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I Model-Description

I.1 Prey-Agents

The prey agents are modeled as active Brownian particles with constant speed v = v0 and angular noise [1]. The
stochastic equations of motion read:

d~ri(t)

dt
= ~vi(t) (S1a)

dϕi(t)

dt
=

1

v0

(
Fi,⊥(t) +

√
2Dξ(t)

)
, (S1b)

with Fi,⊥(t) = ~Fi(t) · ~ei,⊥ being the force acting on agent i projected on the direction perpendicular to the direction
of motion ~ei,⊥, D being the angular diffusion coefficient and ξ(t) being Gaussian white noise with zero mean and
vanishing temporal correlations. For simplicity we omit in the following the explicit time dependence of positions,
velocities and forces.

Agents react to their environment by (i) coordinating their direction of motion with their neighbors through an align-
ment interaction, (ii) by trying to maintain a preferred distance to conspecifics (long-ranged attraction and short-ranged
repulsion) and (iii) by a fleeing response (repulsion) from the predator. The alignment force between a focal agent i
and all its neighbors j ∈ Ni

~Fi,a =
1

|Ni|
∑
j∈Ni

µalg · ~vji. (S2)

acts towards minimizing the velocity difference ~vji = ~vj − ~vi with the alignment strength µalg.

Individuals attempt to maintain a preferred distance rd to each other through a distance regulating force

~Fi,d =
1

|Ni|
∑
j∈Ni

µd · tanh (md(rji − rd)) · r̂ji (S3)

with r̂ji =
~rj−~ri
|~rj−~ri| being the unit vector along the distance vector from agent i to j, µd as strength of the force and

md as the steepness of the change from repulsion (for rji < rd) to attraction (for rji > rd), as illustrated in Fig. S1A.
Finally if a predator p is a neighbor of agent i, p ∈ Ni, the agent is repelled with

~Fi,f = −µflee · r̂pi (S4)

otherwise ~Fi,f = 0. The total force governing the movement decision of agent i is defined as

~Fi = ~Fi,d + ~Fi,alg + ~Fi,flee . (S5)
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Figure S1: Illustration of the distance regulating force. A: Distance regulating force ~Fd(rij) between agents i
and j projected on the separation direction r̂ji =

~rj−~ri
|~rj−~ri| . The force equals zero at the preferred distance rd = 1 and

is displayed for a distance regulating force steepness md = 2 (used in the simulations) and md = 4. B: Relative
polar coordinates of an agent i with respect to the center of mass ~rcom of the school (blue circle) and to the average
velocity of the school ~vcom (blue arrow). The angle αi,com (magenta arc) between the school velocity and the agents
i current position ~ri,com (magenta arrow) and the distance to the center of mass |~ri,com| define the position in this
relative coordinate system.

I.2 Predator-Agent

For simplicity the predator obeys a deterministic equation of motion for the heading angle, analogous to Eq. S1b but
without the angular noise term:

dϕp
dt

=
1

vp
~ep,⊥ · ~Fp . (S6)

Here, vp is the fixed predator speed and ~Fp is the predator pursuit force. In this study we consider a predator faster
than the prey vp > v0. We assume that the predator can only attack one prey at a time. It considers prey individuals
which are its frontal Voronoi-neighbors Np as targets and selects equally likely among them:

pselect,i =

{
1
|Np| if i ∈ Np
0 otherwise .

(S7)

The limitation of potential targets to its frontal Voronoi-neighbors Np, is motivated by kinematic and sensory con-
straints of the predator. If the predator launches an attack, with an attack rate γa, which also accounts for potential
handling time, it’s success probability is linearly dependent on distance and vanishes at distances larger than rcatch:

psuccess,i =

{
rcatch−rip
rcatch

if rip < rcatch
0 otherwise.

(S8)

In summary, the probability that a predator successfully catches a targeted agent within a small time window [t, t+ δt]
is

pcatch,i(t, δt) = psuccess,i(t) · pselect,i(t) · γaδt . (S9)

The predators movement is biased towards the weighted center of mass of the prey school, where each prey position
is weighted by its probability of a successful catch pcatch,i(t, δt). Since pcatch,i is non-zero only for the predator’s
frontal Voronoi-neighbors, the predator movement are governed by local, visually accessible information. The pursuit
force is thus

Fp = µp ·

(∑
i

pcatch,i~rip

)
. (S10)

II Model parameter

The default model parameters used are listed in Tab. S1. Note that two parameters can be eliminated by rendering
the equations dimensionless. If, for instance, the preferred distance rd and the prey speed v0 are used to define the
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parameter symbol value

pr
ey

angular diffusion D 0.5
alignment strength µalg evolves
distance strength µd 2
distance steepness md 2
(distance preferred) rd 1
(speed) v0 1
flee strength µflee 4

pr
ed

at
or speed vp 2

pursuit strength µp 2
attack rate γa 1/3
catch radius rcatch 3

si
m

ul
. number of agents N 400

time step dt 0.02
equilibration time Teq 200
simulation time Tsimu 120
mutation rate γm 0.8
mutation strength σm 0.075

Table S1: Default model parameters used. Time and space have been rescaled to dimensionless units by setting,
without loss of generality, the prey speed v0 and preferred distance rd to 1. All length scales are thus measured in units
of rd, and all time scales in terms of time needed to move the distance rd. Note that the flee strength µflee is strictly
speaking a predator-prey parameter which reduces the prey-only parameters to four.

characteristic length L and time T :

L = rd, T =
rd
v0
, (S11)

the Eq. S1 can be reformulated to

d~r′i
dt′

= ~v′i (S12a)

dϕi
dt′

=
rd
v2

0

(
Fi,⊥ +

√
2D

√
v0

rd
ξ(t′)

)
(S12b)

= F ′i,⊥ +

√
2Drotrd
v0

ξ(t′). (S12c)

Here is Drot = D
v2
0

the rotational diffusion coefficient (with the unit [D] = 1/t). The primed variables are the
dimensionless counterparts

t =
rd
v0
t′, vi = v0v

′
i, ri = rdr

′
i (S13)

and note that the Gaussian stochastic process is transformed according to

ξ(t) =

√
v0

rd
ξ(t′). (S14)

With this choice of characteristic length and time and setting v0 = 1 and rd = 1, the dimensionless parameters keep
their values listed in Tab. S1.

Since the flee strength µflee is a predator-prey interaction parameter, the prey system has effectively only four param-
eters from which the alignment strength µalg is evolving. The remaining prey parameters are the angular-diffusion

coefficient D which is set to D = 0.5 resulting in a persistence time of τp =
v2
0

D = 2, i.e. a solitary agents maintains
it current direction of motion for approximately the distance of two body length. The distance regulating strength
µd = 2 is chosen to ensures that the prey group stays cohesive. The distance steepness md = 2 regulates how quick
the distance regulating force saturates to its maximal/minimal values at distances below or above the preferred distance
rd (Fig. S1A).

For the predator the speed must be larger than the prey-speed and is set to vp = 2. Its pursuit strength µp describes
together with the speed its turning ability and is set to µp = 2 and therefore equals the preys distance regulating force
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strength. With an capture rate γc = 1/3 and a simulation time of T = 120 around forty prey are captured per round
which corresponds to 10% of the entire school. The catch radius is set to rcatch = 3 and therefore corresponds to three
body length.

The simulation parameters, and in particular the shoal-size of N = 400, have been chosen in order to simulate
biologically reasonable behavior, while at the same time limiting the computational costs. For each generation of
the evolutionary simulations, 76 independent runs are performed, with each equilibrating for Teq = 200 before the
predator appears, and then running for Tsimu = 120 time units. The time-step is set to dt = 0.02 which provides
sufficient numerical stability and efficient computation (see sectionII.1).

II.1 Numeric stability

This section addresses the numerical stability of the Euler-Maruyama method used to simulate the stochastic differ-
ential equations. The time-step dt should be much smaller than the persistence time τp = 2, smaller than the shortest
correlation time, small enough to fulfill the stability criterion and to avoid oscillating behavior. An even stricter crite-
rion is that the time step is smaller than a 1/10 of the correlation time of the fastest process

1

10|µ|
≤ dt. (S15)

Here µ is the strength of the strongest force (e.g. alignment-, flee-, repulsion-force).

III Evolutionary algorithm and ESS

The evolutionary algorithm is designed to mimic natural selection at the level of behavioral phenotypes. Among others,
the influence of fecundity selection or sexual selection is neglected and the fitness function is only based on how likely
an individual is captured in a predator attack, which is a biologically reasonable simplification in the context of
predator-prey interactions. The algorithm consists of (i) a fitness estimation step, (ii) a fitness-proportionate-selection
step and (iii) a mutation step.

(i) The fitness is estimated by running Nf = 76 independent attack-simulations on the same phenotype population.
For each simulation the γa · Tsimu agents with the highest cumulative probability of capture (Eq. S9) are declared as
dead. The fitness of agent i is:

fi = −Nc,i +max(Nc,j , j). (S16)

HereNc,i is the number of simulations in which agent iwas captured andmax(Nc,j , j) is the largest number of deaths
among all agents.

(ii) The N offspring are generated via the fitness-proportionate-selection. Thereby has one offspring the parameters
of the parent i with probability

pparent,i =
fi∑
j fj

. (S17)

(iii) An offspring agent mutates with a probability γm, the mutation rate, by adding to its alignment strength µalg a
Gaussian random variable with zero mean and standard deviation σm, as the mutation strength.

Steps (i) till (iii) are repeated in each generation.

Note that instead of step (i) the agents could directly get captured during the simulation and removed from the group
during the run. This however introduces an additional source of noise in the predation process and the resulting fitness
gradient of the prey would become more noisy. As a consequence the number of generations needed to reach an ESS
increases. Nevertheless, to ensure the robustness of our results we repeated the evolution with captures during the
evolution, which did not change the final results (see Sect. VII).

III.1 Estimation of the evolutionary stable state (ESS)

In the evolutionary algorithm the finite mutation strength and the stochastic roulette-wheel selection introduce noise
on top of the intrinsic stochasticity of the the predator-prey dynamics (Eq. S1). This stochasticity is essential for
evolutionary adaptation and exploration of the phenotype space, but makes it challenging to identify the evolutionary
stable states (ESS) with high precision in evolutionary simulations.
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To circumvent this uncertainty about the exact optimum, we estimate the evolutionary stable state based on the zero-
crossing of the fitness-gradient estimated from numerical simulations. For a system in generation g with agent pa-
rameters ~µalg(g) ∈ RN+ the estimated fitness gradient ∇f(g) is computed by predicting the mean outcome of the
fitness-proportionate selection

〈µalg〉predict(g) = ~pparent,i · ~µalg (S18a)

=
1∑N
j fj

N∑
i

fiµalg,i (S18b)

and subtracting from it the current mean-value:

∇f(g) = 〈µalg〉predict − 〈µalg〉. (S19)

Note that, in sake of readability, we omitted for terms on the RHS of Eqs. S18, S19 the dependency on the generation
g.

The average fitness gradient corresponding to an alignment strength is

∇f(µalg,∆µ) = 〈∇f〉Sµalg,∆µ =

∑
g∈Sµalg,∆µ

∇f(g)

|Sµalg,∆µ
|

(S20)

where Sµalg,∆µ
is the set of generations which fulfill the condition:

µalg −∆µ/2 ≤ 〈µalg〉(g) ≤ µalg −∆µ/2. (S21)

Therefore, Eq. S20 represents a simple binning of generations with a bin-width of ∆µ. The maximum of the estimated
fitness landscape, i.e. the evolutionary stable state, is where the estimated fitness gradient is zero and where its slope
is negative. An detail illustration of all components needed to compute the ESS as proposed here is shown in Fig. S2.

IV Measures of self-sorting

Here we explain in detail the relative positions of individuals in the swarm with respect to the front-back, side-center
dimensions and local density.

IV.1 Relative positions

In order to define the relative positions with respect to the front-back and to the side-center dimensions, we first
represent every agent position by its distance to the center of mass of the collective

ri,com = |~ri,com| = ~ri − ~rcom with ~rcom =
∑
i

~ri/N (S22)

and the angle between its position and the mean velocity of the collective

αi,com = ∠(~ri,com, ~vcom) with ~vcom =
∑
i

~vi/N . (S23)

We refer to this representation as the relative polar coordinates, illustrated in Fig. S1B. Note that the x-axis is parallel
to ~vcom, the center of mass is at the origin and the quadrants IV and III are folded onto I and II respectively. The
folding is reasonable if a left-right symmetry holds, which we assume. The relative front position is

r̃i,f = ri,com cosαi,com (S24)

with its normalized version as

ri,f =
r̃i,f −min(r̃j,f , j)

max(r̃j,f , j)−min(r̃j,f , j)
(S25)

which results in front positions in the interval ri,f ∈ [0, 1], with 0 corresponding to individuals at the very rear of the
school and 1 to individuals at the very front.

The relative side-position is

r̃i,s = ri,com sinαi,com (S26)
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Figure S2: Fitness gradients for different flee-strength to estimate the ESSs. Details on the estimation of evolu-
tionary stable states of Fig. 4 in the main text. A - G: Fitness gradient ∇f for evolution with different flee strength
µflee. Black-dots indicate the estimated fitness gradients for each generation. Solid lines are averaged fitness gra-
dients. Dashed vertical lines indicate where ∇f = 0 and thus mark the evolutionary stable states. H: All fitness
gradients displayed together. Note that the peaks for µflee = 6 at µalg ≈ 3 and for µflee = 8 at µalg ≈ 4 are due to
fluctuations in the standard-deviation of the population. If the standard-deviation is kept constant those peaks vanish
(not shown).

with its normalized version as

ri,s = r̃i,s/max(r̃j,s, j) . (S27)

We apply the normalization because we are interested if an individual is at the front and not how far the front is
away from the center of mass. As a results, the normalized measures are less noisy if we average over independent
initializations. The average normalized relative-position over S samples is

〈ri,x〉 =

∑S
k=1 ri,x,k
S

(S28)

with ri,x,k as the normalized relative position of agent i in the kth sample run. Note that the normalized relative
position is computed after the equilibration time Teq .

IV.2 Local density

The local density of agent i is computed through its distance to the kth nearest neighbor di,kN to

ρi = k/A(di,kN , di,e) . (S29)
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The term A(di,kN , di,e) represents the corrected area. If the agents distance to the edge of the collective di,e is larger
as di,kN , no correction is needed and the area is the area of a circle with radius di,kN . If the distance to the edge is
smaller than di,kN , the circle-area is corrected by subtracting the area of the circle segment with a sagitta (height) of
h = di,kN − di,e. Therefore, the area is computed as

A(di,kN , di,e) =


Φd2

i,kN if di,kN < di,e

Φd2
i,kN − di,kN

(
di,kN arccos

di,e
di,kN

− di,e
√

1− d2
i,e

d2
i,kN

)
otherwise.

(S30)

This correction is good if the edge of the collective has a small local curvature compared to the curvature of the circle
with radius di,kN . This should be fulfilled because a collective of N = 400 individuals with a preferred distance of
rd = 1 and a spherical form has a radius of R ≈ 11 while the distance to the kth nearest neighbor with k = 10 and a
Voronoi-interaction network is between 1 and 2.

IV.3 Assortativity

The assortativity r is defined as

r =
1

σ2
q

∑
j,k

jk(ej,k − qjqk) (S31)

with ei,j as the joint probability that a randomly drawn edge connects vertices of type i and j, and qx is the probability
that a node of type x is at one end of a randomly drawn edge, i.e. it is the fraction of edges that have a vertex of type x
at one end. The assortativity is the Pearson correlation coefficient over the values of the vertices connected by edges.

V Susceptibility under a homogeneous global field

The susceptibility is in general defined by how strong a macroscopic observable 〈m〉 changes if an external field h is
changed

χ =
∂ 〈m〉
∂h

. (S32)

In the Ising-model, the susceptibility defined in Eq. S32 describes the change of the magnetization per spin

m =
M

N
=

1

N

N∑
i=1

si , (S33)

given the change of an external field h The si is the spin at side i which can be either up or down, i.e. si ∈ [−1, 1].
Interestingly, the response to a (weak) field can be linked to fluctuations in the order parameter in the absence of a
field [2]. In statistical physics the probability to observe the system in the state ~s = [s0, s1, . . . , sN ] is

P (~s) =
exp[−βH(~s)]

Z
. (S34)

H(~s) describes the energy of the system at state ~s and β is the inverse of the thermal energy β = 1/(kbT ) with kb
as the Boltzmann constant and T as the temperature of the surrounding heat bath. Thus, the state ~s is more likely the
smaller its corresponding energy. The partition function

Z =
∑
{~s}

exp[−βH(~s)] (S35)

normalizes the probability with
∑
{~s} as a sum over all possible system states. If spins tend to align with the external

field, the energy is partly defined as H(si) = ...−h
∑
i si. Now, the mean magnetization per spin can be computed to

〈m〉 =
∑
{~s}

m(~s)P (~s) = 1/N
1

β

∂ lnZ

∂h
. (S36)

This allows us to derive the susceptibility χ defined in Eq. S32 to

χ =
1

β

∂2 lnZ

∂h2
=

β

N
[
〈
M2
〉
− 〈M〉2] = βN [

〈
m2
〉
− 〈m〉2] (S37)
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The above relation connects the response of the system to an infinitesimally small change of the external field h with
fluctuations in the order parameter. The linear nature of this response to small changes can also be assessed by a
Taylor-expansion to linear order of the canonical distribution around h = 0 (see for example Eq. 1.21 in [2]). The
response can be reformulated to highlight the link to the connected spin correlation function or spin pair correlation
function

χ = Nβ[
〈
m2
〉
− 〈m〉2] =

β

N

〈∑
ij

sisj

〉
−

〈∑
i

si

〉
·

〈∑
j

sj

〉 (S38a)

=
β

N

∑
ij

[〈sisj〉 − 〈si〉 〈sj〉]. (S38b)

In the following, we establish an analog description for the model system (presented in Sect. I) with fixed speed.

V.1 Susceptibility of the prey collective in equilibrium

For simplicity we assume, as in the section before, that the prey agents (Sect. I) react to a global homogeneous field
~h. From Eq. S1 the change in heading of individual i in response to ~h is

dϕi
dt

=
~hêϕ,i
v0

= Fi,s with êϕ,i = [− sinϕi, cosϕi] . (S39)

From this force Fi,s the analog to energy Hs,i for individual i can be computed via integration to

Hs,i = −
~hûi
v0

with ûi = [cosϕi, sinϕi] . (S40)

The total energy is composed of the sum of isolated components Hs,i and of the part that is influenced by the interac-
tions in between the prey Hm:

H = Hm(~ϕ) +
∑
i

Hs,i(ϕi,~h) = Hm(~ϕ) +−
~h

v0
·
∑
i

ûi (S41)

with ~ϕ = [ϕ0, ϕ1, . . . , ϕN ]. Only Hs,i depends on the external field ~h. Knowing the energy of the systems allows
(analog to Eq. S34) to define a probability to observe the state ~ϕ which is

P (~ϕ) = cH
exp[β~h

∑
ûi]

Z
= cH

exp[βN~h~φ]

Z
(S42)

with cH = e−βHm . However, note that Eq. S34 assumes that there is a heat bath represented by β = 1/(kbT ).
Since the strength of the angular noise D (see Eq. S1) can prevent polarization in the prey collective, it plays a similar
role as the temperature in the Ising model. Therefore, we use β = 1/(Dv0) to compute the expectation value of the
polarization vector ~Φ = 1

N

∑N
i ûi (analog to the computation of the mean magnetization in the Ising model).〈

~Φ
〉

=
∑
{~ϕ}

~ΦP (~ϕ) =
1

Nβ
~∇~h lnZ (S43a)

=
1

Nβ

(
∂
∂hx
∂
∂hy

)
ln

∑
{r,ϕ}

cHe
β~h· ~M

 , (S43b)

with ~M = N~Φ. Finally, we compute the susceptibility as the sum of changes of the polarization vector
〈
~Φ
〉

compo-

nents with respect to the external field~h. It can be written more compact with the~h-Laplace operator ∆~h = ∂2

∂h2
x

+ ∂2

∂h2
y

to

χ = ~∇~h
〈
~Φ
〉

=
1

Nβ
∆~h ln(Z) (S44a)

=
β

N

[〈
M2
x +M2

y

〉
−
(
〈Mx〉2 + 〈My〉2

)]
(S44b)

=
β

N

[〈
~M · ~M

〉
−
〈
~M
〉
·
〈
~M
〉]

(S44c)

= βN
[〈
~Φ · ~Φ

〉
−
〈
~Φ
〉
·
〈
~Φ
〉]

= βN
[〈

Φ2
〉
− 〈Φ〉2

]
. (S44d)
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This is analogous to Eq. S38 and establishes a link to the pair-correlation between individual heading direction. Anal-
ogously to Eq. S38, we may also write:

χ = Nβ
[〈
~Φ · ~Φ

〉
−
〈
~Φ
〉
·
〈
~Φ
〉]

(S45a)

=
β

N

〈∑
i

ûi ·
∑
j

ûj

〉
−N2

〈
~Φ
〉
·
〈
~Φ
〉 (S45b)

=
β

N

〈∑
ij

ûi · ûj

〉
−
∑
ij

〈
~Φ
〉
·
〈
~Φ
〉 (S45c)

=
β

N

∑
ij

[
〈ûi · ûj〉 −

〈
~Φ
〉
·
〈
~Φ
〉]

(S45d)

=
β

N

∑
ij

〈(
ûi −

〈
~Φ
〉)
·
(
ûj −

〈
~Φ
〉)〉

. (S45e)

Note that the above derivation until Eq. S44 assumes a thermodynamic equilibrium and is for the out-of-equilibrium
prey model strictly speaking not valid (see [3, 2] for discussion of non-equilibrium approaches). However, from
Eq. S44 to Eq. S45 there is no such assumption. It is merely a reformulation and therefore valid. It means, we can
interpret χ always as the sum over the correlation in velocity fluctuations over all pairs. In other words, the larger χ
the stronger is the mean correlation of directional information between random pairs.

V.2 Difference between susceptibility and predator response

We assumed in Sect.V that (i) the system is in thermodynamic equilibrium (ii) the changes of the external field are
small and it is (iii) global and (iv) homogeneous. These four are in general violated for the reaction of a collective to
a predator.

• Equilibrium state: We consider an active system and therefore per definition a non-equilibrium system. The
agents dissipate constantly energy (no conservation of momentum) but, due to an unspecified energy source,
keep their preferred speed, i.e. the system is out of thermal equilibrium.

• Small changes of an external field: In the context of a predator attack, the perturbing force is the flee-force
of the agent. This flee-force can also be large and thus can dominate all other forces. Therefore, to compute
the susceptibility by the linear approximation might not be justified.

• Global field: The global homogeneous field simplified the former analytical derivations of the susceptibility.
However, the flee-force is neither global nor homogeneous. The flee-force acts only on agents that directly
sense the predator. If we assume visual interactions with occlusion by conspecifics, but also with metric-,
Voronoi-interaction and other local interaction types, the predator is per definition a local perturbation.

• Homogeneous field: The flee-force is in the simplest case a repulsion force and therefore inhomogeneous.
However, close individuals have similar relative position with respect to the predator and therefore also a
similar flee-force. Thus, locally the force can be approximated to be homogeneous.

The violation of the first assumption means that we can not ensure that the fluctuations in the order parameter represent
the response of the system to an external field. However, as shown in Eq. S45 these fluctuations are analog with the
sum over all pair correlations of velocity fluctuations. Furthermore, even if we assume that the susceptibility would
represent the change of one non-equilibrium stationary state to another one due to an external field, it might be useless
at the phase transition. Phase transitions are up to a certain degree analogous to bifurcations in dynamical systems,
i.e. both mark the sudden emergence or extinction of steady states. Thus, as it is typical for bifurcations, also at phase
transitions critical slowing down occurs. This means that the dynamic of the system slows down and the relaxation to
the steady state takes longer the closer the system is to the phase transition. The attack of a predator is fast and the
predator does not wait for the collective to reach a steady state to continue. This is an additional reason, with the other
mentioned unmet assumptions, why the susceptibility should be considered with caution and why its link to optimal
predator response is unclear.
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Figure S3: Balancing social and private information via a directional compromise. A: Illustration of angle-
vector-relations for variables used in Eq. S47 and the following. The angle α is the angle between the mean velocity of
neighbors 〈~vj〉Ni (blue arrow) and the velocity ~vi of agent i (black arrow). The angle θ is the angle between the mean
neighbor-velocity and the flee force ~Fflee (red arrow). B: Numerical-results of the relative direction to neighbors α
using Eq. S47. The initial conditions is α = 0, i.e. the focal agent is perfectly aligned with its neighbors. The angle
between mean neighbor velocity and flee force is θ = π/2.

VI Balancing social vs. direct predator information

We identified in the main text a possible explanation for the dependence of the evolutionary stable alignment strength
on the flee strength as observed in the main text Fig. 4B. A prey can benefit from stronger alignment if it has no private
information about the predators position. The benefit increases the faster the alignment and therefore should increase
with alignment strength. But if the prey is fleeing already, i.e. it has private (direct) information on the predator
position, than alignment to uninformed neighbors can hinder an escape. Therefore, we expect a balance between
benefits and costs. In the following we will discuss a semi-analytical approximation which reproduces the observed
linear dependence.

The costs to align with uninformed prey if the predator position is known can be viewed as a deviation from the flee
direction, i.e. the prey relaxes to an effective flee direction which is the compromise between the mean direction of its
neighbors and the flee direction Fig. S3.

We will use the following assumptions:

• i) highly ordered: all neighbors are perfectly aligned with each other.

• ii) strong forces: the acting forces are strong such that the agents equilibrate quickly in the direction of the
force.

• iii) constant forces: the flee-angle and the heading of the neighbors are not changing.

• iv) no noise: this will enable us to solve the problem analytically.

Consequently the change of the direction-angle of Eq. S1b can be reformulated to

dϕi
dt

=
1

v

(
Fi,ϕ +

√
2Dξ

)
(S46a)

≈ 1

v
(Fi,ϕ) (S46b)

≈ 1

v

(
µfleef̂flee + µalg[〈~v〉Ni − êr,i]

)
· êϕ,i. (S46c)

With 〈~v〉Ni being the mean velocity of all neighbors of agent i and êr,i and êϕ,i are its heading and angular direction,
respectively.
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Without loss of generality we can permanently rotate the system such that ϕ = 0,∀t which simplifies the vector
products since êr,i = [1, 0] = êx and êϕ,i = [0, 1] = êy . The angle α between ~vi and 〈~v〉Ni behaves exactly opposite
as ϕ (see Fig. S3A) and we describe its dynamics instead:

dα

dt
= −dϕ

dt
(S47a)

≈ −1

v

(
µfleef̂flee + µalg[〈~v〉Ni − êx]

)
· êy (S47b)

≈ −1

v
(µfleefflee,y + µalg〈~v〉Ni,y) . (S47c)

With fflee,y = sin(θ − α) and by assuming perfect order and unit speed the mean velocity of neighbors is 〈~v〉Ni =

1

(
cos(α)
sin(α)

)
. Therefore, the change of α simplifies to:

dα

dt
≈ −1

v
(µflee sin(α− θ) + µalg sinα) (S48a)

≈ µflee sin(θ − α)− µalg sinα. (S48b)

The fixed points are, as a sanity check, computed for the extreme cases µalg � µflee and µflee � µalg which are
α? = 0 and α? = θ, respectively. There exist in general four fixed points from which only one fulfills the criteria
α?/θ ∈ [0, 1]∀ (µflee > 0, µalg > 0, 0 < θ < π/2) which is:

α?(θs, µalg, µflee) = arccos
µalg + µflee cos θ√

µ2
alg + µ2

flee + 2µalgµflee cos θ
. (S49)

Thus α? is the effective flee angle with respect to the mean direction of the neighbors. The closer it is to the flee angle
θ the smaller the cost of being aligned given the knowledge of the predators position.

Now we assume that individuals evolve such that they maintain α?(θs) with respect to a specific θs. Thus, if we know
the equilibration point µ?alg,evo(µflee,evo) for the specific flee strength that was used during the evolution µflee,evo,
we can compute the effective flee angle α?(θs, µ?alg,evo, µflee,evo) = α?(θs). If we assume that agents evolve such
that the balance between alignment benefit and cost, manifested in the effective flee angle, is kept constant, than we
can predict the evolutionary stable state µ?alg for a given flee strength by reformulating Eq. S49 to

µ?alg =
sin(θs − α?(θs))

sinα?(θs)
µflee. (S50)

The term sin(θ−α?)
sinα? does not depend on θs which we confirmed numerically. Thus, the exact choice of θs is irrelevant

and sin(θ−α?)
sinα? is only the slope which connects the origin and the one evolutionary stable state (µ?alg,evo, µflee,evo)

used to compute α?(θs) as shown by the blue line in Fig. 4B.

Note that the equilibrium alignment strength µ?alg above but close to the order transition is systematically lower than
its predicted value, as seen for µflee ∈ {2, 3, 4} in Fig. 4B. This can be explained by a small signal due to the low flee
strength, because the system relaxes faster the greater the flee strength µflee (see Fig. S3B). An alternative explanation
is that the spatial selection due to strong self-sorting dominates at the transition. This explanation is also in agreement
with the ESS for low flee strength (µflee = 0.5) being identical to the one with no flee strength at all (µflee = 0).

VII Robustness against modifications of the prey & predator dynamics and the selection
mechanism

To ensure that our results are robust, we repeat the evolution (Fig. S4) with (i) modified prey properties, i.e. changing
the angular diffusion coefficient and introducing variable speed and a blind angle, (ii) a changed predator behavior, i.e.
its agility, and (iii) changes in the evolutionary selection mechanism, e.g. by an additional high-frontal-risk selection
mechanism or by a prey capture during the simulation. Note that especially the additional high-frontal risk selection
is of importance, because it introduces a heterogeneous environment which is assumed to be a general important
condition for the evolution to criticality [4].
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Figure S4: Robustness analysis of evolution results. Evolutionary stable states of the alignment strength are esti-
mated from the fitness gradient for different flee strength under slight variations of simulations parameters or predator
attack implementation. The standard scenario of the main text (blue line) is compared to (A:) a prey population with
varying speed which can avoid the predator additionally by acceleration (black dotted line), a prey population with a
angular diffusion coefficient which is doubled compared to the standard case (red dashed line), a prey population with
a continuous blind angle (magenta dash dotted line), (B:) a less agile predator (“stiff”) which turns less quick (black
dotted line) and an more agile predator which turns quicker (red dashed line) than the predator in the standard case.
(C:) a non-binarized fitness estimate (red dashed line) in which the prey’s fitness is not defined by captures but by the
accumulated probability of capture, a fitness estimate based on captures during the simulation (black dotted line),

VII.1 Prey modifications

The change in angular diffusion fromD = 0.5 to D = 1 shifts the order-transition to a larger mean alignment strength
of µalg,c ≈ 1.6 and therefore also increases the lower bound for the ESS which is visible in larger ESS for small
flee strength (compare dashed red with blue line in Fig. S4A). For larger flee strength the results are nearly identical
suggesting that the mechanism defining the ESS remains unchanged with respect to the standard scenario of the main
text.

If the speed of the prey is not constant but can change according to social forces, the equations of motion (Eq. S1)
change to

d~ri
dt

= ~vi with ~vi = vi[cosϕi, sinϕi] (S51)

dvi
dt

= β(v0 − vi) + Fi,v(t) (S52)

dϕi(t)

dt
=

1

v

(
Fi,ϕ(t) +

√
2Dξ(t)

)
(S53)

with Fi,v(t) = ~Fi · êh,i as the projection of the social force of prey i on its heading direction êh,i and β as the relaxation
coefficient which is set in the following to β = 4. A value of β = 4 prevents the school to relax into a non-moving
phase which exists for lower values of β [5]. In this non-moving state the speed of the prey would fluctuate around
zero. Additionally, we set an upper bound for the prey’s speed corresponding to eighty percent of the predators speed
vmax = 0.8vp. Non-fleeing prey (µflee = 0) evolve to significant larger values compared to the standard scenario
from the main text (compare dotted black with blue line in Fig. S4A). The ESS for non-fleeing prey (µflee = 0)
coincides with the zero-crossing of the front-sorting (Fig. S5). Not only is the ESS of the non-fleeing prey at larger
values due to a different self-sorting but also is the ESS much more sensitive to changes in the flee strength (compare
slope of dotted black with blue line Fig. S4A). This steeper increase is explainable with an additional social cue,
the increased speed of fleeing neighbors, which is not present in the constant speed scenario and goes in hand with
findings by Lemmasson et al. [6, 7].

We introduced an anisotropy of social interactions via a continuous angular preference: a focal agent i responds
stronger to neighbors in front than to those at the side or behind. Mathematically, the preference depends on the
relative angular position θij of neighbor j ∈ Ni, which is the angle between the focal agents current velocity ~vi and
the relative position of the neighbor ~rji). Following Calovi et al. [8], the preference decreases with θij

Ωij = 1 + cos θij , with θij = ∠(~vi, ~rji) . (S54)

This corresponds to a continuous version of a blind angle. Thus, instead of computing the social forces by averaging
over all Voronoi neighbors equally, a weighted average is performed to compute the alignment and distance regulating
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Figure S5: Self-sorting with and without fixed speed. Self-sorting quantified via the Pearson correlation between
the individual alignment parameter µalg and the average relative position of the individuals (relative front-, side- or
density-location as described in Sect. IV.1). A: If prey agents respond only by changing their direction but not their
speed (fixed speed), self-sorting persists also in highly ordered regions. B: If prey agents can change their speed
(variable speed), self-sorting vanishes for µflee ≤ 6.

force (Eqs. S2, S3). The weight is proportional to the angular preference Eq. S54. This modification leads to less
averaging and therefore a higher sensitivity to noise which we measure via a decrease in the polarization for the same
parameters as in the standard scenario. It effectively shifts the disorder-order transition to larger alignment strength
(not shown). In agreement with the shifted disorder-order transition also the ESSs shift to larger alignment strength
but the qualitative dependence on the flee strength and their location in the order regime are not altered in comparison
to the standard scenario discussed in the main text (compare slope of dash dotted magenta with blue line Fig. S4A).

VII.2 Predator modifications

We repeated the simulations with (i) a less agile predator which turns slower and (ii) a more agile predator which
turns faster compared to the predator considered in the main text. The different turning ability was implemented by
modifying the pursuit strength µp to µp = 1 for the less agile and to µp = 3 for the more agile predator.
The effect of using the less agile predator is negligible for low flee-strength, probably because the order-disorder
transition acts as lower bound for the ESS due to the explained maximum in assortative mixing and resulting subpop-
ulation selection. However, for larger flee strength, e.g. µflee ∈ {4, 8} in Fig. S4B, the ESSs are lowered compared
to the standard scenario in the main text. This can be explained by the missing feedback between the reaction of the
prey and the trajectory of the predator: in the standard scenario the predator heads for the closest prey, thus if certain
prey individuals are good at evading the predator, they have an additional fitness benefit because the predator pursues
effectively primarily less well evading prey.
Consequently, the more agile predator increases the relative fitness benefit of better responding prey and thus ampli-
fies the fitness gradient, which should push the ESS more in the already preferred parameter region. This is in fact
observed (compare dotted black with blue line in Fig. S4B).
Despite the quantitative differences due to the predator modifications the general finding discussed in the main text
remain unchanged, i.e. that the ESSs are in the ordered phase and increase with increasing flee-strength.

VII.3 Selection modification: Evolution in a heterogeneous environment

In the simulations prey are not captured but a fixed fraction of them with the largest accumulated probability of capture
is declared as captured after the simulation. This means that no prey is removed during the simulation which reduces
stochasticity of the fitness estimate but can be considered as unrealistic. If prey are removed during the simulation
based on their current probability of capture and the predators attack rate, the evolution results remain unchanged
(compare dotted black with blue line in Fig. S4C). Hereby the attack rate γa is adjusted at each generation g such that
the mean capture rate 〈γc〉 matches the initially set attack rate γa(g = 0):

γa(g + 1) = γa(g) ∗ γa(0)

〈γc(g)〉
. (S55)

This ensures a constant evolutionary pressure.

The attack rate parameter can be abandoned if the fitness is not estimated by the captures but by the negative accumu-
lated probability of capture. This modification does not alter the ESS identified in the main text at all (compare dashed
red with blue line in Fig. S4C).
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Figure S6: Evolution in heterogeneous environments. Fitness gradients for different relative strength of the frontal-
risk selection with respect to the simultaneously active predator-selection. In the frontal-risk selection the most frontal
individuals are declared as dead. The relative strength of the frontal-risk selection is defined by the ratio between
agents killed at the front and by the predator, i.e. (Front Kills)/(Pred. Kills) ∈ [0, 0.05, 0.1, 0.2]. The evolutionary
stable state (ESS) is defined by the zero-crossing of the fitness gradient with negative slope marked by a vertical dashed
line. However, the lower bound is an additional ESS if the fitness gradient stays negative close to it which is marked
by shaded points in the inset. Parameters are identical to the former simulations apart from the angular diffusion
coefficient which is increased to D = 1 increasing the order-transition to µalg,c ≈ 1.6 marked by vertical dash-dotted
magenta line. The flee strength is µflee = 4.

The chosen predator-prey interaction is set as general as possible, nevertheless reasonable alternatives exists and other
environmental interactions, e.g. exploration and exploitation of food-sources, might simultaneously impact the fitness.
We introduce an additional selection mechanisms which favors a disordered phase and creates thus a heterogeneous
environment. The self-sorting for this model predicts that a high mortality of front individuals leads to a disordered
state which we implement by declaring the most frontal prey as dead. This extra selection is equivalent with the
observed high risk of being in the front in the presence of sit-and-wait predators [9]. Since the current transition is
close to the lower boundary of the alignment parameter (min(µalg) = 0), we set the transition at larger values, i.e.
at µalg,c ≈ 1.6, by increasing the angular diffusion to D = 1 (ensuring that fluctuations allow equilibration in the
disordered regime).

The ESS with respect to alignment decreases with increasing weight on the frontal-risk selection (Fig. S6) which
seems to be not surprising; however, in a similar study individuals evolved to criticality if exposed to a diverse envi-
ronment [4]. In fact the transition acts here as a fitness valley, marked by a zero-crossing of the fitness gradient with
positive slope, causing multiple local optima (inset in Fig. S6), which only vanish if one of the selection mechanisms
dominates.
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S Videos

S1 Video

Animation of nine simulations. The red line are the past- and the empty red circle is the current center of mass of the
collective. Animations in the same column are samples of the same parameter configuration. The columns differ in
the alignment strength µalg = [0, 1, 2] indicated at the top. The remaining parameters are identical to the ones used in
the main text (listed in Tab. S1).

S2 Video

Same as S1 Video but with a predator attacking the collective.

S3 Video

Attack simulation on non- and fleeing prey. The left panel shows only the fleeing prey, the right the non-fleeing prey,
and the center shows both. The color-code is black=fleeing prey, blue=non-fleeing prey, red=predator attacking fleeing
prey, green=predator attacking non-fleeing prey. Parameters are identical to the ones used in the main text (listed in
Tab. S1).

S4 Video

Same as S2 Video but with other alignment parameters µalg = [2, 3, 4].

S5 Video

Animation of nine attack simulations with variable prey speed. Same as S2 but with preys that are able to accelerate
according to the current force. The equations of motions for the prey with variable speed are defined in Sect. VII.
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