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SUPPLEMENTARY NOTE 1: CRYSTAL GROWTH AND CHARACTERIZA-

TION
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Supplementary Figure 1. Resistivity and magnetization data for RhBi2. a, Resistivity data

measured in zero field and 7 T. b, magnetization measured as a function of temperature in 0.1 T

field.

Resistivity as a function of temperature was measured with current in the bc-plane,

along one of the crystallographic axis. ρ(T) shows clear metallic behavior with no features

that would suggest any sort of phase transition in the measured temperature range. With

an applied field of 7 T, ρ(T) do not show any significance changes, except slightly higher

resistance values at low temperatures. This very small magnetoresistance is not inconsistent

with the relatively low RRR value ( ∼ 6) of the sample. Magnetization as a function of

temperature, M(T), was measured with field applied perpendicular to the a-axis, and shows

nearly temperature independent behavior, with a small, negative value of M over most of

the temperature range. This fundamentally diamagnetic response is consistent with a very

small density of states at the Fermi energy resulting in a larger core diamagnetic component.
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SUPPLEMENTARY NOTE 2: DETAILS OF THE EFFECTIVE MODEL

We aim to build an effective model for the observed surface state close to the Z point. As

we know the form of the symmetries in the bulk, it would perhaps be most transparent to

build a bulk model, which we then explicitly break to the relevant surface. In this section,

we discuss this approach and explain why we instead opt to build a surface Hamiltonian

directly. We also discuss the construction of this surface Hamiltonian.

A minimal bulk Hamiltonian requires four bands, due to the presence of doubly degenerate

bulk Kramer’s pairs. A general four-band model can be written in terms of 5 Γ matrices,

and their corresponding commutators. However, we can restrict our model by imposing the

bulk symmetries. The bulk has inversion and time-reversal symmetry. Combining these

gives an operator A = ΘP which satisfies:

AH(k)A−1 = H(k) (1)

We can choose our Γ-matrices to commute with the A operator1. Requiring this gives

that the commutators are all zero, so the effective model can be written using only the 5

Γ-matrices. We can represent our symmetry operations as1:

P = σx ⊗ I, Θ = i(I ⊗ sy)K (2)

Where K is complex conjugation. This gives the 5 Γ-matrices commuting with A and

satisfying the Clifford algebra as:

Γ(1,2,3,4,5) = {σx ⊗ I, σy ⊗ I, σz ⊗ sx, σz ⊗ sy, σz ⊗ sz} (3)

Note that Γ1 equals P . We can then expand the Hamiltonian as:

H(k) = εI4×4 +MΓ1 +
5∑
i=2

AiΓi = εI4×4 +MΓ1 + S (4)

Now we note that:

ΘΓaΘ−1 = PΓaP−1 =

1 if a = 1

−1 if a 6= 1
(5)

From which it follows that ε and M are even in k → −k, whereas the {Ai} are odd.

Furthermore, S anticommutes with Γ1, which which it follows that:

PH(k)P−1 = Γ1H(k)Γ1 = εI4×4 +MΓ1 − S (6)
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To get the surface states from this bulk Hamiltonian, we organize our Hamiltonian into a

term H0 which contains constants and kx dependent terms, and a perturbation H1 which

does not contain any kx dependence. As there is no preferred direction under the symmetry

operations, H0 contains all 5 Γ-matrices, and is therefore not block diagonal. We can then

in principle solve H0 on a finite slab geometry, which would give us four states, two of which

are regular on the boundary. These can be interpreted as the edge states. From equation 6,

it follows that the opposite parity states will be associated with an opposite sign for matrix

S. Explicitly diagonalizing H0 gives the eigenvectors:

v1 =


a

b

1

0

 , v2 =


c

d

0

1

 , v3 =


e

f

1

0

 , v4 =


g

h

0

1

 (7)

Where the states (v1, v2) and (v3, v4) have pairwise the same eigenvalues, and the coefficients

are complicated functions of the free parameters. These are not block diagonal as H0 is

not block diagonal. We could now in principle investigate which of these four states remain

regular at the boundary, given some boundary conditions, and then project the perturbation

H1 in this basis. Note, however, that the resulting expression will be rather convoluted, with

many free parameters. As we are only interested in the surface dispersion to compute the

DOS, we choose to instead build a model for the surface directly.

The surface close to the TRIM Z exhibits time-reversal symmetry. Inversion symmetry is

broken at the surface. However, there will be some residual effects of inversion symmetry, as

otherwise H0 should contain more terms, coming from the commutators of the Γ-matrices.

Thus, inversion symmetry is broken down to some effective symmetry on the surface. The

exact nature of this symmetry will depend on the orbital contents. Note in particular that if

inversion acted purely as an effective C2 symmetry, taking (ky, kz) → (−ky,−kz), then our

expansion in equation 13 in the main text would be trivial. The exact nature of this effective

symmetry can be elucidated by solving the full bulk Hamiltonian above. For our purposes,

however, it suffices to ignore this residual symmetry, and only focus on the time-reversal

symmetry. The residual inversion symmetry will only constrain the form of our effective

Hamiltonian further, potentially resulting in less free parameters. Thus, we do not lose any

physical solutions by only ignoring the residual inversion symmetry, though we may find an

unphysical parameter combination. As we are only interested in the shape of the surface
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dispersion, this is of no concern.

The time-reversal symmetry Θ = iσyK acts in spin space on the surface by constrain-

ing:

H(k) = (iσy)H
∗(−k)(iσy)

−1 (8)

We can write a two-band model for the surface states as:

H(k) = d(k) · σ (9)

Hermiticity then requires that d(k) should be real. Imposing time-reversal symmetry gives:

d0(k) = d0(−k), d1(k) = −d1(−k), d2(k) = −d2(−k), d3(k) = −d3(−k) (10)

With energy given by:

E(k) = d0 ±
√
d2

1 + d2
2 + d2

3 (11)

Expanding to second order then gives:

H2(k) = (E0 +A1k
2
y+A2k

2
z+A3kykz)I+(B1ky+C1kz)σx+(B2ky+C2kz)σy+(B3ky+C3kz)σz

(12)

With energy

E2±(k) = E0 + A1k
2
y + A2k

2
z + A3kykz ±

√√√√ 3∑
i=1

(Biky + Cikz)2 (13)

If we want to account for strain, we should expand to third order which gives an effective

model:

H3(k) = (E0 + A1k
2
y + A2k

2
z + A3kykz)I + (B1ky + C1kz +D1k

2
ykz + E1k

2
zky)σx

+(B2ky + C2kz +D2k
2
ykz + E2k

2
zky)σy + (B3ky + C3kz +D3k

2
ykz + E3k

2
zky)σz

(14)

With energy:

E3±(k) = E0 + A1k
2
y + A2k

2
z + A3kykz ±

√√√√ 3∑
i=3

(Biky + Cikz +Dik2
ykz + Eik2

zky)
2 (15)

Note that our energy is symmetric under (ky, kz) → (−ky,−kz) even though the Hamilto-

nian is not. This explains the observed effective C2 symmetry in the FS.

The free parameters are fit using simulated annealing. This gives the result shown in

supplementary table I and II.
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A1 A2 A3 B1 C1 B2 C2 B3 C3

1.779 3.827 0.886 -0.248 -1.225 -0.138 -0.252 0.185 0.273

Supplementary Table I. Fit parameters for E2±, see equation 13

A1 A2 A3 B1 C1 D1 E1 B2 C2 D2 E2 B3 C3 D3 E3

1.895 8.051 2.701 0.145 0.021 -41.264 -150.345 0.082 -0.154 -2.524 -34.948 0.330 1.731 33.890 160.426

Supplementary Table II. Fit parameters for E3±, see equation 15

SUPPLEMENTARY NOTE 3: DFT CALCULATION OF 2D CUTS

Although the triclinic structure of RhBi2 only has inversion symmetry, k → −k, when

projected on the (100) surface, the inversion symmetry in 2D gives an effective twofold

rotation symmetry. This can also be understood in the 2D cuts of the 3D FS as shown in

Fig. 2

2D Bulk FS Cuts along k1

k1=0.0 k1=0.2k1=0.1

k1=0.5k1=0.3 k1=0.4 G’

Supplementary Figure 2. FS projection along k1 direction 2D bulk Fermi surface cuts for

RhBi2 along k1=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 planes. The 2-fold rotation symmetry only appears

on the k1=0.0 and 0.5 planes.
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SUPPLEMENTARY NOTE 4: BAND STRUCTURE

A saddle point in the dispersion is characterized by a vanishing gradient, ∇εk = 0, and

by opposite curvatures along orthogonal directions away from the extremum. Our ARPES

measurements show evidence of the presence of a saddle point around the Z̄ point in the

surface Brillouin zone (sBZ) of RhBi2. To precisely determine the position of the saddle

point, we perform a close investigation of the band structure using an effective low energy

k · p model valid close to Z̄.

A first look into the band structure of the k · p model suggest the existence of two saddle

points in the SBZ [see Fig.4 (a)]. Interestingly, as shown in Fig.3, the lower band ε−,k is

almost flat along the diagonal direction parametrized by

ky = kZ̄,y + α(kz − kZ̄,z) , (16)

where α ≈ 4.15 and (kZ̄,y, kZ̄,z) ≈ (0, 0.5)π
a
, denotes the position the Z̄ point. Zooming into

the region around Z̄ clearly shows two local minima along this flat direction at (ky−kZ̄,y, kz−

kZ̄,z) = ±(−0.042, 0.010)π
a
≡ ±k0. These points, on the other hand, behave as local maxima

of the dispersion along the direction orthogonal to Eq. (16). This behavior is evidenced in

Figs. 4(a) and (b), respectively.

In fact, the gradient of the lower band∇ε−,k vanishes at±k0 [see Figs.4(c) and (d)], which

makes these points true saddle points of the lower band. They occur at energy E = −83

meV, where the peak in the surface density of states occurs [see Fig.4 (a)].

Below, we provide details on the analytic solution of the gap equation (5) in the main

text in the presence of a logarithmically divergent density of states ρ(ξ) = ρ0 log(D/ |ξ|).

After the change of variables y = ξ/Tc, the gap equation can be rewritten as

1 = gρ0

Λ/Tc∫
0

dy log

(
D/Tc
y

)
1

y
tanh

(y
2

)
. (17)

Using properties of the logarithm, this integral can be further divided into two contributions,

1

gρ0

= log

(
D

Tc

) Λ/Tc∫
0

dy
1

y
tanh

(y
2

)
−

Λ/Tc∫
0

dy
log(y)

y
tanh

(y
2

)
. (18)

The first integral in the right-hand-side of Eq.(18) is identical to the one encountered in

the standard BCS gap equation when approximating the DoS by its (constant) value at the
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Fermi level:
Λ/Tc∫
0

dy
1

y
tanh

(y
2

)
= log

(
κΛ

Tc

)
, (19)

where κ = 2eγ/π ≈ 1.13, and γ is Euler’s constant. For the second integral in Eq.(18), a

simple integration by parts yields

Λ/Tc∫
0

dy
log(y)

y
tanh

(y
2

)
=

1

2
log2

(
Λ

Tc

)
− 1

4

Λ/Tc∫
0

dy log2 (y) sech2
(y

2

)
. (20)

Since Λ/Tc � 1 and log2 (y) sech2(y/2) remains finite as y →∞, we can approximate

Λ/Tc∫
0

dy log2 (y) sech2
(y

2

)
≈

∞∫
0

dy log2 (y) sech2
(y

2

)
≈ C , (21)

where C = 2.669 is a numerical constant. Substituting Eqs.(19) and (21) into Eq.(18), we

obtain
1

gρ0

= log

(
D

Tc

)
log

(
κΛ

Tc

)
− 1

2
log2

(
Λ

Tc

)
+
C
4

. (22)

Supplementary Figure 3. Gradient of the lowest energy band of the k · p model. The

direction where the norm of the gradient is minimum corresponds to the diagonal ky − kZ̄,y =

−4.15
(
kz − kZ̄,z

)
. In particular, it vanishes at (ky0, kz0) = ±(−0.042, 0.010)πa with respect to Z̄.

These are saddle points of the lowest energy band. The momenta ky and kz are given in units of

π/a. Accordingly, |∇ε−,k| has dimensions of energy.
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Supplementary Figure 4. Cuts of the band structure of the k · p model along the direction

(a) ky − kZ̄,y = −4.15
(
kz − kZ̄,z

)
and the orthogonal direction (b) ky − kZ̄,y = 0.24

(
kz − kZ̄,z

)
.

Upper (lower) band is shown in yellow (blue). The dispersion is centered at the saddle point

k0 = (−0.042, 0.010)πa . Panels (c) and (d) show the norm of the gradient |∇εk| of the dispersion

in a and b, respectively. The momenta ky and kz are given in units of π/a. Accordingly, |∇εk| has

dimensions of energy.

Since typically we have D > Λ2, it is convenient to rewrite the logarithms in Eq.(22) in

terms of D/Tc rather than Λ/Tc. This simplifies Eq.(22) significantly, since the linear term

in log(κD/Tc) vanishes identically. We thus find

2

gρ0

= log2

(
κD

Tc

)
+
C
2
− log2

(
Λ

D

)
− log2

(
1

κ

)
. (23)

The strongest divergence comes from the term log2(κD/Tc), so that we can neglect the three

last terms in the right-rand-side of Eq.(23), which yields Tc as given in Eq.(6) of the main

text.
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