Supplementary Figures

10X PBMC (all genes)

10X PBMC (top 2000 genes)
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Figure S1. Clustering performances of different methods on the 10X PBMC dataset (randomly
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selected 2100 cells), measured by NMI, CA and ARI. The number in parentheses is the number
of pairwise constraints. All experiments are repeated for ten times. The lower, middle, and
upper hinges correspond to the first, second and third quartiles (the 25th, 50th and 75th

percentiles). Let IQR be the distance between the first and third quartiles. The upper whisker

extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, while the

lower whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge.

Data points beyond the end of the whiskers are outliers and plotted individually. Note that we

use “KM” to represent “k-means” to save space.
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Figure S2. Clustering performances of different methods on the 10X PBMC dataset (full
dataset), measured by NMI, CA and ARI. The number in parentheses is the number of pairwise
constraints. All experiments are repeated for ten times. The lower, middle, and upper hinges
correspond to the first, second and third quartiles (the 25th, 50th and 75th percentiles). Let IQR
be the distance between the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * IQR from the hinge, while the lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data points beyond the
end of the whiskers are outliers and plotted individually. Note that we use “KM” to represent
“k-means” to save space.
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Figure S3. Clustering performances of different methods on the Mouse bladder cells (randomly
selected 2100 cells), measured by NMI, CA and ARI. The number in parentheses is the number
of pairwise constraints. All experiments are repeated for ten times. The lower, middle, and
upper hinges correspond to the first, second and third quartiles (the 25th, 50th and 75th
percentiles). Let IQR be the distance between the first and third quartiles. The upper whisker
extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, while the
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge.
Data points beyond the end of the whiskers are outliers and plotted individually. Note that we
use “KM” to represent “k-means” to save space.
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Figure S4. Clustering performances of different methods on the Mouse bladder cells (full
dataset), measured by NMI, CA and ARI. The number in parentheses is the number of pairwise
constraints. All experiments are repeated for ten times. The lower, middle, and upper hinges
correspond to the first, second and third quartiles (the 25th, 50th and 75th percentiles). Let IQR
be the distance between the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * IQR from the hinge, while the lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data points beyond the
end of the whiskers are outliers and plotted individually. Note that we use “KM” to represent
“k-means” to save space.
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Figure S5. Clustering performances of different methods on the Worm neuron cells (randomly
selected 2100 cells), measured by NMI, CA and ARI. The number in parentheses is the number

of pairwise constraints. All experiments are repeated for ten times. The lower, middle, and
upper hinges correspond to the first, second and third quartiles (the 25th, 50th and 75th
percentiles). Let IQR be the distance between the first and third quartiles. The upper whisker

extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, while the

lower whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge.

Data points beyond the end of the whiskers are outliers and plotted individually. Note that we

use “KM” to represent “k-means” to save space.
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Figure S6. Clustering performances of different methods on the Worm neuron cells (full
dataset), measured by NMI, CA and ARI. The number in parentheses is the number of pairwise
constraints. All experiments are repeated for ten times. The lower, middle, and upper hinges
correspond to the first, second and third quartiles (the 25th, 50th and 75th percentiles). Let IQR
be the distance between the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * IQR from the hinge, while the lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data points beyond the
end of the whiskers are outliers and plotted individually. Note that we use “KM” to represent
“k-means” to save space.



Human kidney cells (all genes) Human kidney cells (top 2000 genes)
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Figure S7. Clustering performances of different methods on the Human kidney cells (randomly
selected 2100 cells), measured by NMI, CA and ARI. The number in parentheses is the number
of pairwise constraints. All experiments are repeated for ten times. The lower, middle, and
upper hinges correspond to the first, second and third quartiles (the 25th, 50th and 75th
percentiles). Let IQR be the distance between the first and third quartiles. The upper whisker
extends from the hinge to the largest value no further than 1.5 * IQR from the hinge, while the
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR from the hinge.
Data points beyond the end of the whiskers are outliers and plotted individually. Note that we
use “KM” to represent “k-means” to save space.
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Figure S8. Clustering performances of different methods on the Human kidney cells (full
dataset), measured by NMI, CA and ARI. The number in parentheses is the number of pairwise
constraints. All experiments are repeated for ten times. The lower, middle, and upper hinges
correspond to the first, second and third quartiles (the 25th, 50th and 75th percentiles). Let IQR
be the distance between the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * IQR from the hinge, while the lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data points beyond the
end of the whiskers are outliers and plotted individually. Note that we use “KM” to represent
“k-means” to save space.
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Figure S9. Clustering performances of scDCC on four small scRNA-seq datasets (full dataset)
with different number of pairwise constraints (left) and noisy constraints (middle, error rate is
5%,; right, error rate is 10%), measured by NMI, CA and ARI. All experiments are repeated for
ten times, and the mean and standard errors are displayed.
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Figure S10. Clustering performances of different methods on two large datasets (full dataset),
measured by NMI, CA and ARI. The number in parentheses is the number of pairwise
constraints. All experiments are repeated for ten times. The lower, middle, and upper hinges
correspond to the first, second and third quartiles (the 25th, 50th and 75th percentiles). Let IQR
be the distance between the first and third quartiles. The upper whisker extends from the hinge
to the largest value no further than 1.5 * IQR from the hinge, while the lower whisker extends
from the hinge to the smallest value at most 1.5 * IQR from the hinge. Data points beyond the
end of the whiskers are outliers and plotted individually. Note that we use “KM” to represent
“k-means” to save space.



Macosko data

0 0.05 0.1
1.0 1.0 1.0
0.9 0.9 0.9
./0_..———.—0——0
0.8 Z:Ei 0.8 08— —p—",
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
o o (@) (@) (@) o o o (@) (@) (@) (@) (@) o o (@) (@) (@) (@)
S §8§ 8 8§ S8 S § § § § 8§ S § § § § 8§
~ 3V ™ ~ %] © ~ 3V ($5] A (%) © ~ 3V (5] < %) ©
No. of pairwise constraints M
Shekhar data
0 0.05 0.1 —= AR
1.0 1.0 1.0
0.9 0.9 % 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
0.5 0.5 0.5
o o (@) (@) (@) o o o (@) (@) (@) (@) (@) o o (@) (@) (@) (@)
S §8§8§ 8 8§ S8 S § § § § 8§ S § § § § 8§
~ 3V ™ ~ %] © ~ 3V ($5] A (%) © ~ 3V (5] < %) ©

No. of pairwise constraints

Figure S11. Clustering performances of scDCC on two large scRNA-seq datasets with different
number of pairwise constraints (left) and noisy constraints (middle, error rate is 5%; right, error
rate is 10%), measured by NMI, CA and ARI. All experiments are repeated for ten times, and the
mean and standard errors are displayed.
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Figure S12. Clustering performances of scDCC on four small scRNA-seq datasets with different
number of pairwise constraints, measured by NMI, CA and ARI. All experiments are repeated for
ten times, and the mean and standard errors are displayed.
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Figure S13. Constraints could guide scDCC to separate the marker gene among clusters on
simulated data. The data is simulated by Splatter and contains only one marker gene (one gene
is differentially expressed among two clusters). The constraints are generated by the marker gene
(See details in Supplementary notes). (a) Clustering performances of scDCC on simulated data
with different numbers of marker gene-based pairwise constraints, measured by NMI, CA and
ARI. All experiments are repeated for ten times, and the means and standard errors are displayed.
(b) Violin plots of the marker gene based on labels predicted by scDCC with different number of
pairwise constraints (one clustering result of each setting was selected) and true labels. The x
axes are clusters and the y axes are normalized counts of the marker gene.
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Figure S14. t-SNE plot of ZIFA latent features of marker genes in Human liver dataset.
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Figure S15. Cluster specificity scores of the 55 marker genes in Human liver dataset with different
constraints. Ten repeats are displayed. All plots are standard boxplots, which display the
distribution of data by presenting the inner fence (the whisker, taken to 1.5x the Inter Quartile
range, or IQR, from the quartile), first quartile, median, third quartile and outliers. Differences of
specificity scores between without and with constraints are quantified by one-sided Wilcoxon p-
values.



Supplementary Notes
Simulation experiment

The simulated data is generated by the Splatter R package 1. We generated 500 cells by 100 genes,
two clusters, with the setting of dropout.mid = 1, de.facScale = 0.5, de.prob = 0.01 and
de.downProb = 0. As a result, there was only one gene that was expressed differently among the
two clusters, and this gene was defined as the marker gene. After generating the data, we
obtained “pseudo” labels based on normalized counts of the marker gene (normalized by the
library size). If normalized counts of the marker gene > 75 quantile, then we defined the “pseudo”
label as O; if normalized counts of the marker gene < 25 quantile, then we defined the “pseudo”
label as 1. Pairwise constraints were generated by “pseudo” labels. Since the data only had 100
genes, we modified the scDCC model such that the encoder and the decoder had one hidden
layer of size 32, and the bottleneck layer had the size of 2. We randomly generated different
numbers of pairwise constraints and repeated experiments on each setting for ten times.
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