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SECTION S1. GENERALIZATION ACROSS INSTANCES OF VGG-16 

 

 
Figure S1. Results using another instance of the VGG-16 network. The results for 
each experiment are shown for both the MatConvNet VGG-16 (red) and VGG-16 (blue). 
The grey region indicates humanlike performance.  



a) Thatcher index across layers of the VGG networks. Error bars indicate s.e.m 
across face pairs (n = 20). Dashed lines represent the Thatcher index from a 
previous study 1, measured on a different set of faces (see Methods).  

b) Mirror Confusion Index (averaged across all objects) across layers for the 
pretrained VGG-16 networks. Error bars indicates s.e.m across stimuli (n = 50). 
Dashed lines represent the mirror confusion index estimated from monkey inferior 
temporal (IT) neurons in a previous study 2.  

c) Accuracy of object classification by the VGG-16 network for congruent (dark) and 
incongruent (light) scenes, for top-5 accuracy (left) and top-1 accuracy (right). Error 
bars represent s.e.m across all scene pairs (n = 40). Asterisks indicate statistical 
significance computed using the Binomial probability of obtaining a value smaller 
than the incongruent scene correct counts given a Binomial distribution with the 
congruent scene accuracy (** is p < 0.01, **** is p <0.001).  

d) Normalization slope plotted across layers for two object displays (blue & red) and 
three-object displays (yellow & purple) for the VGG-16 network and MatConvNet 
VGG-16. The dashed lines depict the slopes observed in monkey IT neurons using 
a different stimulus set 3. 

e) Left: Correlation between sparseness on the reference set vs along morphlines 
across units of each layer in VGG-16 networks. The dashed line indicates the 
observed correlation in monkey IT neurons on the same set of stimuli. Right: 
Correlation between sparseness for textures and sparseness for shapes plotted 
across layers of the VGG-16 networks. The dashed line indicates the observed 
correlation in monkey IT neurons on the same set of stimuli.  

f) To calculate a single quantity that measures adherence to Weber’s law, we 
calculated the correlation between distances and relative changes in length and 
subtracted the correlation between distances with absolute changes in length (see 
Methods). A positive difference indicates adherence to Weber’s law (gray region). 
This difference in correlation is plotted across layers for line length in the VGG-16 
networks. The dashed line indicates the value observed during human performing 
visual search on the same stimuli. 

g) Relative size index across units with interaction effects (averaged across top 7% 
tetrads, error bars representing s.e.m) across layers of the VGG-16 networks. The 
dashed line shows the strength of the relative size index estimated from monkey 
IT neurons on the same set of stimuli 4.  

h) Surface invariance index across units with interaction effects (averaged across  top 
9% pattern/surface tetrads, error bars representing s.e.m) across layers of the 
VGG-16 networks. The dashed line depicts the surface invariance index estimated 
from monkey inferior temporal neurons on the same set of stimuli 5. 

i) 3D processing index for the VGG-16 networks across layers, for condition 1 and 
condition 2 (Figure 5A). Dashed lines represent the estimated human effect 
measured using visual search on the same stimuli.  

j) Occlusion index for the occlusion  and depth ordering effects for each layer of 
VGG-16 networks. Dashed lines represent the effect size in humans measured 
using visual search on the same stimuli. 



k) Part processing index across layers of the VGG-16 networks. The dashed line 
represents the effect size estimated from human visual search on the same stimuli 
6. 

l) Natural part advantage across layers of the VGG-16 networks. The dashed line 
represents the effect size estimated from human visual search on the same stimuli 
7.  

m)  Global Advantage index across layers of the VGG-16 networks. The dashed line 
represents the effect size estimated from human visual search on the same stimuli 
8. 

  



SECTION S2. GENERALIZATION ACROSS FEED FORWARD NETWORKS 

 
 The results in the main text were based on testing a specific feedforward network, 
namely VGG-16. Here, we investigated other feedforward network architectures for the 
presence of the same perceptual and neural phenomena. We did not test the recurrent 
networks since unfolding recurrent networks over time make them equivalent to a deep 
feedforward network 9,10. 
 
Methods  
 We selected four popular pre-trained feedforward networks, all trained on the 
ImageNet ILSVRC challenge data 11,12. We selected architectures that are shallower and 
deeper than VGG-16, to investigate whether the depth of the network influences the 
emergence of the perceptual and neural properties. All networks were implemented using 
MatConvNet framework in MATLAB, and their performance is summarized in Table S1.   
 
Network 1: AlexNet. This network won the ILSVRC 2012 challenge by a large margin 13. 
The network consists of five convolutional layers and three fully-connected layers. Drop-
out technique is used fully connected layers to reduce overfitting. The architecture of this 
network is shallower compared to VGG-16.  
 
Network 2: GoogLeNet. This network follows the inception architecture which is well 
known for better utilization of computing resources inside the network. This network won 
the classification track of the ILSVRC 2014 challenge 14.  
 
Network 3: ResNet-50. ResNet-50 is a shallower variant of the ResNet-152 detailed 
below.  
 
Network 4: ResNet-152. The network uses a residual learning principle which make them 
capable of training deeper networks without the problem of vanishing gradients 15. The 
ResNet architecture won three tracks (classification, detection and localization) of the 
ILSVRC 2015 challenge and two tracks (detection and segmentation) of the COCO 2015 
challenge.  
 

Name of network Performance  

Top-1 error (%) Top-5 error (%) 

AlexNet 42.6 19.6 

VGG-16 28.5 9.9 

VGG-16 trained using MatConvNet 28.3 9.5 

GoogLeNet 34.2 12.9 

ResNet-50 24.6 7.7 

ResNet-152 23.0 6.7 

Table S1. Performance of deep networks on the ILSVRC 2012 validation dataset 
(accuracy reported from MatConvNet website, accessed on 27th November 2019).  
 
 
 



Results 
 
Experiment 1: Thatcher effect. The Thatcher index for each network across layers is 
shown in Figure S1A. It can be seen that the Thatcher index is negative for all networks 
in their final layers except for GoogLeNet which showed a small positive level in the final 
layers. For the networks with higher classification performance (GoogLeNet, ResNet-50, 
ResNet-152), we observed an interesting pattern whereby the Thatcher index is positive 
in the intermediate layers. This is true even for the VGG-16 network (Figure 2B).  
 
Experiment 2: Mirror Confusion. The mirror confusion index for each network is shown in 
Figure S1B. All networks exhibited an increasing mirror confusion index across layers, 
just as we observed for VGG-16 (Figure 2D).  
 
Experiment 3: Scene incongruence. The classification accuracy for objects in congruent 
and incongruent scenes is shown for each network in Figure S1C. It can be seen that the 
deeper architectures show smaller incongruence effects.  
 
Experiment 4: Multiple object normalization. The normalization slope for pairs and triplets 
for all networks is shown in Figure S1D. It can be seen that there is increased 
normalization in the later layers in all networks.  
 
Experiment 5: Selectivity across multiple dimensions. The correlation between 
sparseness of units in each layer for textures and shapes is shown in Figure S1E. It can 
be seen that all networks show an increasing trend in later layers. We obtained 
qualitatively similar results for comparing sparseness on the reference shape set and 
morph lines (not shown for brevity).  
 
Experiment 6. Weber’s law. The Weber’s law measure (difference in correlation for 
relative vs absolute length) for all networks is shown in Figure S2A. It can be seen that 
the Weber’s law arises in the later layers for all the networks.  
 
Experiment 7. Relative size. The relative size effect for each network across layers is 
shown in Figure S2B. It can be seen that the relative size effect is extremely weak and 
variable across networks, and never approaches the levels observed in the brain (relative 
size index = 0.39).  
 
Experiment 8: Decoupling patterns from surfaces. The surface invariance index for each 
network across layers is shown in Figure S2C. It can be seen that the index is consistently 
negative for all networks, as observed for VGG-16.  
 
Experiment 9: 3D processing. The 3D processing indices (for Condition 1 & 2) for each 
network across layers is shown in Figure S2D. It can be seen that the 3D processing 
indices are generally negative for all networks, and even if the index is positive, the levels 
are much smaller than observed in humans.  
 



Experiment 10: Occlusions. The occlusion indices for each network across layers is 
shown in Figure S2E. It can be seen that both indices are consistently negative across 
layers, as observed for VGG-16.  
 
Experiment 11: Object parts. The natural part advantage for Experiment 11B is shown for 
each network across layers in Figure S3B. It can be seen that the natural part advantage 
is highly variable across networks, with GoogLeNet showing levels comparable to 
humans in the later layers.  
 
Experiment 12: Global shape advantage. The global advantage index for each network 
across layers is shown in Figure S3C. Across all networks, there is a slight global 
advantage in the intermediate layers, which reverses into a local advantage in the later 
layers. Thus, it appears that all the feedforward networks are using local features for 
classification.  
 
  



 
Figure S2. Experiments 1-5 with other feed-forward networks. Each column 
represents a deep network (from left to right: AlexNet, GoogLeNet, ResNet-50 and Reset-
152). The grey region indicates human like performance. 

a) Thatcher index across layers of the pretrained networks. Error bars indicate s.e.m 
across face pairs (n = 20). Dashed lines represent the Thatcher index from a 
previous study 1, measured on a different set of faces (see Methods).  



b) Mirror Confusion Index (averaged across all objects) across layers for the 
pretrained deep networks. Error bars indicates s.e.m across stimuli (n = 50). 
Dashed lines represent the mirror confusion index estimated from monkey inferior 
temporal (IT) neurons in a previous study 2.  

c) Accuracy of object classification by pretrained deep networks for congruent (dark) 
and incongruent (light) scenes, for top-5 accuracy (left) and top-1 accuracy (right). 
Error bars represent s.e.m across all scene pairs (n = 40). Asterisks indicate 
statistical significance computed using the Binomial probability of obtaining a value 
smaller than the incongruent scene correct counts given a Binomial distribution 
with the congruent scene accuracy (* is p<0.05,** is p < 0.01).  

d) Normalization slope plotted across layers for two object displays (blue) and three-
object displays (red) for pretrained deep networks. The dashed lines depict the 
slopes observed in monkey IT neurons using a different stimulus set 3. 

e) Top: Correlation between sparseness on the reference set vs along morphlines 
across units of each layer in pretrained deep networks. The dashed line indicates 
the observed correlation in monkey IT neurons on the same set of stimuli. Bottom: 
Correlation between sparseness for textures and sparseness for shapes plotted 
across layers of pretrained deep networks. The dashed line indicates the observed 
correlation in monkey IT neurons on the same set of stimuli.  
 

 
 
..   



 
Figure S3. Results from Experiments 6-10 for other feedforward networks.  
Each column represents a deep network (from left to right: AlexNet, GoogLeNet, ResNet-
50 and ResNet-152). 

a) To calculate a single quantity that measures adherence to Weber’s law, we 
calculated the correlation between distances and relative changes in length and 
subtracted the correlation between distances with absolute changes in length (see 



Methods). A positive difference indicates adherence to Weber’s law (gray region). 
This difference in correlation is plotted across layers for line length in pretrained 
deep networks. The dashed line indicates the value observed during human 
performing visual search on the same stimuli. 

b) Relative size index across units with interaction effects (averaged across top 7% 
tetrads , error bars representing s.e.m) across layers of pretrained deep networks. 
The dashed line shows the strength of the relative size index estimated from 
monkey IT neurons on the same set of stimuli 4.  

c) Surface invariance index across units with interaction effects (averaged across  top 
9% pattern/surface tetrads, error bars representing s.e.m) across layers of 
pretrained deep networks. The dashed line depicts the surface invariance index 
estimated from monkey inferior temporal neurons on the same set of stimuli 5. 

d) 3D processing index for pretrained deep networks across layers, for condition 1 
and condition 2 (Figure 5A). Dashed lines represent the estimated human effect 
measured using visual search on the same stimuli.  

e) Occlusion index for the occlusion  and depth ordering effects for each layer of the 
pretrained deep networks. Dashed lines represent the effect size in humans 
measured using visual search on the same stimuli. 

 
 



 
Figure S4. Results from Experiments 11-12 for other feedforward networks. Each 

column represents a deep network (from left to right: AlexNet, GoogLeNet, ResNet-50 

and Reset-152). 

a) Part processing index across layers of pretrained deep networks. The dashed line 
represents the effect size estimated from human visual search on the same stimuli 
6. 

b) Natural part advantage across layers of pretrained deep networks. The dashed 
line represents the effect size estimated from human visual search on the same 
stimuli 7.  

c)  Global Advantage index across layers of pretrained deep networks. The dashed 
line represents the effect size estimated from human visual search on the same 
stimuli 8. 

 



SECTION S3. GENERALIZATION ACROSS DISTANCE METRICS 

 
In the main text, we have presented results for all experiments using a Euclidean 

distance metric on deep neural network feature vectors. How sensitive are our results to 
the distance metric used? To address this issue, we repeated our analyses with three 
other distance metrics – city-block distance, Pearson linear correlation and Spearman 
rank correlation distances. We found that qualitatively similar results across distance 
metrics in nearly all experiments (Figure S5), except in a few cases where Pearson’s 
correlation behaved differently from the other metrics, presumably because it is sensitive 
to outliers.  
 

 
Figure S5. Generalization across different distance metrics. In each panel, the 
experiment-specific modulation index is shown for different distance metrics on VGG-16 
feature vectors (Euclidean metric is blue, city-block in red, Pearson correlation distance 
in yellow and Spearman correlation distance in purple).  



a) Thatcher index across layers of the VGG network. Error bars indicate s.e.m across 
face pairs (n = 20). Dashed lines represent the Thatcher index from a previous 
study 1, measured on a different set of faces (see Methods).  

b) Mirror Confusion Index (averaged across all objects) across layers for the 
pretrained VGG-16 network. Error bars indicates s.e.m across stimuli (n = 50). 
Dashed lines represent the mirror confusion index estimated from monkey inferior 
temporal (IT) neurons in a previous study 2.  

c) Weber’s law across layers of the VGG network. To calculate a single quantity that 
measures adherence to Weber’s law, we calculated the correlation between 
distances and relative changes in length and subtracted the correlation between 
distances with absolute changes in length (see Methods). A positive difference 
indicates adherence to Weber’s law (gray region). This difference in correlation is 
plotted across layers for line length in the VGG-16 networks. The dashed line 
indicates the value observed during human performing visual search on the same 
stimuli. 

d) 3D processing index for the VGG-16 network across layers, for condition 1 and 
condition 2 (Figure 5A). Dashed lines represent the estimated human effect 
measured using visual search on the same stimuli.  

e) Occlusion index for the occlusion effect across layers of the VGG-16 network. 
Dashed lines represent the effect size in humans measured using visual search 
on the same stimuli. 

f) Occlusion index for the depth ordering effects across layers of VGG-16 network. 
Dashed lines represent the effect size in humans measured using visual search 
on the same stimuli. 

g) Part processing index (left) and natural part advantage (right) across layers of the 
VGG-16 network. The dashed line represents the effect size estimated from 
human visual search on the same stimuli 6. 

h) Global Advantage index across layers of the VGG-16 network. The dashed line 
represents the effect size estimated from human visual search on the same stimuli 
8. 

 
  



 
SECTION S4. LAYER-WISE ANALYSIS OF SCENE INCONGRUENCE 

   

Unlike the other experiments, the scene incongruence experiment (Experiment 3) 

involves comparing classification accuracy, which does not elucidate how this effect 

emerges across layers. To investigate this possibility, we devised a novel analysis as 

detailed below.  

 The stimuli consisted of 40 pairs of images in which the same object image is 

pasted on to a congruent scene and an incongruent scene (see Methods, main text). 

These 40 objects were drawn from 36 unique ImageNet categories. We predicted that 

scene incongruence would manifest as a larger distance of incongruent scenes from the 

typical feature vector for each category. Accordingly, we first calculated a layer-wise 

centroid for each of the category by taking the average feature activation across 50 

images in each category. We used images from test set of ImageNet for this analysis. We 

then calculated a scene incongruence index defined as 
𝑑𝑖𝑛𝑐𝑜𝑛𝑔− 𝑑𝑐𝑜𝑛𝑔

𝑑𝑖𝑛𝑐𝑜𝑛𝑔+  𝑑𝑐𝑜𝑛𝑔
 , where 𝑑𝑖𝑛𝑐𝑜𝑛𝑔 is 

the distance of the incongruent scene to the category centroid and  𝑑𝑐𝑜𝑛𝑔 is the distance 

of the congruent scene to the category centroid.  

The results of this analysis are shown in Figure S6. The VGG-16 network showed 

an incongruence effect that increased only in the final fully connected layers (Figure S6A). 

By contrast, the randomly initialized VGG-16 network showed a positive effect that 

remained steady across layers, presumably reflecting some accidental property of the 

chosen scenes, or some similarity between object and scene features. We observed 

similar trends for both VGG-16 instances as well as across distance metrics (Figure S6A). 

Finally, we observed similar trends in the AlexNet (Figure S6B), GoogLeNet (Figure S6C), 

ResNet 50 (Figure S6D) and ResNet 152 (Figure S6E) although there were differences 

between networks in the exact progression across layers.    

 



 

Figure S6. Progression of scene incongruence effect across layers. 
a) Scene incongruence index across layers for VGG-16. Left: VGG-16 (blue) 

compared with a random network (brown). Middle: VGG-16 (blue) and the 
MatConvNet based VGG-16 (red). Right: Results with different distance metrics - 
Euclidean (blue), city-block distance (red), Pearson linear correlation distance 
(yellow) and Spearman rank correlation distance (purple). All other conventions 
are as before. Error bar represents s.e.m. across all scene pairs. 

b) Scene incongruence index across layers for AlexNet. Error bar represents s.e.m. 
across all scene pairs. 

c) Same as (B) but for GoogLeNet. Error bar represents s.e.m. across all scene pairs. 
d) Same as (B) but for Resnet 50. Error bar represents s.e.m. across all scene pairs. 
e) Same as (B) but for Resnet 152. Error bar represents s.e.m. across all scene pairs. 
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