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S1 Table. Descriptive statistics of FACES data. Demographic characteristics of the sample of
FACES data used in simulation studies and data analysis.

n = 153
Age (years), mean (SD) 9 (1.8)
Male gender, % 60.1
Height (inches), mean (SD) 52.3 (4.8)
Ethnicity, %
Non-Hispanic Black 13.7
Non-Hispanic White 46.4
Hispanic 39.9

BMI (kg/m2), mean (SD) 18.5 (4.6)
Mother < 12th grade education, % 60.1
Insured, % 94.8
Atopy, % 78.4
Father/Mother smokes currently, % 5.2
Proximity to Freeway (< 1 block away), % 47.7
Severity (GINA ≥ 3), % 17.6
Household income > 30K/year, % 52.3
FEV1 (L), mean (SD) 1.7 (0.4)

S2 Table. Grouping structure in fixed profiles scenario. Table shows summary statistics for
the Calinski-Harabasz index, silhouette statistic, and number of clusters to maximize the gap
width (Gap clusters) for 200 simulated data sets used in the simulation study.

Min 1st quartile Median Mean 3rd quartile Max
Calinski-Harabasz 6.0647 18.1074 22.5437 21.3772 25.9485 35.0493
Silhouette 0.0015 0.1099 0.1463 0.1515 0.1878 0.2900
Gap clusters 2 4 6 6.07 9 10
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S3 Table. Summary of method performance in the linear scenario. Results from simulation
study across 200 simulated data sets in scenario h1: linear. Reported values are means (standard
errors) across all data sets for: root mean squared error (RMSE) and coverage (Cvg) for the
exposure-response function, true selection rate for main effects (TSR), false selection rate for
main effects (FSR), true selection rate for interactions (TSRint), and false selection rate for
interactions (FSRint).

NPBr NPB UPR SPR
RMSE 1.02 (0.02) 0.54 (0.01) 2.01 (0.04) 1.59 (0.04)
Cvg 0.73 (0.01) 0.95 (0.01) 0.56 (0.01) 0.54 (0.01)
TSR 0.85 (0.01) 0.92 (0.01) 0.25 (0.02) 0.63 (0.02)
FSR 0.35 (0.02) 0.10 (0.01) 0.26 (0.02) 0.53 (0.02)
TSRint – 0.59 (0.02) – –
FSRint – 0.02 (0.00) – –

BKMR LM LM-int
RMSE 0.55 (0.01) 1.01 (0.02) 0.73 (0.01)
Cvg 0.96 (0.01) 0.73 (0.01) 0.95 (0.01)
TSR 1.00 (0.00) 0.84 (0.01) 0.68 (0.01)
FSR 0.39 (0.02) 0.29 (0.02) 0.04 (0.01)
TSRint – – 0.32 (0.02)
FSRint – – 0.04 (0.00)

S4 Table. Summary of method performance in the nonlinear scenario. Results from
simulation study across 200 simulated data sets in scenario h2: nonlinear. Reported values are
means (standard errors) across all data sets for: root mean squared error (RMSE) and coverage
(Cvg) for the exposure-response function, true selection rate for main effects (TSR), false
selection rate for main effects (FSR), true selection rate for interactions (TSRint), and false
selection rate for interactions (FSRint).

NPBr NPB UPR SPR
RMSE 0.77 (0.01) 0.69 (0.01) 1.42 (0.03) 1.27 (0.03)
Cvg 0.80 (0.01) 0.86 (0.01) 0.56 (0.01) 0.58 (0.01)
TSR 0.79 (0.02) 0.78 (0.02) 0.27 (0.02) 0.68 (0.02)
FSR 0.22 (0.02) 0.16 (0.02) 0.24 (0.02) 0.58 (0.02)
TSRint – 0.25 (0.03) – –
FSRint – 0.01 (0.00) – –

BKMR LM LM-int
RMSE 0.59 (0.01) 0.78 (0.01) 0.89 (0.02)
Cvg 0.92 (0.01) 0.81 (0.01) 0.91 (0.01)
TSR 0.96 (0.01) 0.78 (0.02) 0.54 (0.02)
FSR 0.48 (0.02) 0.17 (0.01) 0.08 (0.01)
TSRint – – 0.20 (0.03)
FSRint – – 0.07 (0.01)
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S5 Table. Summary of method performance in the fixed profiles scenario. Results from
simulation study across 200 simulated data sets in scenario h3: fixed profiles. Reported values
are means (standard errors) across all data sets for: root mean squared error (RMSE) and
coverage (Cvg) for the exposure-response function, true selection rate for main effects (TSR),
false selection rate for main effects (FSR), true selection rate for interactions (TSRint), and false
selection rate for interactions (FSRint).

NPBr NPB UPR SPR
RMSE 1.11 (0.02) 1.02 (0.02) 1.41 (0.02) 1.38 (0.02)
Cvg 0.66 (0.01) 0.75 (0.01) 0.55 (0.01) 0.54 (0.01)
TSR 0.66 (0.02) 0.68 (0.02) 0.27 (0.03) 0.68 (0.02)
FSR 0.11 (0.01) 0.13 (0.01) 0.25 (0.02) 0.59 (0.01)
TSRint – 0.06 (0.02) – –
FSRint – 0.02 (0.00) – –

BKMR LM LM-int
RMSE 0.69 (0.01) 1.13 (0.02) 0.99 (0.02)
Cvg 0.91 (0.01) 0.70 (0.01) 0.91 (0.00)
TSR 0.97 (0.01) 0.69 (0.02) 0.56 (0.02)
FSR 0.64 (0.03) 0.14 (0.01) 0.14 (0.01)
TSRint – – 0.12 (0.02)
FSRint – – 0.11 (0.01)

S6 Table. Summary of method performance in the null scenario. Results from simulation
study across 100 simulated data sets in the null scenario. Reported values are means (standard
errors) across all data sets for: root mean squared error (RMSE) and coverage (Cvg) for the
exposure-response function, false selection rate for main effects (FSR), and false selection rate
for interactions (FSRint). True selection rates were not reported since there were no active
mixture components in the exposure-response function.

NPBr NPB UPR SPR
RMSE 0.23 (0.02) 0.24 (0.02) 0.28 (0.02) 0.56 (0.06)

Cvg 0.98 (0.02) 0.98 (0.02) 0.98 (0.01) 0.74 (0.05)
FSR 0.00 (0.00) 0.00 (0.00) 0.28 (0.03) 0.74 (0.02)

FSRint – 0.00 (0.00) – –

BKMR LM LM-int
RMSE 0.25 (0.02) 0.44 (0.02) 0.77 (0.03)

Cvg 0.97 (0.01) 0.96 (0.01) 0.95 (0.01)
FSR 0.30 (0.04) 0.03 (0.01) 0.08 (0.01)

FSRint – – 0.07 (0.01)
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S7 Table. Summary of method performance in the complex mixture scenario. Results
from simulation study across 100 simulated data sets in the complex mixture scenario. Reported
values are means (standard errors) across all data sets for: root mean squared error (RMSE) and
coverage (Cvg) for the exposure-response function, true selection rate for main effects (TSR),
false selection rate for main effects (FSR), true selection rate for interactions (TSRint), and false
selection rate for interactions (FSRint).

NPBr NPB UPR SPR
RMSE 1.00 (0.03) 0.69 (0.03) 3.22 (0.12) 2.97 (0.12)

Cvg 0.77 (0.02) 0.91 (0.01) 0.46 (0.01) 0.32 (0.02)
TSR 0.62 (0.02) 0.58 (0.02) 0.00 (0.00) 0.29 (0.04)
FSR 0.19 (0.03) 0.10 (0.02) 0.00 (0.00) 0.31 (0.05)

TSRint – 0.39 (0.03) – –
FSRint – 0.01 (0.00) – –

BKMR LM LM-int
RMSE 0.86 (0.05) 1.00 (0.03) 1.68 (0.06)

Cvg 0.90 (0.01) 0.80 (0.02) 0.96 (0.01)
TSR 0.65 (0.02) 0.56 (0.01) 0.23 (0.01)
FSR 0.28 (0.04) 0.08 (0.01) 0.04 (0.01)

TSR int – – 0.07 (0.02)
FSR int – – 0.04 (0.01)

March 9, 2021 4/14



S8 Table. Summary of method performance in large sample size (n = 1000) simulation
study. Results from the large sample size simulation study across 100 simulated data sets in all
three exposure-response scenarios. Reported values are means across all data sets for: root mean
squared error (RMSE) and coverage (Cvg) for the exposure-response function, true selection
rate for main effects (TSR), false selection rate for main effects (FSR), true selection rate for
interactions (TSRint), and false selection rate for interactions (FSRint). Results for
top-performing methods are listed in bold.

Method RMSE Cvg TSR FSR TSRint FSRint
h1(x): linear with multiplicative interactions

NPBr 0.91 0.37 0.96 0.69 – –
NPB 0.14 0.96 1.00 0.01 1.00 0.00
UPR 1.53 0.28 1.00 1.00 – –
SPR 1.40 0.28 1.00 1.00 – –
BKMR 0.23 0.96 1.00 0.04 – –
LM 0.90 0.37 0.96 0.68 – –
LM-int 0.30 0.95 0.99 0.04 0.92 0.06

h2(x): nonlinear with multiplicative interactions
NPBr 0.65 0.45 0.96 0.44 – –
NPB 0.48 0.67 0.96 0.24 0.74 0.20
UPR 1.08 0.32 0.99 1.00 – –
SPR 1.10 0.33 1.00 1.00 – –
BKMR 0.29 0.92 1.00 0.25 – –
LM 0.65 0.46 0.95 0.49 – –
LM-int 0.58 0.71 0.86 0.27 0.62 0.25

h3(x): constant function of fixed profiles
NPBr 1.08 0.33 0.87 0.50 – –
NPB 0.75 0.57 0.93 0.51 0.54 0.39
UPR 1.15 0.35 0.99 1.00 – –
SPR 1.17 0.35 0.99 1.00 – –
BKMR 0.43 0.87 0.99 0.67 – –
LM 1.09 0.33 0.89 0.54 – –
LM-int 0.77 0.63 0.83 0.53 0.58 0.44
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S9 Table. Additional results from analysis of FACES data set using LM-int. Table shows
main effect and interaction regression coefficient estimates (β̂ ), 95% confidence intervals (CI),
and p-values. The regression coefficient β̂ is the expected change in FEV1 for a 1 standard
deviation increase in the square root transformed exposures.

β̂ 95% CI p-value
Main Effects
C 0.05 ( -0.08 , 0.19 ) 0.44
MeBr 0.17 ( 0.05 , 0.29 ) 0.01
OP 0.02 ( -0.17 , 0.22 ) 0.80
O3 -0.13 ( -0.32 , 0.06 ) 0.17
NO2 -0.68 ( -1.10 , -0.25 ) 0.00
PM2.5 -0.11 ( -0.48 , 0.26 ) 0.55
PM10 0.50 ( 0.08 , 0.93 ) 0.02
Interactions
C:MeBr -0.04 ( -0.14 , 0.07 ) 0.51
C:OP 0.15 ( -0.18 , 0.47 ) 0.38
C:O3 -0.01 ( -0.18 , 0.16 ) 0.91
C:NO2 -0.06 ( -0.35 , 0.23 ) 0.67
C:PM2.5 0.28 ( 0.01 , 0.54 ) 0.04
C:PM10 -0.08 ( -0.31 , 0.14 ) 0.48
MeBr:OP 0.01 ( -0.26 , 0.28 ) 0.93
MeBr:O3 -0.03 ( -0.20 , 0.15 ) 0.77
MeBr:NO2 -0.11 ( -0.43 , 0.21 ) 0.50
MeBr:PM2.5 0.18 ( -0.06 , 0.42 ) 0.14
MeBr:PM10 0.08 ( -0.11 , 0.28 ) 0.41
OP:O3 -0.04 ( -0.20 , 0.12 ) 0.63
OP:NO2 -0.10 ( -0.33 , 0.12 ) 0.37
OP:PM2.5 -0.23 ( -0.58 , 0.12 ) 0.19
OP:PM10 0.31 ( -0.01 , 0.62 ) 0.05
O3:NO2 -0.12 ( -0.54 , 0.29 ) 0.56
O3:PM2.5 0.04 ( -0.23 , 0.30 ) 0.78
O3:PM10 -0.02 ( -0.31 , 0.27 ) 0.88
NO2:PM2.5 -0.27 ( -0.70 , 0.16 ) 0.21
NO2:PM10 0.33 ( -0.05 , 0.72 ) 0.09
PM2.5:PM10 0.01 ( -0.38 , 0.40 ) 0.95
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S10 Table. Additional results from analysis of FACES data set using NPB. Table shows
main effect and interaction regression coefficient estimates (β̂ ), 95% credible intervals, and
posterior inclusion probabilities (PIP). The regression coefficient β̂ is the expected change in
FEV1 for a 1 standard deviation increase in the square root transformed exposures.

β̂ 95% CI PIP
Main Effects
C 0.00 ( 0.00 , 0.03 ) 0.07
MeBr 0.00 ( -0.01 , 0.00 ) 0.06
OP 0.01 ( 0.00 , 0.11 ) 0.16
O3 -0.01 ( -0.12 , 0.01 ) 0.11
NO2 -0.12 ( -0.36 , 0.00 ) 0.60
PM2.5 0.00 ( -0.09 , 0.05 ) 0.12
PM10 0.02 ( -0.01 , 0.2 ) 0.19
Interactions
C:MeBr 0.00 ( 0.00 , 0.00 ) 0.02
C:OP 0.00 ( 0.00 , 0.00 ) 0.02
C:O3 0.00 ( 0.00 , 0.00 ) 0.01
C:NO2 0.00 ( 0.00 , 0.00 ) 0.01
C:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01
C:PM10 0.00 ( 0.00 , 0.00 ) 0.01
MeBr:OP 0.00 ( 0.00 , 0.00 ) 0.01
MeBr:O3 0.00 ( 0.00 , 0.00 ) 0.01
MeBr:NO2 0.00 ( 0.00 , 0.00 ) 0.01
MeBr:PM2.5 0.00 ( 0.00 , 0.00 ) 0.02
MeBr:PM10 0.00 ( 0.00 , 0.00 ) 0.02
OP:O3 0.00 ( 0.00 , 0.00 ) 0.02
OP:NO2 0.00 ( 0.00 , 0.00 ) 0.01
OP:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01
OP:PM10 0.00 ( 0.00 , 0.00 ) 0.01
O3:NO2 0.00 ( 0.00 , 0.00 ) 0.01
O3:PM2.5 0.00 ( 0.00 , 0.00 ) 0.01
O3:PM10 -0.01 ( -0.09 , 0.00 ) 0.06
NO2:PM2.5 0.01 ( 0.00 , 0.16 ) 0.11
NO2:PM10 0.01 ( 0.00 , 0.13 ) 0.12
PM2.5:PM10 0.00 ( 0.00 , 0.06 ) 0.05

S11 Table. Variable selection results from FACES data analysis using BKMR with
component-wise variable selection. Table shows posterior inclusion probabilities (PIP) for
each exposure.

Exposure PIP
C 0.08
MeBr 0.06
OP 0.10
O3 0.16
NO2 0.96
PM2.5 0.20
PM10 0.34
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S12 Table. Variable selection results from FACES data analysis using BKMR with
hierarchical variable selection. Table shows posterior inclusion probabilities for each group
(Group PIP) as well as conditional posterior inclusion probabilities for each exposure given the
group to which it belongs is included (Conditional PIP). Component-wise PIPs are calculated
from the group and conditional PIPs by multiplying the group PIP by the conditional PIP for
each exposure.

Exposure Group PIP Conditional PIP Component-wise PIP
C 0.20 0.18 0.03
MeBr 0.20 0.13 0.03
OP 0.20 0.70 0.14
O3 0.98 0.00 0.00
NO2 0.98 0.98 0.96
PM2.5 0.98 0.01 0.01
PM10 0.98 0.00 0.00

S1 Fig. Estimated bivariate exposure-response function from FACES data analysis using
BKMR. Each grid panel is an image plot of the predicted exposure-response function ĥ for
varying levels of two exposures, while holding all other exposures at their median value.
Evidence of an interaction would be reflected by changes in the predicted exposure-response
function with changes in the levels of both exposure 1 and exposure 2. Figure shows no notable
evidence of interactions, but does depict the main effect of NO2.
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S13 Table. Variable selection results from FACES data analysis using UPR and SPR.
Table shows posterior inclusion probabilities (PIP) for each exposure in each method.

PIP
Exposure UPR SPR
C 0.03 0.02
MeBr 0.21 0.71
OP 0.57 0.51
O3 0.54 0.75
NO2 0.61 0.67
PM2.5 0.56 0.63
PM10 0.24 0.03
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S1 Appendix: Additional simulations

Simulation design
We conduct three additional simulation studies to assess robustness of our results. For all of the
additional simulations, we report results from 100 simulated data sets.

First, we include a null scenario, h4(x), where none of the exposures are associated with the
response. That is,

h4(x) = 0. (1)

This scenario uses the same exposure data, covariates, and residual variance described in
scenarios 1-3 in the main text.

Second, we include a complex mixtures scenario, h5(x), where we simulate data for seven
additional pollutants to have a total of 14 mixture components. For each data set, the first seven
pollutants are the exposures from the FACES data set as described in scenarios 1-3 in the main
text. The exposure values for the seven additional pollutants are simulated as random linear
combinations of the FACES exposure data using N(0,1) weights plus N(0,1) noise. All
exposures are then scaled to have mean 0 and variance 1. We simulate the response as a linear
function of 10 main effects and two pairwise interactions. Specifically,

h5(x) = x1− x2 + x3− x4 +1.4x5 +1.5x6 +1.2x7− (2)
1.4x8−1.5x9−1.2x10 +0.7x1x2−0.5x3x4.

The ten active mixture components x1, . . . ,x10 are randomly selected for each data set. All 14
pollutants are included in the models as predictors. All other details of the data generating
mechanism are the same as previously described for the other scenarios.

Third, we replicate the simulation scenarios 1-3 in the main text but use a larger sample size.
We repeatedly sample from the FACES exposure and covariate data to create a sample of size
n = 1000 for each data set. All other details are described in the main text.

Simulation results
The methods performed more similarly to each other in the null scenario compared to the other
scenarios (S6 Table). NPBr, NPB, and BKMR had the lowest RMSE for the exposure-response
function and LM-int had the highest RMSE. All methods except SPR achieved the nominal
coverage level. FSR was lowest for NPBr and NPB, meaning these methods were the best at not
selecting any mixture components into the model when none are associated with the response.
FSR was highest for SPR.

Results from the complex mixture scenario are shown in S7 Table. Here NPB estimated the
exposure-response function with lowest RMSE and near-optimal coverage. BKMR had the next
lowest RMSE. LM-int achieved the nominal coverage, but with substantially higher RMSE.
NPBr and BKMR had highest TSR, followed by NPB and LM. NPB, UPR, LM, and LM-int all
had mean FSR at or below 0.10. NPB outperformed LM-int in variable selection rates for
interactions. Overall, NPB and BKMR were the top-performing methods in simultaneously
estimating the exposure-response function and identifying active mixture components in this
complex mixture scenario.

For the larger sample size simulation, our results remain generally the same as in our original
simulation study (S8 Table). NPB performed best in the linear scenario, followed by BKMR and
LM-int. BKMR performed best in the nonlinear and fixed profiles scenarios. TSR improved for
all methods in all scenarios. With the increased sample size, UPR and SPR often selected all of
the mixture components into the model, as evidenced by both high TSR and FSR.
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S2 Appendix: Additional model details

Nonparametric Bayes shrinkage
Nonparametric Bayes shrinkage was originally introduced as a method in the logistic regression
setting [1], and we adapted it for use in a linear regression setting for analysis of a continuous
health outcome. The original model includes main effects and all pairwise interactions (NPB).
We also implemented a reduced model with main effects only (NPBr).

To introduce the model, denote a continuous response yi, exposures xi j, j = 1, . . . , p, and
covariates, wil , l = 1, . . .q. The response is modeled as

yi = γ0 +
p

∑
j=1

xi jβ j +
p−1

∑
j=1

p

∑
k= j+1

xi jxikζ jk +
q

∑
l=1

wilγl + εi,

where γ0 is an overall intercept and εi
iid∼ N(0,σ2) for i = 1, . . . ,n. Equivalently, the model can

be expressed as

yi|β ,γ,ζ ,σ2 ∼ N
(
γ0 +xT

i β + zT
i ζ +wT

i γ,σ2) ,
where xi denotes the vector of exposures, wi denotes the vector of covariates, and zi denotes the
vector of the pairwise multiplicative interactions between elements in xi.

A Dirichlet process (DP) prior is placed on the main effect regression coefficients β . The
base distribution is a mixture of a normal distribution and a point mass at 0 to induce sparsity in
the model and perform variable selection. We assign a normal-inverse gamma prior to the mean
and variance of the normal base measure. A separate, but similarly constructed, DP prior is
placed on the pairwise multiplicative interaction coefficients ζ , where ζ jk denotes the regression
coefficient for the interaction between exposures j and k.

The models for main effects and interactions are described in the main text. The intercept,
regression coefficients for covariates, and error variance are modeled

γ0 ∼ N(µ0,κ
2
0 )

γ|µγ ,κ
2 ∼ N(µγ ,κ

2I)

σ
−2 ∼ Gamma(ασ ,βσ ).

We set the following prior hyperparameters in our simulation study and data analysis:

µγ = 0 κ−2 = 1 µ0 = 0 κ
−2
0 = 1

σ
−2
µ1 = 1 σ

−2
µ2 = 1 αφ1 = 1 βφ1 = 1

αφ2 = 1 βφ2 = 1 ασ = 1 βσ = 1
απ1 = 1 βπ1 = 1 απ2 = 9 βπ2 = 1
αα1 = 2 βα1 = 1 αα2 = 2 βα2 = 1.

Bayesian profile regression
Bayesian profile regression was originally introduced in the logistic regression setting [2, 3] and
was later adapted to the linear regression context [4]. The original model is supervised profile
regression, in which the response informs cluster assignment. We included an unsupervised
version in which the response does not inform cluster assignment but is simultaneously
estimated via Bayesian linear regression. The only difference between the supervised and
unsupervised versions exists in the computation of the posterior distribution.

We fit supervised profile regression using the R package PReMiuM [5] and implement the
truncated stick-breaking approach to approximate an infinite mixture with a finite one. See
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Liverani et al [5] for details on the profile regression model with continuous exposures and a
continuous health outcome.

We fit the unsupervised profile regression model using the R package mmpack [6]. We
follow the same methods for model fitting and post-processing as in supervised profile
regression and incorporate only one change in the computation of the posterior distribution so
that the clustering is independent of the health outcome.

Let xi = (xi1, . . . ,xip)
T be a vector of continuous exposures for individual i. Then the

likelihood of an individual exposure profile can be written

f (xi|ψ,µ1, . . . ,µC,Σ1, . . . ,ΣC) =
C

∑
c=1

ψc f (xi|µc,Σc). (3)

Conditional on cluster assignment, zi = c, the likelihood of an individual exposure profile is

xi|zi = c,µc,Σc ∼ N(µc,Σc).

The remainder of the profile assignment model is described in the main text. We
simultaneously model the health outcome yi as a function of the cluster-specific intercept θzi and
covariates wi = (wi1, . . .wiq)

T :

yi|zi = c,θ ,γ,σ2 ∼ N(θc +wT
i γ,σ2)

θc|κ−2
c ∼ N(0,κ2

c )

κ
−2
c ∼ Gamma(ακ ,βκ)

γl |φ−2
l ∼ N(0,φ 2

l ) l = 1, . . .q

φ
−2
l ∼ Gamma(αφ ,βφ )

σ
−2 ∼ Gamma(ασ ,βσ ).

See Liverani et al [5] for details on the binary cluster variable selection algorithm
implemented here. The variable selection model is

µ
∗
c, j = πc, jµc, j +(1−πc, j)x̄ j

πc, j|ρ j ∼ Bernoulli(ρ j)

ρ j|ω j ∼ I(ω j = 0)δ0(ρ j)+ I(ω j = 1)Beta(αρ ,βρ)

ω j ∼ Bernoulli(0.5).

If variable selection is implemented, as was done in both the simulation and data analysis, then
µ∗c replaces µc in the likelihood in equation 3.

Following Molitor et al [3], we set the following prior hyperparameters for our simulation
and data analysis:

αα = 2 βα = 1 ακ = 7
2 βκ = 43.75

2
αφ = 7

2 βφ = 43.75
2 ασ = 2.5 βσ = 2.5

αρ = 0.5 βρ = 0.5 r = p C = 20.

We also set ν0 as the vector of empirical exposure means and Λ0 as a diagonal matrix where
each non-zero element is the square of the observed range for each exposure. Further, R is set to
the empirical covariance matrix of the exposure data.

The Bayesian framework of this model allows the number and size of clusters to vary across
iterations. When making inference, we must carefully consider the uncertainty regarding the
clustering. To do so, we follow the steps defined in Molitor et al. [3] and first determine the
most optimal clustering of the data using a least squares distance algorithm adopted from
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Dahl [7]. We construct an n×n score matrix at each iteration with a 1 in the i, j location if
individuals i and j belong to the same cluster and a 0 otherwise. We then calculate a probability
matrix S by averaging the score matrices. The most optimal clustering minimizes the least
squared distance to S. Details regarding this algorithm can be found elsewhere [2].

The primary parameter of interest in this model is θc. We implement model averaging
techniques account for uncertainty in the clustering when estimating θc. In a post-processing
step, we calculate the model-averaged estimates of θc in the “best” clustering of the data. For
iteration s and cluster c, the model averaged estimates are calculated as

θ̄
(s)
c =

1
nc

∑
i:zbest

i =c

θ
(s)
c ,

where nc is the number of individuals assigned to cluster c in the best clustering of the data
(zbest). We then calculate the posterior mean, variance, and credible intervals for θ̄c to
summarize the model averaged posterior health effect estimates for the best clusters.

We found UPR and SPR to be highly sensitive to prior specification with regards to PIPs and
clustering. The stick-breaking process depends on the ordering of cluster labels but the
likelihood of the DP mixture model does not; thus, SPR can suffer from poor mixing, motivating
the use of label switching moves. Convergence can still be problematic and is difficult to check.
Liverani et al. provides some diagnostic tools in the package PReMiuM [5].

Bayesian kernel machine regression
See Bobb et al. [8] and Bobb [9] for details on implementing Bayesian kernel machine
regression. We use all default parameters in our simulation and data analysis.
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