
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this manuscript, Tian Tian et al. proposed a clustering method named scDCC to integrate biological 

domain knowledge into the clustering step of scRNA-seq data. They converted prior knowledge into 

pairwise and triplet constraints and integrated them as additional terms into the loss function for 

model optimization. However, the authors need to address some critical issues before the acceptance 

for publication: 

 

1. It is not surprising that scDCC without constraint information, which reduces to their previously 

developed scDeepCluster, significantly outperforms baseline methods, because the adopted datasets 

and baseline methods in this work are almost the same as that of scDeepCluster. The authors should 

assess the performance using more scRNA-seq datasets or, at least, compare with other more widely 

used clustering methods, such as SC3 and Seurat. Besides, the graph-based Louvain clustering usually 

provides superior performance than k-means. 

 

2. I believe that incorporating prior information could effectively improve the performance. However, 

more convincing evaluation should be performed to avoid information leakage. Briefly, the authors 

used cell labels to define ML and CL constraints, which means feeding true results to the model (which 

cell-pair should be clustered and which cell-pair be separated). Although 6000 constraints only 

represented about 0.27% of all possible pairs in 2100 cells, the constraints existed in a single-cell 

network and may contain the neighbor information of most cells. The clustering performance hence 

improves consistently across various datasets when the scDCC model takes more prior constraint 

information into account. It would be better if the authors compare the clustering performance for 

only the cells which do not exist in the constraints. In addition, the ML and CL constraints in the 

visualization in Figure 3 should be independent with the constraints used to train the scDCC model. 

 

3. Analogously, triplet constraints were generated based on the embedding trained by scDCC with 

20,000 pairwise constraints, which again indicates that the model obtained some true results in 

advance. It would be better if the authors pre-train scDCC without constraints to obtain the 

embedding. 

 

4. It is good to see the authors evaluate the robustness of scDCC using 5% erroneous constraints. 

Given that the prior information may be very noisy in real application scenarios, I am interested in 

what percentage of erroneous constraints will invalidate this model? 

 

5. The model with combined constraints seems to use twice as many constraints as the one with only 

pairwise or triplet constraints. If so, the result of the comparison in Figure 6 may not be fair. 

 

6. In the example of marker gene-based constraints (Figure 7a), it would be better if the authors 

could compare the performance of Louvain clustering or k-means on the ZIFA latent representations of 

the marker gene matrix. Besides, it should be compared with the baseline methods. 

 

7. Considering that the authors listed a few cell type-specific signature sets as prior knowledges, it 

would be better if they can discuss in more detail about how to integrate these prior knowledges. 

 

 

Minor points: 

1. https://github.com/ttgump/scDCC is unavailable. 

 

2. In the last paragraph of Results, it should be ‘with 6000 triplet constraints (Figure 7e)’. 

 

3. The authors overemphasized that scDCC does not require exact label information, since this is a 



clustering task where we seek to know which samples belong to the same cluster rather than a 

classification where we want to predict the exact label of each sample. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This article introduces a deep neural network model for constrained clustering of single-cell RANseq 

profiles. The constraints are based on log Bernoulli likelihood on connectivities between pairs or triples 

of samples. The methods are applied to several real single-cell RNAseq datasets. The paper is well-

written and the methods are clearly described. There are some critical questions to address in the 

validation. 

 

1. The clustering performance shown in Figure 2, 4, 5 and 6 are not properly evaluated since the 

training pairs are also included in the calculation of the measures. Similar to semi-supervised learning, 

the clustering of the constrained model can be very sensitive to any kind of supervised information. In 

principle, any samples that are presented with supervised information (such as pairwise relations in 

this model) should not be used in the evaluation. The proper experimental setup should be split the 

samples in the dataset into a training set and a test set. The constrained pairs/triples should only be 

sampled from the training set and the clustering results should only be reported for the samples in the 

test set. If there are a excessive number of hyper-parameters such as neural network structures, a 

validation set might also be needed. Given the model was only tested on a subset of each of the 

datasets, there should be enough samples for the train/test setup. 

 

Without the correct validation, it is still unclear how much additional information is introduced by the 

pairs/triples to improve clustering in the current work. 

 

2. The motivation of modeling the pairwise/triplewise relations in real studies is still unclear. The 

application to the five real datasets was taken by sampling from the final complete clustering in those 

studies, in which none of the dataset was originally generated with the pairwise knowledge. The 

common scenario is the case that a small set of cells are manually annotated and then used to train a 

model for classifying/clustering more single-cells from additional experiments, which is the case of 

supervised learning or semi-supervised learning. The pairwise constraint is still uncommon. It is 

important to justify the usefulness this model with real application scenarios, which is missing in the 

experiments or discussions. 

 

A minor note: 

 

3. On paper 9, the definition of p_ij abuses the use of indexes j and j' in the summations, which 

creates some confusion in understanding the statistics (which might be an error from the original 

equation in citation 46). 



 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, Tian Tian et al. proposed a clustering method named scDCC to integrate 
biological domain knowledge into the clustering step of scRNA-seq data. They converted prior 
knowledge into pairwise and triplet constraints and integrated them as additional terms into 
the loss function for model optimization. However, the authors need to address some critical 
issues before the acceptance for publication: 
 
1. It is not surprising that scDCC without constraint information, which reduces to their 
previously developed scDeepCluster, significantly outperforms baseline methods, because 
the adopted datasets and baseline methods in this work are almost the same as that of 
scDeepCluster. The authors should assess the performance using more scRNA-seq datasets or, 
at least, compare with other more widely used clustering methods, such as SC3 and Seurat. 
Besides, the graph-based Louvain clustering usually provides superior performance than k-
means. 
 
Response 
We thank the reviewer for raising these points. Following the reviewer’s suggestion, we added 
a new human kidney dataset, and two additional state-of-the-art baseline methods: SC3 1 and 
Seurat 2 (We apply the Louvain algorithm (default) from the Seurat package to cluster the cells) 
for evaluation. As we can see in the revised Figures (Figure S1-S8, S10), without any constraints, 
scDCC could achieve comparable clustering performance as SC3 and Seurat (Louvain algorithm). 
To further illustrate the usage of our model, we added experiments based on a new “CITE-seq 
PBMC” dataset. In the two case studies of the manuscript (CITE-seq PBMC data and Human 
liver data), we generated constraints based on protein and marker gene data, respectively. To 
compare performance, in the revised version, we added a baseline method PhenoGraph which 
is based on Louvain clustering on protein and marker gene levels, respectively (Figure 5a and 
Figure 6a). We can see that by incorporating constraints, scDCC can outperform PhenoGraph 3. 
 
2. I believe that incorporating prior information could effectively improve the performance. 
However, more convincing evaluation should be performed to avoid information leakage. 
Briefly, the authors used cell labels to define ML and CL constraints, which means feeding 
true results to the model (which cell-pair should be clustered and which cell-pair be 
separated). Although 6000 constraints only represented about 0.27% of all possible pairs in 
2100 cells, the constraints existed in a single-cell network and may contain the neighbor 
information of most cells. The clustering performance hence improves consistently across 
various datasets when the scDCC model takes more prior constraint information into account. 
It would be better if the authors compare the clustering performance for only the cells which 
do not exist in the constraints. In addition, the ML and CL constraints in the visualization in 
Figure 3 should be independent with the constraints used to train the scDCC model. 
 
Response 



We thank the reviewer for addressing this issue. In the revised manuscript, we applied a new 
method to generate constraints and evaluate the performance of different methods. For each 
dataset, we randomly selected 10% cells with labels to generate constraints. The scDCC model 
was trained on the dataset with constructed constraints. After obtaining clustering results, we 
evaluated the clustering metrics (NMI, CA and ARI) on the remaining 90% of cells. Therefore, in 
the new evaluation paradigm, there is no overlap between the cells for generating the pairwise 
constraints and the cells for evaluation. The cells used for building constraints didn’t disclose 
any label information to the scDCC model (Results section “Pairwise constraints” and Methods 
section “Constraint Construction”). 
 
3. Analogously, triplet constraints were generated based on the embedding trained by scDCC 
with 20,000 pairwise constraints, which again indicates that the model obtained some true 
results in advance. It would be better if the authors pre-train scDCC without constraints to 
obtain the embedding. 
 
Response 
We thank the reviewer for raising this point. The triplet constraint is a weaker constraint than 
pairwise constraint. We have tried to select 10% cells to generate triplet constraints, but the 
improvement of performance is not very impressive comparing to the case without using triplet 
constraints. So, in the revised manuscript, we decide to remove the results of triplet constraint, 
and only focus on pairwise constraint. 
 
4. It is good to see the authors evaluate the robustness of scDCC using 5% erroneous 
constraints. Given that the prior information may be very noisy in real application scenarios, I 
am interested in what percentage of erroneous constraints will invalidate this model? 
 
Response 
We thank the reviewer for raising this point. In the revised manuscript, we evaluated our 
methods on 5% and 10% erroneous constraints (Figure S9 and S11). As shown in Figure S9, with 
10% erroneous constraints, scDCC on some datasets (worm neuron cells and human kidney 
cells) can still perform better with more constraints, but it began to perform worse on some 
datasets (mouse bladder cells). Therefore, the invalidating point may vary with different 
datasets (e.g., signal to noise ratio). Here we see that 10% of erroneous constraints may 
potentially invalidate the model and, therefore, users need to be cautious to move forward in 
such situations. 
 
5. The model with combined constraints seems to use twice as many constraints as the one 
with only pairwise or triplet constraints. If so, the result of the comparison in Figure 6 may 
not be fair. 
 
Response 
We thank the reviewer for raising this point. The idea of triplet constraints was first inspired by 
computer vison research 4. During the revision, we conducted a series experiments to 
systematically compare pairwise constraints and triplet constraints and find that the pairwise 



constraints are usually better than triplet constraints in terms of the clustering performance. In 
addition, the pairwise constraints are more straightforward and easier to construct in different 
applications. Triplet constraint needs a predefined continuous prior information (e.g., a good 
latent representation of cells), which is not very feasible in the context of single cell analysis. 
Therefore, we focus our work on the pairwise constraints in the revised manuscript. Although 
we removed it from the main manuscript, we still provide the triplet constraint functionality in 
our software, which will be publicly available online. 
 
6. In the example of marker gene-based constraints (Figure 7a), it would be better if the 
authors could compare the performance of Louvain clustering or k-means on the ZIFA latent 
representations of the marker gene matrix. Besides, it should be compared with the baseline 
methods. 
 
Response 
We thank the reviewer for raising this point. We added k-means clustering on the ZIFA latent 
representations of the marker genes and SC3 on top 5000 genes in the revised Figure 6a 
(Results section “Marker gene-based constraints”). As it shows, scDCC with constraints 
outperforms both PhenoGraph 3 (Louvain clustering), k-means on marker genes and SC3. The 
measurements of scDCC and k-means are NMI: 0.905 vs 0.833, CA: 0.928 vs 0.928, ARI: 0.952 vs 
0.924 (averages of ten repeats). 
 
7. Considering that the authors listed a few cell type-specific signature sets as prior 
knowledges, it would be better if they can discuss in more detail about how to integrate 
these prior knowledges. 
 
Response 
We thank the reviewer for raising this point. In the revised manuscript, we added another case 
study (based on the “CITE-seq PBMC” dataset) to illustrate how to construct constraints and 
solve the clustering problem desirably. The key point is to generate accurate constraints and 
the definitions of the must-link and cannot-link faithfully represent the domain knowledge. We 
hope the two use cases listed in the manuscript could ignite the creativity of users to construct 
constraints for encoding their own domain knowledge. 
 
Minor points: 
1. https://github.com/ttgump/scDCC is unavailable. 
 
Response 
We have double checked the github to make sure that it could be freely downloaded. 
 
2. In the last paragraph of Results, it should be ‘with 6000 triplet constraints (Figure 7e)’. 
 
Response 
The manuscript has been updated. 
 



3. The authors overemphasized that scDCC does not require exact label information, since 
this is a clustering task where we seek to know which samples belong to the same cluster 
rather than a classification where we want to predict the exact label of each sample. 
 
Response 
We agree that the cluster label information can help scDCC to generate constraints. We show 
via two case studies in the revised manuscript (Results section “Protein marker-based 
constraints” and “Marker gene-based constraints”) that other data sources for labelling cell 
types/cell clusters, such as marker genes or cell surface proteins, can be incorporated into the 
model to improve clustering performance and provide desired and more interpretable results. 
 
 
Reviewer #2 (Remarks to the Author): 
 
This article introduces a deep neural network model for constrained clustering of single-cell 
RANseq profiles. The constraints are based on log Bernoulli likelihood on connectivities 
between pairs or triples of samples. The methods are applied to several real single-cell 
RNAseq datasets. The paper is well-written and the methods are clearly described. There are 
some critical questions to address in the validation. 
 
1. The clustering performance shown in Figure 2, 4, 5 and 6 are not properly evaluated since 
the training pairs are also included in the calculation of the measures. Similar to semi-
supervised learning, the clustering of the constrained model can be very sensitive to any kind 
of supervised information. In principle, any samples that are presented with supervised 
information (such as pairwise relations in this model) should not be used in the evaluation. 
The proper experimental setup should be split the samples in the dataset into a training set 
and a test set. The constrained pairs/triples should only be sampled from the training set and 
the clustering results should only be reported for the samples in the test set. If there are a 
excessive number of hyper-parameters such as neural network structures, a validation set 
might also be needed. Given the model was only tested on a subset of each of the datasets, 
there should be enough samples for the train/test setup. 
 
Without the correct validation, it is still unclear how much additional information is 
introduced by the pairs/triples to improve clustering in the current work. 
 
Response 
We thank the reviewer for raising this point and providing constructive suggestions. In the 
revised manuscript, we applied the method the reviewer suggested to evaluate the 
performance for all datasets. Specifically, for each dataset, we randomly selected 10% cells with 
labels to generate constraints. The scDCC model was trained on the dataset with constructed 
constraints. After obtaining clustering results, we evaluated the clustering metrics (NMI, CA and 
ARI) on the remaining 90% cells. Therefore, in the new evaluation paradigm, there is no overlap 
between the cells for generating the pairwise constraints and the cells for evaluation. In the 
revised figures, we apply the new evaluation method on all experiments including Figure 2, 



Figure 4, Figure S1-8 and Figure S10 (Results section “Pairwise constraints” and Methods 
section “Constraint Construction”). Note that our method did not include hyper-parameter 
tuning, all results were obtained by the same set of parameters, which showed from another 
aspect that the proposed method is robust and useful. 
 
2. The motivation of modeling the pairwise/triplewise relations in real studies is still unclear. 
The application to the five real datasets was taken by sampling from the final complete 
clustering in those studies, in which none of the dataset was originally generated with the 
pairwise knowledge. The common scenario is the case that a small set of cells are manually 
annotated and then used to train a model for classifying/clustering more single-cells from 
additional experiments, which is the case of supervised learning or semi-supervised learning. 
The pairwise constraint is still uncommon. It is important to justify the usefulness this model 
with real application scenarios, which is missing in the experiments or discussions. 
 
Response 
We thank the reviewer for raising this point. This is a semi-supervised clustering problem, which 
emphasizes clustering. It is different from semi-supervised classification, which is more in 
keeping with the semi-supervised learning the reviewer mentioned. If fact, pairwise constraint 
has been commonly considered in semi-supervised clustering 4, 5, 6. The motivation of modeling 
the pairwise/triplet relations has been illustrated in the computer vison researches4. We have 
similar motivation and justification for single cell studies. To illustrate the application of 
constraint in real scenarios, in the revised manuscript, we conducted two experiments: (a) CITE-
seq PBMC data (Results section “Protein marker-based constraints”) and (b) marker genes of 
human liver cells (Results section “Marker gene-based constraints”).  

(a) CITE-seq can profile mRNA and protein expression levels simultaneously. To leverage 
the information of protein expression levels, we used a stringent method to generate 
constraints based on protein levels: we calculated Euclidean distances for all possible 
pairs of cells based on the normalized protein data and chose the 0.5th and 95th 
percentile of all pairwise distances as the must-link and cannot-link constraint cutoffs. 
20,000 constraints were generated by this criterion. To further identify subtypes of CD4 
and CD8 T cells (e.g., CD8+CD27-, CD8+CD27+, CD4+CD27+, CD4+CD27-DR+, CD4+CD27-
DR-), we generate 5000 must-links for each subtype based on additional proteins. As 
shown in Figure 5, by incorporating constraints based on protein levels, scDCC can 
improve performance significantly, and scDCC with constraints can outperform 
PhenoGraph and k-means on protein levels.  

(b) In Figure 6, we conducted experiment of constraints generated by marker genes in 
human liver dataset. Marker genes can be considered as key features to separate 
different clusters. We first selected marker gene, then used ZIFA to reduce the 
dimension to 10. Next, we applied k-means on the ZIFA latent representations and used 
k-means results as the pseudo labels. ML and CL constraints were generated on these 
pseudo labels. As summarized in Figure 6, by incorporating constraints, scDCC not only 
improved performances (compared with scDCC without constraints), but also 
outperformed k-means on the ZIFA latent representations.  

 



We think these two examples of constraints (generated on protein levels or marker genes) 
demonstrate the usefulness of this model with real application scenarios, yielding more 
interpretable results with improved clustering performance. 
 
A minor note: 
 
3. On paper 9, the definition of p_ij abuses the use of indexes j and j' in the summations, 
which creates some confusion in understanding the statistics (which might be an error from 
the original equation in citation 46). 
 
Response 
We thank the reviewer for raising this point. We have updated the equation. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Thanks for addressing my concerns! 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors corrected the experimental design with proper training and test division of the data. The 

improvement is much appreciated. 

 

In this revision, it is also helpful to add the CITE-seq PBMC data to justify the use of pairwise 

constraints derived from the single-cell protein markers. However, there are a few questions remain 

and more clarifications and possibly a better experimental design are needed in the analysis of the 

CITE-seq PBMC data. 

 

1. How was the CITE-seq PBMC data labeled into 12 clusters? It appears the 12 clusters were derived 

from scRNAseq data analysis in the original study, which might not be used as true labels for the 

evaluation? 

 

2. It appears the information from the 49 protein markers can already define the clusters. What 

happens with clustering with the 49 protein marker data only? What happens if use the markers to 

define the classes for supervised learning instead (this also related to the first point)? Without the 

comparisons, it is still unclear if the method is useful or not in this scenario when both scRNAseq and 

surface protein markers are measured with CITE-seq. 



Reviewer #2 (Remarks to the Author): 
 
The authors corrected the experimental design with proper training and test division of the 
data. The improvement is much appreciated. 
 
In this revision, it is also helpful to add the CITE-seq PBMC data to justify the use of pairwise 
constraints derived from the single-cell protein markers. However, there are a few questions 
remain and more clarifications and possibly a better experimental design are needed in the 
analysis of the CITE-seq PBMC data. 
 
1. How was the CITE-seq PBMC data labeled into 12 clusters? It appears the 12 clusters were 
derived from scRNAseq data analysis in the original study, which might not be used as true 
labels for the evaluation?  
 
Response 
For all the datasets used in the paper, including the CITE-seq PBMC dataset, we used the cluster 
labels developed for the original study. The labeling procedure, which is the same or similar 
across different studies, consists of two major steps. First, initial clustering: perform clustering 
analysis using a popular scRNA-seq tool Seurat on the mRNA counts. Second, perform manual 
adjustment and labelling as follows: (a) conduct differential expression (DE) analysis for each 
cluster (one cluster vs the others); (b) then check the canonical marker genes of known cell 
types to see if they are significantly highly expressed in the cluster; if so, then label it to the 
known cell type; (c) the clusters having the same label will be merged into one cluster. We note 
some minor differences between different studies, such as the use of Seurat vs. k-means as the 
criteria for claiming the set of marker genes of being significantly highly expressed, etc. 
 
Such a labelling procedure is being widely used in the field, which is perhaps the best ground 
truth labelling we could have1. Most studies developing computational methods use the labels 
generated in the original study and work on the same data. The evaluation rationale is whether 
a proposed method can generate optimal clustering results in a principled way without going 
through multiple heuristic processing steps. The clustering performance metrics based on such 
labelling would help to give us some quantitative measurement of the performance of 
clustering algorithms. As such, we are following the convention in the field for the labelling 
approach.  
 
To further demonstrate the contribution of constraints, we visualized the CD4 and CD8 protein 
levels in the clustering results (Figure 5b). We can see that, with the help of constraint 
information, marker genes CD4 and CD8 are separated well into different clusters, which makes 
good biological sense and is desired by biologists. We use this as a complementary evidence to 
support the superiority of the proposed method.  
 
 
2. It appears the information from the 49 protein markers can already define the clusters. 
What happens with clustering with the 49 protein marker data only?  



 
Response 
(a) We have done PhenoGraph (Louvian clustering) and k-means using the 49 protein markers 
to define the clusters. Indeed, their performances are better than clustering results of SC3 and 
scDeepCluster on mRNAs (Figure 5a), which indicates that the information from the 49 protein 
markers can already define the clusters to a good extent. However, there is room for 
improvement. As we can see, scDCC with constraints can improve over these baseline methods, 
which illustrates the contribution of the proposed method.  
 
What happens if use the markers to define the classes for supervised learning instead (this 
also related to the first point)? Without the comparisons, it is still unclear if the method is 
useful or not in this scenario when both scRNAseq and surface protein markers are measured 
with CITE-seq. 
 
Response 
(b) It is unclear what kind of ‘supervised’ learning the reviewer is suggesting because the task 
here is clustering, which does not provide labelled samples for training. However, we 
considered the following approach to define classes and conducted some supervised learning 
experiments, which we hope addresses the reviewer’s concern. 
 
To obtain initial labels, we performed k-means clustering based on the 49 protein markers to 
define clusters as in (a) (Note, PhenoGraph is not used because it does not provide centroids 
which we need to use later). Such initial labeling (clustering) may not be optimal, however, so 
we keep the labels for only the top x% cells closest to their cluster centroids assuming that for a 
sample, the closer to the centroid, the more accurate is its assigned label. Then we use these x% 
‘labelled’ cells as training samples to train a predictive model to predict the remaining (1-x%) 
unlabeled cells using the mRNA data. Then we have clustering labels for all samples. When x% is 
too small we may not have enough training samples to train the predictive model well. When x% 
is large, fewer samples will benefit from the supervised learning model. In an extreme case, 
when x% =100%, it is essentially what we do in (a). Given this tradeoff, we set x%=50%. We 
choose SVM as the predictive model.  
 
Methods NMI CA ARI 
scDCC with constraints 0.714 0.747 0.701 
Supervised learning (SVM) 0.663 0.708 0.611 
 
As we can see from the Table above, scDCC with constraints still outperforms the supervised 
learning approach. This observation is consistent with existing literatures that supervised 
learning methods may be ineffective when labeled data is scarce 2, 3, 4, 5. It is noted that class 
labels (used by supervised learning) can also be translated into pairwise constraints for the 
labeled cells; vice versa, given consistent pairwise constraints for some cells, we may derive 
group information for the cells with constraints. Nevertheless, our proposed method is more 
flexible and effective, especially when the available knowledge (i.e., cell label) is too far from 



being representative of a target classification of the cells and supervised learning is not 
effective or possible, even in a transductive form2.  
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Reviewer #1: 

None 


