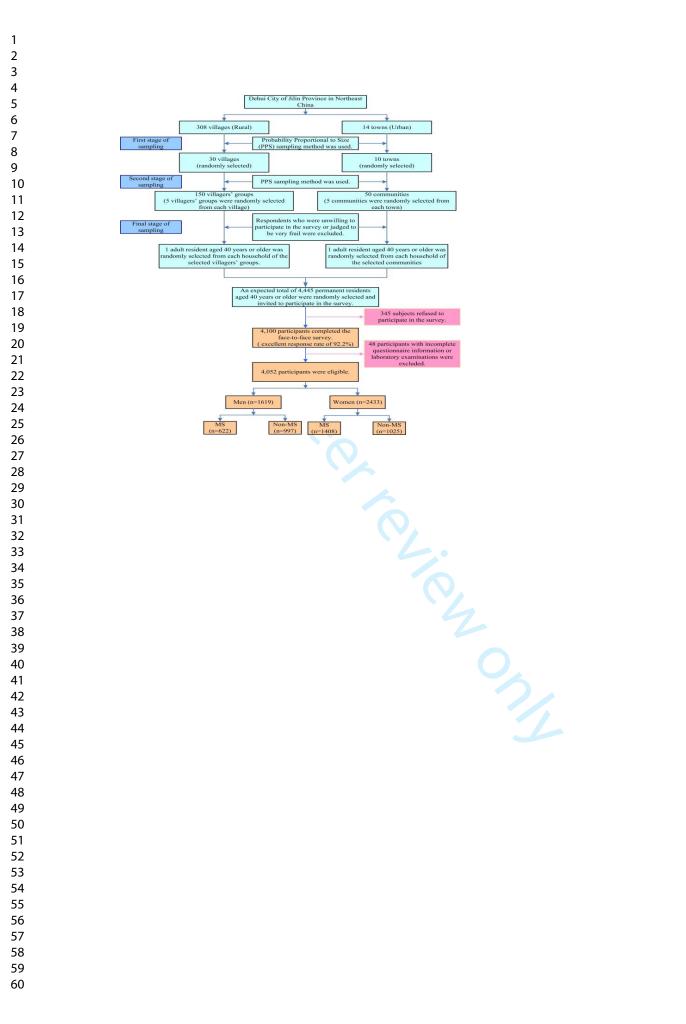
Page 26 of 36

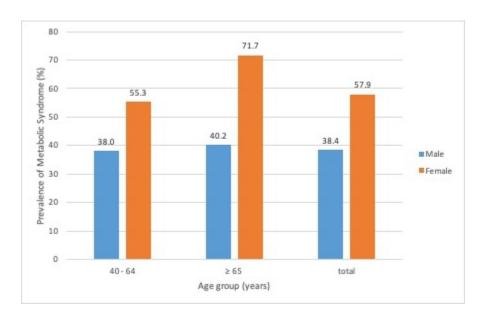
1	20. doi: 10.1007/s12020-008-9044-3 [published Online First: 2008/03/14]
2	21. Yu S, Guo X, Yang H, et al. An update on the prevalence of metabolic syndrome and its
3	associated factors in rural northeast China. BMC Public Health 2014;14:877. doi:
4	10.1186/1471-2458-14-877 [published Online First: 2014/08/28]
5	22. Xi B, He D, Hu Y, et al. Prevalence of metabolic syndrome and its influencing factors among
6	the Chinese adults: the China Health and Nutrition Survey in 2009. Prev Med
7	2013;57(6):867-71. doi: 10.1016/j.ypmed.2013.09.023 [published Online First: 2013/10/10]
8	23. Jiang B, Li B, Wang Y, et al. The nine-year changes of the incidence and characteristics of
9	metabolic syndrome in China: longitudinal comparisons of the two cross-sectional surveys
10	in a newly formed urban community. <i>Cardiovasc Diabetol</i> 2016;15:84. doi: 10.1186/s12933-
11	016-0402-9 [published Online First: 2016/06/04]
12	24. Wu LT, Shen YF, Hu L, et al. Prevalence and associated factors of metabolic syndrome in
13	adults: a population-based epidemiological survey in Jiangxi province, China. BMC Public
14	<i>Health</i> 2020;20(1):133. doi: 10.1186/s12889-020-8207-x [published Online First:
15	2020/02/01]
16	25. Jiang B, Zheng Y, Chen Y, et al. Age and gender-specific distribution of metabolic syndrome
17	components in East China: role of hypertriglyceridemia in the SPECT-China study. Lipids
18	Health Dis 2018;17(1):92. doi: 10.1186/s12944-018-0747-z [published Online First:
19	2018/04/22]
20	26. Janssen I, Powell LH, Crawford S, et al. Menopause and the metabolic syndrome: the Study
21	of Women's Health Across the Nation. Arch Intern Med 2008;168(14):1568-75. doi:
22	10.1001/archinte.168.14.1568 [published Online First: 2008/07/30]

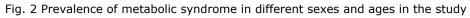
BMJ Open

3 4 5	1	27. Lee K, Lee H, Park J, et al. Sex differences in factors associated with metabolic syndrome
6 7	2	among Korean adults without diabetes mellitus: results from the Korea National Health and
8 9 10	3	Nutrition Examination Survey from 2010 to 2013. 2019;36(2):140-46. doi:
11 12 13	4	10.1093/fampra/cmy053
14 15	5	28. Gundogan K, Bayram F, Gedik V, et al. Metabolic syndrome prevalence according to ATP
16 17 18	6	III and IDF criteria and related factors in Turkish adults. Arch Med Sci 2013;9(2):243-53. doi:
19 20	7	10.5114/aoms.2013.34560 [published Online First: 2013/05/15]
21 22 23	8	29. Kobo O, Leiba R, Avizohar O, et al. Normal body mass index (BMI) can rule out metabolic
24 25 26	9	syndrome: An Israeli cohort study. <i>Medicine (Baltimore)</i> 2019;98(9):e14712. doi:
27 28	10	10.1097/md.0000000000014712 [published Online First: 2019/03/01]
29 30 31	11	30. Esmaillzadeh A, Mirmiran P, Moeini S, et al. Larger hip circumference independently
32 33	12	contributed to reduced metabolic risks in Tehranian adult women. 2006;108(3):338-45. doi:
34 35 36	13	10.1016/j.ijcard.2005.05.019
37 38 39	14	31. Xu H, Li X, Adams H, et al. Etiology of Metabolic Syndrome and Dietary Intervention.
40 41	15	2018;20(1) doi: 10.3390/ijms20010128
42 43 44	16	32. Svensson H, Odén B, Edén S, et al. Adiponectin, chemerin, cytokines, and dipeptidyl
45 46	17	peptidase 4 are released from human adipose tissue in a depot-dependent manner: an in
47 48 49	18	vitro system including human serum albumin. 2014;14:7. doi: 10.1186/1472-6823-14-7
50 51 52	19	33. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor
53 54	20	to cardio-metabolic syndrome. Cardiovascular diabetology 2013;12:76. doi: 10.1186/1475-
55 56 57	21	2840-12-76
58 59 60	22	34. Díaz-Martínez X, Petermann F, Leiva AM, et al. [Association of physical inactivity with

1	obesity, diabetes, hypertension and metabolic syndrome in the chilean population]. Rev Med
2	<i>Chil</i> 2018;146(5):585-95.
3	35. Liu Y, Huang J, Xu G, et al. Prevalence and Determinants of Metabolic Syndrome-identified
4	by Three Criteria among Men in Rural China: A Population-based Cross-sectional Study
5	Conducted during 2007-2008. J Nutr Health Aging 2016;20(5):574-82. doi: 10.1007/s12603-
6	015-0615-8 [published Online First: 2016/04/23]
7	36. Oh JE. Relationship between heavy drinking, binge drinking, and metabolic syndrome in
8	obese and non-obese Korean male adults. Nutr Res Pract 2018;12(2):166-72. doi:
9	10.4162/nrp.2018.12.2.166 [published Online First: 2018/04/10]
10	37. Slagter SN, van Vliet-Ostaptchouk JV, Vonk JM, et al. Associations between smoking,
11	components of metabolic syndrome and lipoprotein particle size. BMC Med 2013;11:195.
12	doi: 10.1186/1741-7015-11-195 [published Online First: 2013/11/16]
12 13	doi: 10.1186/1741-7015-11-195 [published Online First: 2013/11/16] 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
13	38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age,
13 14	38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i>
13 14 15	38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i> 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104
13 14 15 16	 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i> 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104 39. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education,
13 14 15 16 17	 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i> 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104 39. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. <i>Am J Public</i>
13 14 15 16 17 18	 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i> 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104 39. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. <i>Am J Public Health</i> 1992;82(6):816-20.
13 14 15 16 17 18 19	 38. Seo SR, Kim SY, Lee S-Y, et al. The incidence of stroke by socioeconomic status, age, sex, and stroke subtype: a nationwide study in Korea. <i>J Prev Med Public Health</i> 2014;47(2):104-12. doi: 10.3961/jpmph.2014.47.2.104 39. Winkleby MA, Jatulis DE, Frank E, et al. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. <i>Am J Public Health</i> 1992;82(6):816-20. 40. Kim OY, Kwak S-Y, Kim B, et al. Selected Food Consumption Mediates the Association


Page 29 of 36


 BMJ Open


3 4	1	syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 2007;17(1):19-26.
5 6		
7 8	2	doi: 10.1016/j.annepidem.2006.07.002 [published Online First: 2006/12/05]
9 10	3	42. Xi B, He D, Hu Y, et al. Prevalence of metabolic syndrome and its influencing factors among
11 12 13	4	the Chinese adults: the China Health and Nutrition Survey in 2009. 2013;57(6):867-71. doi:
14 15	5	10.1016/j.ypmed.2013.09.023
16 17 18	6	43. Wu L, Shen Y, Hu L, et al. Prevalence and associated factors of metabolic syndrome in
19 20	7	adults: a population-based epidemiological survey in Jiangxi province, China.
21 22 23	8	2020;20(1):133. doi: 10.1186/s12889-020-8207-x
24 25 26	9	44. Chung S, Han Y, Lee S, et al. Urban and rural differences in the prevalence of gender and
20 27 28	10	age specific obesity and related health behaviors in Korea. 2005;20(5):713-20. doi:
29 30 31	11	10.3346/jkms.2005.20.5.713
32 33	12	45. Guzmán A, Navarro E, Obando L, et al. Effectiveness of interventions for the reversal of a
34 35 36	13	metabolic syndrome diagnosis: An update of a meta-analysis of mixed treatment
37 38 39	14	comparison studies. <i>Biomedica</i> 2019;39(4):647-62. doi: 10.7705/biomedica.4684
40 41	15	[published Online First: 2019/12/21]
42 43 44	16	46. Wei ZY, Liu JJ, Zhan XM, et al. Dietary patterns and the risk of metabolic syndrome in
45 46	17	Chinese adults: a population-based cross-sectional study. Public Health Nutr
47 48 49	18	2018;21(13):2409-16. doi: 10.1017/s1368980018001088 [published Online First:
50 51	19	2018/05/03]
52 53 54	20	47. Jurca R, Lamonte M, Barlow C, et al. Association of muscular strength with incidence of
55 56 57	21	metabolic syndrome in men. 2005;37(11):1849-55. doi:
57 58 59 60	22	10.1249/01.mss.0000175865.17614.74

1 2	
3 4 5	1
3 4 5 6 7 8	2
8 9 10	3
11 12 13	4
14 15	5
16 17 18	6
19 20 21	7
22 23	8
24 25 26	9
27 28	10
29 30 31	11
32 33 34	12
35 36	13
37 38 39	14
40 41	15
42 43 44	16
45	17
46 47	18
47 48	19
49	20
50	21
51 52	22
53	23
54	24
55 56	25
57	26
58	27
59 60	28
60	29

1	48. Xiao J, Wu CL, Gao YX, et al. Prevalence of metabolic syndrome and its risk factors among
2	rural adults in Nantong, China. Sci Rep 2016;6:38089. doi: 10.1038/srep38089 [published
3	Online First: 2016/12/03]
4	49. Renninger M, Hansen BH, Steene-Johannessen J, et al. Associations between
5	accelerometry measured physical activity and sedentary time and the metabolic syndrome:
6	A meta-analysis of more than 6000 children and adolescents. Pediatr Obes
7	2020;15(1):e12578. doi: 10.1111/ijpo.12578 [published Online First: 2019/11/12]
8	50. Gennuso K, Gangnon R, Thraen-Borowski K, et al. Dose-response relationships between
9	sedentary behaviour and the metabolic syndrome and its components. 2015;58(3):485-92.
10	doi: 10.1007/s00125-014-3453-z
11	51. Kullmann S, Valenta V, Wagner R, et al. Brain insulin sensitivity is linked to adiposity and
12	body fat distribution. 2020;11(1):1841. doi: 10.1038/s41467-020-15686-y
13	52. Li C, Ford E, Li B, et al. Association of testosterone and sex hormone-binding globulin with
14	metabolic syndrome and insulin resistance in men. 2010;33(7):1618-24. doi: 10.2337/dc09-
15	1788
16	
17	
18	Fig. 1 Sampling process in the study
19	Fig. 2 Prevalence of metabolic syndrome in different sexes and ages in the study
20	
21 22	
22 23	
24	
25	
26	

156x99mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Supplementary Table S1 Definitions of metabolic syndrome-related risk factors in the survey.

Variables	Criteria	References
BMI	BMI was grouped into five categories for our study: underweight (BMI< 18.5 kg/m ²), normal (18.5 \leq BMI< 24 kg/m ²), overweight (24 \leq BMI< 26 kg/m ²), apparently overweight (26 \leq BMI < 28 kg/m ²), obesity (BMI \geq 28 kg/m ²).	Guidelines for diabetes prevention and treatment in China ¹
Abnormal neck circumference	≥37cm for male and ≥33cm for female	Neck circumference as an independent predictive contributor of cardio-metabolic syndrome ²
Physical inactivity	Physical inactivity is defined as insufficient physical activity; Physical activity is defined as the performance of heavy physical labor or regular physical exercise for more than one year, more than 3 times per week, and for at least 30 minutes per session.	CHNS guidelines ³
Smoking	A smoker was defined as one who reported smoking one or more cigarettes or was passively exposed to tobacco smoke every day in general for more than 6 consecutive months. A non-smoker was defined as the one who had never smoked, nor passively exposed to tobacco smoke; or, had history of smoking but quit smoking for at least 6 consecutive months previous to the study.	Technical specification of stroke screening and prevention in China ⁴
Drinking	The NIAAA sets the standard drink size at about 14g of absolute ethanol, advising limits of no more than three drinks per day or seven drinks per week for men and women. Drinking status was divided into three categories according to the participants' self-report in the previous 6 months: non-drinkers: had never drunk alcoholic beverage; light/moderate drinkers: less than or upto NIAAA limits; heavier drinkers: in excess of NIAAA limits.	NIAAA guidelines ⁵
Fruit consumption	Fruit consumption was grouped into three categories for our study: less than or equal to two days per week (≤ 2 d/w), three to four days per week (3–4 d/w), and greater than or equal to five days per week (≥ 5 d/w). And the weight of consumed fruits should reach or exceed two servings per day, and the definition of a serving of a fruit was calculated as 80g.	Fruit and vegetable consumption and stroke: meta-analysis of cohort studies ⁶

BMJ Open

Sex differences and risk factors of Metabolic syndrome in adults aged more than 40 in Northeast China: Results from the National Stroke Screening Survey Feng-e Li *et al*

Abbreviation: BMI, body mass index; CHNS, China Health and Nutrition Survey; NIAAA, National Institute on Alcohol Abuse and Alcoholism.

References

- 1. Department of disease control Moh. Guidelines for diabetes prevention and treatment in China. *Chin J Prev Non-commun Dis* 2004;12:283-85. doi: 10.3969/j.issn.1004-6194.2004.06.022
- 2. Zhou JY, Ge H, Zhu MF, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. *Cardiovascular diabetology* 2013;12:76. doi: 10.1186/1475-2840-12-76
- 3. The Nutrition and Health Status of the Chinese People. China Healthcare & Nutrition 2004
- 4. Stroke Screening and Prevention Project Committee NHaFPCoC. Technical specification of stroke screening and prevention in China. *Chinese Journal of the Frontiers* of Medical Science (Electronic Version) 2013(9):44-50. doi: 10.3969/j.issn.1674-7372.2013.09.017
- 5. of Health and Human Services: Helping patients who drink too much. a clinician's guide. Bethesda, MD, National Institutes of Health National Institute on Alcohol Abuse and Alcoholism; 2005.
- 6. He FJ, Nowson CA, MacGregor GA. Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet (London, England) 2006;367(9507):320-6. doi: 10.1016/s0140-6736(06)68069-0 [published Online First: 2006/01/31]

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	3
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3,4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-8
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6-8
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
measurement Bias	9	Describe any efforts to address potential sources of bias	6-7
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed	NA
		(d) If applicable, describe analytical methods taking account of sampling strategy	6, 7
		(e) Describe any sensitivity analyses	NA

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9-11
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	(7)
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	9-11
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	11,12
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	13-17
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	12
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18,19
Generalisability	21	Discuss the generalisability (external validity) of the study results	20
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	21
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.