Near-Room Temperature Ferromagnetic Insulating State in Highly Distorted LaCoO_{2.5} with CoO₅ Square Pyramids

Qinghua Zhang^{1,2}, Ang Gao^{1,3}, Fanqi Meng^{1,3}, Qiao Jin^{1,3}, Shan Lin^{1,3}, Xuefeng Wang¹, Dongdong Xiao¹, Can Wang^{1,3,4}, Kui-juan Jin^{1,3,4}, Dong Su¹, Er-Jia Guo^{1,4,5*}, and Lin Gu^{1,3,4,*}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ²Yangtze River Delta Physics Research Center Co. Ltd., Liyang 213300, China ³School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China ⁴Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China ⁵Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China *E-mail: ejguo@iphy.ac.cn; l.gu@iphy.ac.cn

I. Microstructural characterizations and EELS analysis

Supplementary Fig. 1. High-magnification high-angle angular dark-field (HAADF) images of (a) pristine LCO₃, (b) LCO_{2.67} and (c) nLCO_{2.5} films grown on LAO substrates. The representative HAADF-STEM images were chosen randomly. For a LCO₃, no vertical or horizontal dark stripes were observed. For a LCO_{2.67}, we observed the horizontal dark stripes with a period of 3a₀. For a nLCO_{2.5}, we observed more dense dark stripes aligned 45 degrees to the surface and interface. Such structural modulation is uniform within the entire nLCO_{2.5} sample. The corresponding FFT patterns of (d) pristine LCO₃, (e) LCO_{2.67} and (f) nLCO_{2.5} films are in good agreement with the SAED patterns shown in Figures 1a-c.

Supplementary Fig. 2. HAADF images of the interfaces between LaAlO₃ substrate and LCO₃ (a), LCO_{2.67} (b) and nLCO_{2.5} (c) films, respectively. Yellow arrows and dotted lines indicate the positions of the atomically sharp interfaces and highly coherent epitaxy of films.

Supplementary Fig. 3. Comparation on the O *K*-edges (a) and Co *L*-edges (b) in three electronic states of LCO₃, LCO_{2.67}, and nLCO_{2.5} thin films.

II. Macroscopic structural and electronic state property characterizations

Supplementary Fig. 4. Structure, morphology, and electronic state characterizations in LCO₃ and nLCO_{2.5} thin films. (a) X-ray reflectivities of LCO₃ and nLCO_{2.5} films. The open circular symbols represent the experimental data, and the solid lines are the best fit. From XRR fittings, the chemical depth profiles [shown in (b)] of those two films can be obtained. XRR results indicate the bilayers have uniform chemical distributions, sharp interfaces, and smooth surfaces. The x-ray scattering length density (SLD), which is proportional to its chemical density, of LCO₃ is ~24% larger than that of nLCO_{2.5}. In addition, the thicknesses of LCO and STO layers in the STO/LCO₃ bilayer are approximately 84 nm and 20 nm, respectively. While, the thickness of $nLCO_{2.5}$ is ~ 7 nm larger than that of LCO₃, whereas the thickness of STO is unchanged. (c) X-ray diffraction θ -2 θ scans of LCO₃ and nLCO_{2.5} films. * indicates the 00l peak positions of LAO substrate. # indicates the 00l peak positions of STO capping layer. Both curves reveal that the LCO₃ and nLCO_{2.5} films are single-phase and of high structural quality. The out-of-plane lattice constant of LCO₃ is 3.854 Å. After annealing in vacuum for 4 hours, the out-of-plane lattice constant of nLCO_{2.5} films increases to 4.088 Å. The elongation of lattice constant reaches $\sim 6.1\%$, in consistent

with the increment of nLCO_{2.5} layer's thickness. In contrast, the lattice constant of STO layer keeps almost constant, indicating the vacuum-annealing, at least under the same conditions, does not create significant Vo in STO. We also performed reciprocal space mapping (RSM) on a nLCO_{2.5} sample. Inset of (c) shows the RSM around 103 reflections around LAO substrate. Both nLCO_{2.5} layer and STO capping layer are coherently grown on LAO substrate, suggesting the identical in-plane lattice constant. The in-plane strain can be maintained up to ~ 200 u.c. due to the rather small lattice mismatch of $\sim 1\%$ between LAO and LCO. (d) Topography of a nLCO_{2.5} film capped with STO layer. Atomic force microscopy (AFM) image was recorded over an area of $5 \times 5 \ \mu m^2$ using Asylum Research AFM operated in the tapping mode. Surprisingly, we observe the step-and-terrace feature in our sample even without chemical etching the LAO substrate. The averaged r.m.s. is ~ 0.4 nm, revealing a smooth surface. The macroscopic structural and morphology measurements indicate that the as-grown LCO3 films and newly formed nLCO2.5 films are chemically uniform, highly crystalline, and single-phase. (e) X-ray absorption spectra (XAS) for LCO3 and nLCO2.5 films at Co Ledges. The reference spectra for Co³⁺ (from bulk LCO) [E. J. Guo et al. Science Advances 5, eaav5050 (2019)] and Co²⁺ (from bulk CoO) [N. Lu et al. Nature 546, 124 (2017)] are shown as black dashed lines for comparison. Apparently, XAS signal from LCO₃ at Co *L*-edges is nearly dominated by Co^{3+} . The main peak left-shifts to ~ 777 eV in the XAS spectra from nLCO_{2.5}. The line shape of XAS from nLCO_{2.5} is almost identical to that of bulk CoO, suggesting that the Co³⁺ ions in LCO₃ transit into Co²⁺ ions in nLCO_{2.5}.

Supplementary Fig. 5. Transport measurements on LCO₃ and nLCO_{2.5} thin films. Resistivity (ρ) of LCO₃ and nLCO_{2.5} thin films were measured using standard van der Pauw method. The room-temperature resistivities of LCO₃ and nLCO_{2.5} thin films are above 1 Megaohms, corresponding to ~ 1 Ω ·cm. The ρ -*T* curves for LCO₃ and nLCO_{2.5} thin films were measured up to 380 K. The low temperature resistivities were recorded until the detection limit of our electrical device. The negative slopes of ρ -*T* curves indicate the insulating character of both LCO₃ and nLCO_{2.5} films.

III. Magnetic properties of LCO_{2.67} films

Supplementary Fig. 6. Magnetic properties of LCO_{2.67} films. (a) *M-T* curves measured during the sample warming up at a magnetic field of 0.1 T. Solid and open circles represent the magnetizations were recorded after field-cooled (FC) and zero-field-cooled (ZFC), respectively. (b) *M-H* curves recorded at 10 K and 200 K. The saturation magnetization at 10 K and 200 K is ~ 0.067 μ_B /Co and ~ 0.02 μ_B /Co, respectively.

IV. Spectrum images of O K-and Co L-edges for the line scan EELS data

Supplementary Fig. 7. Atomic-resolved EELS spectra of the LCO_{2.67} phase. (a) HAADF image with overlaid CoO₆ octahedra and CoO₄ tetrahedra. The red line indicates the position of line scanning. Two-dimensional spectra image of (b) O *K*- and (c) Co *L*-edges, the yellow arrows indicate the oxygen-deficient CoO₄ tetrahedra. The difference of O *K*- and (c) Co *L*-edges between CoO₆ octahedra and CoO₄ tetrahedra can be identified clearly, with periodicity of $3a_0$.

Supplementary Fig. 8. Atomic-resolved EELS spectra of the $nLCO_{2.5}$ phase. (a) HAADF image with overlaid CoO_5 square pyramids. The red line indicates the position of line scanning. Two-dimensional spectra image of (b) O *K*- and (c) Co *L*-edges, the yellow arrows indicate the - Co columns in Co_2 -O₅ pyramids. A roughly uniform intensity distribution of O *K*- and Co *L*-edges' signals can be visualized.

Supplementary Fig. 9. The iDPC image of nLCO_{2.5} **phase.** Image contrast in two rectangular regions were adjusted to highlight atomic displacements of La and Co, as indicated by blue and red arrows, respectively. The scale bar is 1 nm.

V. Structure determination and the summaries of structure parameters

With the accurate projected position of each atom, we construct two most possible structural models (nLCO-A and nLCO-B) as shown in Supplementary Fig. 9. The difference between them is relative Vo position of the Co_2 -O₅ square pyramids in the projected direction, where Vos reside alternatively in (100)_p plane among neighbored Co_2 -O₅ square pyramids in nLCO-A and in the same (100)_p plane in nLCO-B. We optimized these two structures and find the energy of the nLCO-A is lower than that of nLCO-B, which is also favorable for the alternative arrangement of Vo in the neighbored Co_2 -O₅ square pyramids.

Supplementary Fig. 10. Two possible crystal structures of $nLCO_{2.5}$. *a*, *b* are the basic vectors of the unit cell (1×1×1) and *a*', *b*' are the basic vectors of the extended cell ($\sqrt{5}\times2\sqrt{2}\times2$) for (a) nLCO-A and ($\sqrt{5}\times\sqrt{2}\times2$) for (b) nLCO-B, respectively, as indicated by dark dotted lines. The corresponding transformation matrix with the basic unit cell is [2, -1, 0; 2, 2, 0; 0, 0, 2] and [2, -1, 0; 1, 1, 0; 0, 0, 2], respectively.

Supplementary Table 1.

Structure parameters summary of the nLCO _{2.5} phase from DFT calculation							
supercell	supercell a (Å)		b (Å)	c (Å)	α (°)	$\pmb{\beta}(^{\circ})$	$\gamma(^{\circ})$
√5×2√2×2 8.589		.589	11.079	7.58	90.00	90.00	105.11
1×1×1	1×1×1 3.79		4.04	3.79	90.00	90.00	90.00
Atoms	label	number	r x		У	Z	
La	Lal	1	-0.007		0.015	0.000	
La	La2	1	0.017 0.478		C	0.000	
La	La3	1	0.017		-0.022	0.500	
La	La4	1	0.993		0.515	0.500	
La	La5	1	0.687		0.193	0.000	
La	La6	1	0.687		0.702	0.000	
La	La7	1	0.687		0.202	0.500	
La	La8	1	0.687 0.693		C	0.500	
La	La9	1	0.323 0.317		C	0.000	
La	La10	1	0.322 0.813		C	0.000	
La	La11	1	0.322 0.313		C	0.500	
La	La12	1	0.323 0.817		C	0.500	
Co	Col	1	0.344 0.084		C	.249	
Co	Col	1	0.344		0.584	0.251	
Co	Col	1	0.344		0.084	0.751	
Co	Col	1	0.344		0.584	0.749	
Co	Col'	1	0.658		0.427	0.247	

Co	Co1'	1	0.658	0.927	0.253
Co	Co1'	1	0.658	0.427	0.753
Co	Co1'	1	0.658	0.927	0.747
Co	Co2	1	0.004	0.247	0.273
Co	Co2	1	0.004	0.747	0.227
Co	Co2	1	0.004	0.247	0.727
Co	Co2	1	0.004	0.747	0.773
0	01	1	0.342	0.076	0.000
0	02	1	0.342	0.576	0.000
0	03	1	0.342	0.076	0.500
0	O4	1	0.342	0.576	0.500
0	05	1	1.000	0.250	0.000
0	O6	1	1.000	0.750	0.500
0	07	1	0.655	0.418	0.000
0	08	1	0.655	0.918	0.000
0	09	1	0.655	0.418	0.500
0	O10	1	0.655	0.918	0.500
0	011	1	0.131	0.128	0.279
0	012	1	0.130	0.628	0.221
0	013	1	0.131	0.128	0.721
0	O14	1	0.130	0.628	0.779
0	015	1	0.865	0.365	0.276

Ο	016	1	0.865	0.865	0.224
0	O17	1	0.865	0.365	0.724
0	O18	1	0.865	0.865	0.776
0	O19	1	0.232	0.416	0.250
0	O20	1	0.232	0.916	0.250
0	O21	1	0.232	0.416	0.750
0	O22	1	0.232	0.916	0.750
0	O23	1	0.777	0.101	0.251
0	O24	1	0.777	0.601	0.249
0	025	1	0.777	0.101	0.749
0	O26	1	0.777	0.601	0.751
0	O27	1	0.476	0.255	0.250
0	O28	1	0.476	0.755	0.250
0	O29	1	0.476	0.255	0.750
0	O30	1	0.476	0.755	0.750

Supplementary Table 2

ediculation					
bond length (Å)	01	O2	O3	O4	05
Col	2.027	1.908	1.937	1.886	1.852
Co2	2.072	1.982	2.189	1.923	2.340
Col'	2.077	1.878	1.940	1.917	2.126

The Co-O bond length of CoO₅ square pyramids in nLCO_{2.5} phase from DFT calculation