The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity

Benoît Bragantini¹, Christophe Charron¹, Maxime Bourguet², Arnaud Paul¹, Decebal Tiotiu¹, Benjamin Rothé¹, Hélène Marty¹, Guillaume Terral², Steve Hessmann², Laurence Decourty³, Marie-Eve Chagot¹, Jean-Marc Strub², Séverine Massenet¹, Edouard Bertrand⁴, Marc Quinternet⁵, Cosmin Saveanu³, Sarah Cianférani², Stéphane Labialle^{1*}, Xavier Manival^{1*}, Bruno Charpentier^{1*}

¹ Université de Lorraine, CNRS, IMoPA, Nancy F-54000, France

² Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS IPHC UMR 7178, F-67000 Strasbourg, France

³ Génétique des Interactions Macromoléculaires, Département de Génomes et Génétique, Institut Pasteur (UMR3525-CNRS), F-75015 Paris, France

⁴ IGH, CNRS, Université de Montpellier, F-34293 Montpellier, France

⁵ Université de Lorraine, CNRS, INSERM, IBSLor, Nancy F-54000, France

These authors contributed equally: Benoît Bragantini, Christophe Charron, Maxime Bourguet, Arnaud Paul

These authors jointly supervised this work: Bruno Charpentier, Stéphane Labialle, Xavier Manival

* Correspondence <u>bruno.charpentier@univ-lorraine.fr</u>, Tel : +33 3 72 74 66 27; Fax: +33 3 72 74 65 45 <u>stephane.labialle@univ-lorraine.fr</u>, Tel : +33 3 72 74 66 51 <u>xavier.manival@univ-lorraine.fr</u>, Tel : +33 3 72 74 66 91

Present Address:

Bragantini Benoît, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, 55905, USA

Rothé Benjamin, Ecole polytechnique fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland

Supplementary Introduction

The PAQosome was found in association with sub-complexes of RNA polymerase II¹ (RNAPII) and participates in its assembly in cytoplasm². It is also involved in the stabilization and assembly of phosphatidylinositol 3-kinase-related kinases (PIKKS)³⁻⁶, the U4 and U5 small nuclear RNPs⁷⁻⁹, RNA polymerases I and III^{2,10} and the TSC complex, a tumor suppressor and important regulator of mTOR^{8,9}.

Supplementary Figures

b

Protein	Experimental CCS (nm²)	CCS predicted from masses (nm²)	CCS Trajectory Method (nm²)
Bcd1p _{FL}	29.0 ± 1.5	29.8	-
Rtt106p ₆₅₋₃₂₀	23.2 ± 1.9	23.4	23.5
∑ CCS _{exp}	52.2 ± 3.4 📉 -1	53.2	-
Bcd1p _{FL} / Rtt106p ₆₅₋₃₂₀	44.4 ± 1.4	42.3	-

Fig. 1 Assembly of Bcd1p and Rtt106p-M followed by native IM-MS. a The native Ion Mobility-Mass Spectrometry (IM-MS) parameters were fine tuned in order to measure the arrival time distributions (ATDs) of each most abundant charge state for individual partners and complex in the same IM cycle and to avoid ion activation in the IM cell (see Methods section). Theoretical Collision Cross Sections (CSS) were calculated with Mobcal while Predicted CCS from masses were estimated from Ruotolo et al. (2008)¹¹ : Ω = 2.435 x Mw ^{2/3}. **b** Measured CCSs obtained for each individual subunit and for the Bcd1p_{FL}:Rtt106p-M complex were then compared to CCS values deduced either from the mass or from 3D structures when available. A significant difference of -15 % in CCS was observed between the juxtaposed model and the measured IM-MS CCS, arguing strongly in favor of a close imbrication of Bcd1p_{FL} and Rtt106p-M upon complex formation.

Fig. 2 Rtt106p does not contribute to association of Bcd1p to snoRNAs loci nor to the steady state level of snoRNAs. a and c Association of Bcd1p with RNAs. RNA immunoprecipitation (RIP) assays were performed on extracts prepared from WT BCD1-TAP cells and cells disrupted of the RSA1 (rsa1 Δ) or RTT106 (rtt106 Δ) ORFs. The cells were cultivated in the presence of galactose (YPG) or shifted to a glucose containing medium (YPD) for 6 h before preparation of the extract. IP was performed using IgG-sepharose beads. Data are mean values plus standard error of the mean of four to five (panel A) and three (panel C) biological replicates. b Quantification of snoRNAs. RT-qPCR analyses were performed on total RNAs extracted from WT BY4741 strain and mutant KO for the RTT106 ORF (rtt106Δ). The ALG9 gene was used as an endogenous control. Relative RNA expression of WT strain was set to one. Data are mean values plus standard error of the mean of three biological replicates. d Chromatin immunoprecipitation (ChIP) assays were performed on yeast FLAG-BCD1 cells with (rtt106Δ) or without the disruption of the RTT106 ORF. Cells were cultivated in YPG or shifted to YPD medium before ChIP assays. Cells expressing non-tagged Bcd1p were used as controls and IP was performed using anti-FLAG antibody. Data are mean values plus standard error of the mean of three biological replicates. e ChIP assays performed on yeast GAL1::3HA-BCD1 transformed by empty or FLAG-RTT106 expression vector. The BY4741 strain was used as control. Cells were cultivated in YPG or shifted to YPD medium before ChIP assays. Before incubation with anti-FLAG agarose beads, the cell lysate was incubated (+) or not (-) with RNases A/T1 (Paul et al., 2019). Data are mean values plus standard error of the mean of three biological replicates. Two-tailed t-tests (*P<0.05, **P<0.01, ***P<0.001). RNase + versus RNase - in YPG: ** = 0.002 for HTA/B1, *** = 0.0003 for HTA/B2, *** = 2.94 E-6 for SNR52, *** = 0.0005 for Chr. V. RNase + versus RNase - in YPD: *** = 0.0002 for HTA/B1, *** = 0.0002 for HTA/B2, ** = 0.002 for SNR17A (U3), *** = 0.0003 for SNR128 (U14), *** = 0.0002 for SNR52, ** = 0.003 for Chr. V. f ChIP assays performed on WT or BCD1₁₋₁₁₅ yeast strains. Cells were cultivated in YPG or shifted to YPD medium before ChIP assays. Cells expressing non-tagged Rtt106p were used as controls and IP was performed using anti-FLAG antibody. Data are mean values plus standard error of the mean of three biological replicates. Two-tailed t-tests (*P<0.05, **P<0.01, ***P<0.001). WT; FLAG-RTT106 versus BCD1₁₋₁₁₅; FLAG-RTT106: * = 0.018 for HTA/B1, * = 0.047 for SNR17A (U3).

Fig. 3 Limited proteolysis followed by non-denaturing mass spectrometry analysis of $Bcd1p_{FL}$:His₆Rtt106p-M. After 4 h of tryptic digestion, we observed that His₆Rtt106p-M was almost completely resistant to enzymatic digestion, only one C-terminal amino acid was removed (red trace). In the other part, two other species corresponding to two 1:1 Bcd1p:His₆Rtt106p-M complexes were detected: the major species corresponds to truncated Bcd1p₁₁₃₋₃₆₆ in interaction with His₆Rtt106p-M (blue trace), while a minor species corresponding to a smaller fragment of Bcd1p₁₅₀₋₃₆₆ still in interaction with His₆Rtt106p-M (green trace) was also detected (all identified fragments were validated by LC-MS/MS, data not shown). Molecular weight is shown in Dalton.

Fig. 4 Interaction analysis between Bcd1p and Rtt106p fragments by isothermal titration calorimetry (ITC). ITC results between (from left to right) Bcd1p_{FL} with Rtt106p-M, Bcd1p₁₄₉₋₃₆₆ with Rtt106p-M, Bcd1p₁₂₀₋₃₀₃ with Rtt106p-M, and Bcd1p₁₂₀₋₃₀₃ with Rtt106p₆₅₋₃₀₁ recorded at 293 K in buffer containing 10 mM NaPi at pH 7.5, 150 mM NaCl and 0.5 mM TCEP. The calculated dissociation constant (*Kd*), and the variations in enthalpy (ΔH) and entropy (ΔS) are indicated.

Fig. 5 Interaction analysis between Bcd1p and Rtt106p fragments by NMR titrations. NMR ¹H-¹⁵N-HSQC of Bcd1p fragments alone (on left) or with Rtt106p-M (on the right). Bcd1p fragments tested are (from the top to the bottom) Bcd1p₁₂₀₋₃₀₃, Bcd1p₁₂₀₋₃₁₅, Bcd1p₁₄₉₋₃₁₅ and Bcd1p₁₃₀₋₃₀₃. Spectra were recorded at 293 K with protein concentration of 200 μ M in 10 mM NaPi buffer (pH 6.4), 150 mM NaCl and 1 mM DTT.

а

BCD1 SACCE	0
BCD1 HUMAN	MEFAAENEGKSGGGLHSVAEGVRLSPEPGREGVRDLAGAEEFGGGEEGTGLTGIKEIGDG 60
BCD1 MOUSE	MESAAEKEGTPGGGSQRVAEGARPRPAAGGEGARDLDGSPEAGDGEERNGLAGTKTTE58
_	
BCD1_SACCE	0
BCD1_HUMAN	EEGSGQRPEEIPMDLTVVKQEIIDWPGTEG-RLAGQWVEQEVEDRPEVKDENAGVLEVKQ119
BCD1_MOUSE	DAEEIKMDLAVVKQEVVDWSDLDSGVADSQWVKQEVEGGPEVKDE-KGVLEVKQ111
BCD1 SACCE	0
BCD1 HUMAN	ETDSSLVVKEAKVGEPEVKEEKVKEEVMDWSEVKEEKDNLEIKQEEKFVGQCIKEELM177
BCD1 MOUSE	EADSSLVVKEEEVDEPEVKEEKVKVKEEVTDWEEVKEEDLTIKQELFVGQNVKEEQV168
_	
BCD1 SACCE	MAVI CCVCCIVEEXVKCPPCIV 22
BCD1 HIMAN	
BCD1 MOUSE	MDADDIVERCGI VCENMEDAVUVEREDOMNDDUCGVDVI AI GDCFTCCTFFAVVDCDDCMD 220
BCDI_HOUSE	MDAAFIKEEGSEKSEAMEDAKVKEEFQMMFKVGSKKKEAESKCEICGIEEAKIKCFKCMK220
BCD1 SACCE	QTCSLECSKKHKTRDNCSGQTHDPKEYISSEALKQADDDKHERNAYVQRDYNYLTQLKRM 82
BCD1 HUMAN	YSCSLPCVKKHKAELTCNGVRDK-TAYISIQQFTEMNLLSDYRFLEDVART 287
BCD1 MOUSE	FSCSLPCVKKHKADLTCSGVRDK-TAYVSLQQFTEMNLLSDYRFLEDVART 278
	:*** * ****: .*.* *:* : :.: : **.:* :: *
BCD1 SACCE	VHVOKMDARMKNERVI GRUGCHNSNEKERRYDIDEDDRDETECORTIRECORTIERCUNCIMIRECH 142
BCD1 HUMAN	
BCD1 MOUSE	
DCDI_HOUSE	*••* * • * • * • * • * • * • *
BCD1 SACCE	QRSSQNRSKWDKTMDLFVWSVEWILCPMQEKGEKKELFKHVSHRIKETDFLVQGMGKNVF 202
BCD1 HUMAN	TKRKENSTFFDKKKQQFCWHVKLQFPQSQAEYIEKRVPDDKTINEILKPYIDPEKSDPVI 387
BCD1 MOUSE	SKRKENSTVFDHRKQQFCWHVKLQFPQSQAEYIEKRVPDDKT1NEILKPYIDPEESDPVI 378
-	: .:* : :*: : * * *: : * : :*.: : :: *:
BCD1 SACCE	OKCCEEVELAGTSSCIEGEDGSETKEERTOILOKSGLKEVTKTEPVNTTHIMDSKKLVEL262
BCD1 HUMAN	
BCD1 MOUSE	RORLKAYAOSOTGVOLL-MRVENMOONMIR-YHELDP
Dept_Hooph	
BCD1_SACCE	AIHEKCIGELLKNTTVIEFPTIFVAMTEADLPEGYEVLHQEPRPLEHTSTLNKFIDNARE 322
BCD1_HUMAN	YKSLLDNLRNKVIIEYPTLHVVLKGSNNDMKVLHQVKSESTKNVGNEN-470
BCD1_MOUSE	YKSLSDNLKDKVIIEYPTLHVVLRGSSNDKQLL-QVKSESAQKLGNGN-460
	*.:: *:::**:**: *.: : ::* * ::.*.
BCD1 SACCE	EEDAEEDSOPTEEPVOKETODASDSDSDSDDDVNPGLSMDFLTA 366
BCD1 HUMAN	
BCD1 MOUSE	460

-----MSENRLGICSTCQKNASKYRCPRCDS 26 BCD1 SCHPO BCD1_TALIS -----MSEPLLSELCTICHTTPPKYTCPRCAI 27 -----MAVLCGVCGIKEFKYKCPRCLV 22 BCD1_SACCE BCD1_CANGL -----MGLCEVCNVEEFKYKCPRCFK 21 -----MDFGEENTVCTICHENKSKYTCPACEI 27 BCD1_CANAL BCD1 CANKR -----MHCEICKKIEHKYVCPRCKL 20 BCD1 YARLI MH-----ELKRFTI-QKKEKNHTHTHTHTHTHTTSMSCSICQQ-ESKYRCPACSA 50 BCD1 SCHPO RFCCLECNLEHKRLTKCSGERDPAT----FVPKSKLV-----NHLNSDFNFLSG 71 RTCSLACARRHKNWSQCSGVRDPAA----YATRAELQ-----TASALDRDFNFITG 74 BCD1 TALIS QTCSLECSKKHKTRDNCSGQTHDPK----EYISSEALKQADDDKHERNAYVQRDYNYLTQ 78 BCD1 SACCE KTCSLACSKQHKADESCSGKSHDPT---AYIPRTDIKEADDENHESNILVQRDYNYLIN 77 KTCSLQCYNKHKYERDCTGKVDSNK----YLNRSELAS-----DPVHLNRDYNFLNN 75 BCD1 CANGL BCD1 CANAL BCD1_CANKR BCD1_YARLI RTCSLPCFKQHKIDKKCSGLSDISLGTRDTYIDKK-QL-----DSNDVQRDYNFLLK71 RTCSLACSKQHKASEKCSGLPDPTK----YLNREALF-----TDTSVNRDYRFLKR 97 *.* . *.* * .** : : *:.:: BCD1_SCHPO VERLINRKENGSHQVS------NRAERNRLQ-----LKR-----99 BCD1_TALIS VERGLERAEREARARGFVDLDHEYMQDPKNKRKRKRRDGSKEEAAGGGGAGGSKKLVKGE134 BCD1 SACCE LKRMVHVQKMDARMKNKRVLGPVGGHNSNFKKRRYDIDEDD----RDST--ECQ---- 126 BCD1_CANGL BCD1_CANAL MRREVEVOIDDSKRKNKRILREIYDPYMANKR-----OR----GNSD--NSS-----118 VDRKIHVGKEDIVKSAKNVFKRTRNQSRAPGNKRHK--RND----EDNT--DKRIMAVK 126 VNRSLDLGKRRKS--EMKILKTVGNRRN--GNFS-----NNGI--NSK-----108 BCD1 CANKR LERDIVVRKQDGE--SMPIFKRARYNQN-----R-----KDGK--DGS-----131 BCD1 YARLI : * BCD1 SCHPO -----SLERAGINIKFAPPSNKKRRLNRTHYDKKSHLIKWSIEWCLHESSTSK---147 BCD1 TALIS LAFLR----AAODAGVKVERSPRGMTRNKENKSRFHPKHKCLSWTVDWIHTAGRSRV---187 BCD1_SACCE -----RIIRRGVNCLMLPKGMQRSSQNRSKWDKTMDLFVWSVEWILCPMQEKGEKK177 BCD1 CANGL -----RLIRRGVSCLMLPKGMQRSLQNKSKWDNSLNQFTWTIEWVLCGDG-----163 BCD1_CANAL KVFLNEPTISIKRENTLIVSLPIGMSRSNTNKTGFDKKLNSFVWTIEWIVLNDQGEQ---183 BCD1_CANKR -----WVPTRGVKVKKVPLGMERGKLNKSG--GKGNNWAWTIEWLLIDENKKV---154 BCD1 YARLI -----VMERNGVKIHKVAQGMGRQKRNHSRWDPNIKQFCWTVEWVNVDTNETM---179 . : *: * :. . BCD1 SCHPO ----DLTDEASENTIITHSHPESEPLEKIFRKLVEENSEMNSQ------186 BCD1_TALIS BCD1_SACCE -VQNYLETI-----TI-----G-----Q-AYDRAYPPLPDEATS-------214 ELFKHVSHRIKETDFLVQGMG-----KNVFQKCCEFYRLAGTSSCIEGEDGS------224 DTVTHLTHRAKENESVVEGIS-----KIVFNKIQTFYKIENGDGD--ETQAV-----208 BCD1_CANGL -MTKFISYRLKESLILQD------213 -IDRYVKYKSGESSILRT-----184 BCD1 CANAL BCD1 CANKR -TVDKVNPV---QSLLEC-----FQKRGSEKGGNGDNKGERKVEKNDTEQT 221 BCD1_YARLI : : BCD1 SCHPO -----GFIYKKIEPSNSLSS 225 BCD1_TALIS BCD1_SACCE -----ADSHIVLAPLHPEAKLAD 256 -----ETKEERTQIL-QKSGLKFYTKTFPYNTTHIMDSKKLVELAIHEKCIGE 271 -----LSREDRIALI-KDYNLEFYIKWFPYNTTEMSDSRNLIRIDAVNSTLGD 255 BCD1_CANGL BCD1_CANAL BCD1_CANKR -----R-LNSEEKISD 244 -----VFEV-VDKDAKLSE 207 EMKDEHSKQKDGDKKDEEKEVV-PLTPRSFYMKRIKSKNT----SPIL-LDPSKPLSE 273 BCD1 YARLI : : BCD1_SCHPO CLRNSFVFEVPTIHVFTSTTQ-VHTE----SS----YETSSSEQSDDSSSSSSC 270 VLRGRTVYEYPRLYVKSESPADIESGAVDETHVLEETWLR-NNPTGIEAQDDDESDWTSS 315 BCD1 TALIS BCD1 SACCE LLKNTTVIEFPTIFVAMTEAD-LPEGYE----VLHQEP---RPLEHTSTL----NKF--- 316 BCD1_CANGL BCD1_CANAL VFKNRTVIEFPTIYITKSVQD-LPKGFK----VMIEEK---GSAPGSEEN----SRV--- 300 VLKDKIVLEYPTIYVTANDEC-LQDRIIDEFQLADEED---DDATGSSTD----ESSSSD 296 BCD1_CANKR VLLNKLVIEFPTMYIFKGDSS-IITREK--V----LDD---DLSSG------243 BCD1_YARLI NLKDKSVVEYPTIYYTNEEIV-ASDSDSDSD----SDS---DNDSG------311 : . : * * :. BCD1 SCHPO --ISDS-----EESSSDDELNELSNEKKANSPTQNVDTSS---KLSSVKF-QNED 314 EGSSEE--SEDDDESETGSDSDSESESQVS-DVKE-----ETA-----350 BCD1_TALIS BCD1_SACCE -----I---DN-AREEEDAEEDSQPTEEPV-Q------KETQDAS-DSDS 349 BCD1 CANGL ----NVAGSGSSSDTETDDSDAEPEEESS-KQDNTQNKNVVVENVSEATAIVDK-DTSD 353 BCD1_CANAL DGDSDSDTSSVGDSSDEDNDSDSAPEETSS-KLPPFSQTFFETRS--DSKPIIEEIGSSE 353 BCD1 CANKR --SSDSDAS-SDSSSDSSSDSDTPPEESSS-KPLET------275 BCD1 YARLI --SDDSDDS-DDSDDDSDDDSDSAPEEESA-RQPEMPDIVKTL-A--DS-AVNDMAGLED 363 BCD1 SCHPO DEDRRKNSDGSEASYSLPPLFGSYFQKQGQY 345 BCD1 TALIS _____ 350 BCD1 SACCE DSD-DDYNPGLSMDF----LTA-----366 BCD1_CANGL BCD1_CANAL EED-DDYNPGVSLDF----LMS-----370 VVE-EP----

AFE-KAQEEGKQ-----

BCD1_CANKR

BCD1 YARLI

358

275

374

b

Fig. 6 Highlights of the conserved fragment 120-303 of Bcd1p (in bold). a Sequence alignment of Bcd1p₁₂₀₋₃₀₃ from Saccharomyces cerevisiae (top), ZNHIT6 (also called BCD1) from Homo sapiens and from Mus musculus. Amino-acid alignments built with Clustal Omega using sequences of yeast (Bcd1p, UniProt entry P38772 [https://www.uniprot.org/uniprot/P38772]), human UniProt (ZNHIT6, entry Q9NWK9 [https://www.uniprot.org/uniprot/Q9NWK9]), and mouse (ZNHIT6, UniProt entry Q3UFB2 [https://www.uniprot.org/uniprot/Q3UFB2]) BCD1 proteins¹². The consensus symbols stand for "*" for strictly conserved groups, ":" for groups of very similar properties and "." for groups of weakly similar properties. The amino acids involved in hydrophobic, electrostatic interactions and hydrogen bonding are shown in bold and dark blue, red, and orange, respectively. b Sequence alignment of Bcd1p_{Fl} from different yeast species. SCHPO, Schizosaccharomyces pombe (top, UniProt:074906 [https://www.uniprot.org/uniprot/074906]); TALIS, Talaromyces islandicus (GenBank:CRG83776.1 [https://www.ncbi.nlm.nih.gov/protein/816194281]); SACCE. Saccharomyces cerevisiae (UniProt:P38772 [https://www.uniprot.org/uniprot/P38772]); CANGL, Candida glabrata [https://www.ncbi.nlm.nih.gov/protein/961789889]); (GenBank:KTB14807.1 CANAL, Candida albicans [https://www.ncbi.nlm.nih.gov/protein/723165737]); (GenBank:KHC39748.1 CANKR, Pichia kudriavzevii (GenBank:AWU76967.1 [https://www.ncbi.nlm.nih.gov/protein/1402408442]); YARLI, Yarrowia lipolytica (GenBank:AOW05274.1 [https://www.ncbi.nlm.nih.gov/protein/1078658162]). The RBD sequence of S. cerevisiae is in bold. The color code used for the residues is the same as in a.

Fig. 7 Sequences of Bcd1p₁₂₀₋₃₀₃ and Rtt106p₆₅₋₃₀₁ with the summary of NMR, X-ray, cross-linking MS and HDX-MS results. a Sequence of Bcd1p₁₂₀₋₃₀₃. Secondary structure elements from NMR free structure are indicated below. The β_{10} strand is only present in the crystallographic structure. The first four residues (GPHM, in gray and not numbered) correspond to residues of the remaining 6xHistidines tag after cleavage by PreScission protease. The sequence numbering starts at residue R₁₂₀ corresponding to the wild type. The cross–linked amino acid with Rtt106p is shown in bold and yellow, and the amino acids involved in hydrophobic and electrostatic interactions, and hydrogen bonding are shown in bold and dark blue, red, and orange, respectively. (-) less exposed residue to solvent after fixation of Rtt106p and (+) residue more exposed to solvent after fixation of Rtt106p (HDX-MS data from Supplementary figure 10). b Sequence of protein Rtt106p₆₅₋₃₀₁ with secondary structure elements from X-ray complex structure below (S=Strand; H=Helix). Amino acids interacting with Bcd1p are indicated with the same legend as in (A). The first frame represents the PH1 domain (68-204) and the second the PH2 domain (217-299). (-) less exposed residue to solvent after fixation of Bcd1p (HDX-MS data from Supplementary figure 10).

а

Fig. 8 Conformational changes of the PH1 domain of Rtt106p upon Bcd1p binding. a Values of R.M.S. deviations calculated by least squares minimized superimposition of PH1 domains. b Secondary structure elements of the PH1 domain of Rtt106p are assigned according to the Protein Data Bank (PDB) file entry. The seven β -strands are labeled S1 to S7 and the two α -helices are labeled H1 and H2. Note that structural modifications occur in β -strands S1 and S2, in the loops S2-S3 and S3-S4, and in the C-terminal region of the PH1 domain including α -helices H1 and H2 as well as the loop connecting these two α -helices.

Fig. 9 Electrostatic properties of Bcd1p₁₂₀₋₃₀₃ (entry PDB code 6NZ2 [https://www.rcsb.org/structure/6NZ2]. **a-b** Electrostatic potentials mapped on the molecular surface of Bcd1p₁₂₀₋₃₀₃ and viewed in two opposite directions. Blue, white and red regions correspond to positive, neutral and negative electrostatic potentials, respectively (+1 kcal/(mole) in blue to -1 kcal/(mole) in red). **c-d** Opposite views (180 degrees apart) of ribbon representation at Bcd1p₁₂₀₋₃₀₃. Part of the structure that is buried upon binding of Rtt106p is colored magenta.

Panel **c** has the same orientation as panel **a** and panel **d** has the same orientation as panel **b**.

Fig. 10 Overview of structural mass spectrometry characterization of Bcd1p_{FL}:**Rtt106p-M complex including HDX-MS. a** Relative fractional uptake difference plot of Bcd1p_{FL} vs Bcd1p_{FL}:Rtt106p-M HDX experiments. Each point represents the relative fractional uptake of each Bcd1p_{FL} identified peptides from Bcd1p_{FL}:Rtt106p-M state subtracted from the relative fractional uptake of Bcd1p_{FL} peptides from Bcd1p_{FL} alone state (light blue circle shows the difference at 0.5 min exposure time, orange at 2 min of exposure, gray at 10 min of exposure, yellow at 30 min of exposure and dark blue at 60 min of exposure). Framed blue peptides represent the peptides whose magnitude of the difference was statistically significant in Wald tests, with a significance threshold set to 0.01 (MEMHDX software). b Relative fractional uptake of each Rtt106p-M and Bcd1p_{FL}:Rtt106p-M HDX experiments. Each point represents the relative fractional uptake of Rtt106p-M HDX software). b Relative fractional uptake of each Rtt106p-M peptide identified from Bcd1p_{FL}:Rtt106p-M state subtracted from the relative fractional uptake of Rtt106p-M peptides from Bcd1p_{FL}:Rtt106p-M free state (the color code is the same as in a).

Fig. 11 HDX uptake plots of all identified and validated peptides of Bcd1p_{FL} in Bcd1p_{FL} alone (blue curve) and Bcd1p_{FL}:Rtt106p-M (red curve) states.

Fig. 12 HDX uptake plots of all identified and validated peptides of Rtt106p-M in Rtt106p-M alone (blue curve) and Bcd1p_{FL}:Rtt106p-M (red curve) states.

Fig. 13 a Structural model of the heterodimer Bcd1p:Rtt106p in complex with the $(H3:H4)_2$ tetramer. The model was built on the basis of the 3D model of the complex Rtt106p: $(H3:H4)_2^{13}$ and the present crystal structure of Bcd1p₁₂₀₋₃₀₃:Rtt106p₆₅₋₃₀₁ (our work). **b** Interaction analysis between Rtt106p₆₅₋₃₀₁ and H3K56ac peptide with or without Bcd1p₁₂₀₋₃₀₃ From the left to the right: ITC results between Rtt106p₆₅₋₃₀₁ and Bcd1p₁₂₀₋₃₀₃:Rtt106p₆₅₋₃₀₁ and H3K56ac peptide and between the Bcd1p₁₂₀₋₃₀₃:Rtt106p₆₅₋₃₀₁ complex and H3K56ac peptide. These experiments were recorded at 293 K in buffer containing 10 mM NaPi at pH 7.5, 150 mM NaCl and 0.5 mM TCEP. The calculated affinities and thermodynamic parameters are indicated. Schematic representations of the experiments are shown at the bottom of each experiment.

а	
Cns1	GSENKKIMLESAMTLRNITNIKTHSPVELLNEGKIRLEDPMDFESQLIYP
Bcd1	RDSTECQRIIRRGVNCLMLPKGMQRSSQNRSKWDKTMDLFVWSV
Cns1	ALIMYPTQDEFDFVGEVSELTTVQELVDLVL
Bcd1	EWILCPMQEKGEKKELFKHVSHRIKETDFLVQGMGKNVFQKCCEFYRLAGTSSCIEGEDG *: * *:: ::: : .*::: **::
Cns1	RFKKEGKENFTPKKVLVFMETKAGGLIKAGKKLTFHD
Bcd1	SETKEERTQILQKSGLKFYTKTFPYNTTHIMDSKKLVELAIHEKCIGELLKNTTVIEFPT .** : :: *. * . : *. : *. : *
Cns1	ILKKE-SPDVPLFDNALKIYIVPKVESEGWISKWDKQKALERRSV
Bcd1	IFVAMTEADLPEGYEVLHQE

Fig. 14 Structural comparison of the wheel domains from Bcd1p and Cns1p. a Sequence alignment of Bcd1p₁₂₀₋₃₀₃ and Cns1p₂₂₁₋₃₈₅. Perfect matches, strongly similar and weakly similar residues are respectively indicated with an asterisk, a double dot and a dot. b Cartoon representation of the best NMR structure of Bcd1p₁₂₀₋₁₃₀ (entry PDB code 6NZ2 [https://www.rcsb.org/structure/6NZ2]). c Cartoon of (entry representation of the X-ray structure Cns1p₂₂₁₋₃₈₅ PDB code 6HFM [https://www.rcsb.org/structure/6HFM]). d 3D superimposition of $Bcd1p_{120-303}$ and $Cns1p_{221-385}$. On the right, structures are shown in cartoon mode. For more clarity, loops and helices in Bcd1p and Cns1p are shown in ribbon mode (on the left), whereas β -strands are displayed in cartoon mode.

Fig. 15 The binding site for dsDNA at the surface of Rtt106p in the Rtt106p₆₅₋₃₀₁**:Bcd1p**₁₂₀₋₃₀₃**complex** (entry PDB code 6THL [https://www.rcsb.org/structure/6THL]). Several conserved positively charged residues (in red) at the surface of Rtt106p form a positively charged ridge region that is responsible for dsDNA binding¹⁴. This positive patch continues on the Bcd1p molecular surface.

Supplementary Tables

Band	Protein	Sequence coverage	Number of unique peptides	Spectral count
10	Bcd1_FL	78	52	2710
IA	His-Rtt106_(65-320)	51	13	50
18	His-Rtt106_(65-320)	83	52	3667
	Bcd1_FL	55	31	158
10	His_Bcd1_FL	68	52	2683
	Rtt106_(65-320)	84	21	143
10	Rtt106_(65-320)	97	57	4036
ID	His_Bcd1_FL	54	35	178
1E	Bcd1_FL	69	43	1408
	His-Rtt106_FL	64	31	46
15	His-Rtt106_FL	71	65	560
IF	Bcd1_FL	55	24	102
10	His_Bcd1_FL	67	54	2524
IG	Rtt106_FL	74	56	939
411	Rtt106_FL	78	68	3465
<u> </u>	His_Bcd1_FL	49	33	386

Supplementary Table 1. Mass spectrometry analysis of gel bands from SDS-PAGE

Supplementary T	able 2. Results	of the cross-linking	experiments for	the complex Bc	d1p _{FL} :Rtt106p-M
-----------------	-----------------	----------------------	-----------------	----------------	------------------------------

Ponlicate	Patio	Heavy/	Cross-linked	Cross-linked	Pontido 1	Pentide 2	m/z	Charge	M+H+	Calculated	Deviation	Retention
Replicate	Ratio	Light	proteins	sites	i epide i	i epilde z	1102	onarge		Mass	(ppm)	time (sec)
	1.20	н	Bcd1n-Bcd1n	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVOKMDAR] ⁹¹	693 692	3	2079 062	2079.059	15	1144 49
	1.50		Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVOKMDAR] ⁹¹	692 349	3	2075.033	2075 034	-0.7	1151 10
	1:50	н	Bcd1p-Bcd1p	K16-S106	¹⁵ [YKBPR] ¹⁹	97[VLGPVGGHNSNFK]109	548,291	4	2190.145	2190.142	1.3	1301.30
	1:50	L.	Bcd1p-Bcd1p	K16-S106	¹⁵ [YKBPR] ¹⁹	97[VLGPVGGHNSNFK]109	729.377	3	2186.117	2186.117	-0.2	1310.32
	1:50	н	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	258[KLVELAIHEK]267	682.059	3	2044.164	2044.156	4.1	1674.91
	1:50	L	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	258[KLVELAIHEK]267	408.832	5	2040.131	2040.131	0.4	1678.35
	1:50	н	Bcd1p-Bcd1p	K80-K151	150[SKWDK]154	72[DYNYLTQLKR] ⁸¹	706.710	3	2118.116	2118.116	-0.3	2538.07
	1:50	L	Bcd1p-Bcd1p	K80-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	72[DYNYLTQLKR] ⁸¹	705.368	3	2114.089	2114.091	-1.0	2550.45
	1:50	н	Bcd1p-Bcd1p	K87-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	⁸² [MVHVOKMDAR] ⁹¹	673.685	3	2019.043	2019.045	-1.0	1500.29
	1:50	L	Bcd1p-Bcd1p	K87-K151	150[SKWDK]154	82[MVHVQKMDAR]91	672.344	3	2015.019	2015.020	-0.1	1507.08
	1:50	н	Bcd1p-Bcd1p	K140-K151	150[SKWDK]154	132 [GVNBLMLPKGMQR]144	770.068	3	2308.188	2308.191	-1.0	2422.19
	1:50	L	Bcd1p-Bcd1p	K140-K151	150[SKWDK]154	¹³² [GVNBLMLPKGMQR] ¹⁴⁴	768,727	3	2304,165	2304,166	-0,5	2433.80
	1:50	н	Bcd1p-Bcd1p	K151-K188	150 [SKWDK] 154	187 [IKETDFLVQGMGK] 199	568,308	4	2270,209	2270,204	2,4	2496.24
	1:50	L	Bcd1p-Bcd1p	K151-K188	150 [SKWDK] 154	187 [IKETDFLVQGMGK] 199	756.064	3	2266.177	2266.178	-0.3	2509.23
	1:50	н	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	790.411	3	2369.218	2369.217	0.2	3028.83
1	1:50	L	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	789,070	3	2365,194	2365,192	0,9	3038,08
	1:100	Н	Bcd1p-Bcd1p	K16-K62	¹⁵ [YKBPR] ¹⁹	57[QADDDKHER]65	659,984	3	1977,937	1977,939	-0,9	556,97
	1:100	L	Bcd1p-Bcd1p	K16-K62	¹⁵ [YKBPR] ¹⁹	57[QADDDKHER]65	658,643	3	1973,913	1973,913	-0,1	560,22
	1:100	н	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVQKMDAR] ⁹¹	693,692	3	2079,061	2079,060	0,5	1139,98
	1:100	L	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVQKMDAR] ⁹¹	692.350	3	2075,034	2075,034	0,1	1147,61
	1:100	н	Bcd1p-Bcd1p	K16-K151	¹⁵ [YKBPR] ¹⁹	¹⁵⁰ [SKWDK] ¹⁵⁴	509,937	3	1527,796	1527,793	2,3	966,86
	1:100	L	Bcd1p-Bcd1p	K16-K151	¹⁵ [YKBPR] ¹⁹	¹⁵⁰ [SKWDK] ¹⁵⁴	508,594	3	1523,768	1523,768	0,6	968,52
	1:100	н	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	258[KLVELAIHEK]267	409,637	5	2044.158	2044,156	1,1	1649,36
	1:100	L	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	258[KLVELAIHEK]267	408,832	5	2040,132	2040,131	0,6	1657,68
	1:100	н	Bcd1p-Bcd1p	K62-T77/K80	57[QADDDKHER]65	72[DYNYLTQLKR]81	856,759	3	2568,262	2568,263	-0,2	1876,36
	1:100	L	Bcd1p-Bcd1p	K62-T77/K80	57[QADDDKHER]65	72[DYNYLTQLKR]81	855,417	3	2564,236	2564,238	-0,8	1893,61
	1:100	н	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	187 [IKETDFLVQGmGK] 199	762,737	3	2286,198	2286,199	-0,5	2159,75
	1:100	L	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	187 [IKETDFLVQGmGK] 199	761,396	3	2282.174	2282,174	0,4	2174,69
	1:100	н	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	790,410	3	2369,217	2369,217	-0,2	3035,31
	1:100	L	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	789.069	3	2365,193	2365,192	0,5	3046,35
	1:50	Н	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [mVHVQKMDAR] ⁹¹	699,023	3	2095,055	2095,055	-0,01	915,29
	1:50	L	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [mVHVQKMDAR] ⁹¹	697,681	3	2091,029	2091,030	-0,1	920,91
	1:50	н	Bcd1p-Bcd1p	K16-S106	¹⁵ [YKBPR] ¹⁹	97[VLGPVGGHNSNFK]109	548,292	4	2190,146	2190,143	1,4	1207,99
	1:50	L	Bcd1p-Bcd1p	K16-S106	¹⁵ [YKBPR] ¹⁹	97[VLGPVGGHNSNFK]109	547,285	4	2186,120	2186,118	0,9	1217,83
	1:50	н	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	²⁵⁸ [KLVELAIHEK] ²⁶⁷	409,637	5	2044,157	2044,156	0,4	1549,04
	1:50	L	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	258 [KLVELAIHEK]267	408,832	5	2040,131	2040,131	0,1	1554,43
	1:50	н	Bcd1p-Bcd1p	K80-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	72[DYNYLTQLKR] ⁸¹	706,711	3	2118,118	2118,117	0,5	2442,31
	1:50	L	Bcd1p-Bcd1p	K80-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	72[DYNYLTQLKR] ⁸¹	705,369	3	2114,093	2114,092	0,7	2454,23
	1:50	н	Bcd1p-Bcd1p	K87-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	⁸² [MVHVQKMDAR] ⁹¹	673,687	3	2019,045	2019,045	0,01	1399,26
	1:50	L	Bcd1p-Bcd1p	K87-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	⁸² [MVHVQKMDAR] ⁹¹	672,346	3	2015,023	2015,020	1,3	1406,37
	1:50	н	Bcd1p-Bcd1p	K140-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	¹³² [GVNBLMLPKGMQR] ¹⁴⁴	577,806	4	2308,201	2308,191	4,2	2285,52
	1:50	L	Bcd1p-Bcd1p	K140-K151	¹⁵⁰ [SKWDK] ¹⁵⁴	¹³² [GVNBLMLPKGMQR] ¹⁴⁴	576,799	4	2304,172	2304,166	2,7	2297,39
	1:50	н	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	¹⁸⁷ [IKETDFLVQGMGK] ¹⁹⁹	757,406	3	2270,203	2270,204	-0,3	2422,43
	1:50	L	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	¹⁸⁷ [IKETDFLVQGMGK] ¹⁹⁹	756,063	3	2266,174	2266,179	-2,1	2439,90
2	1:50	н	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	790,412	3	2369,221	2369,217	1,4	2894,23
2	1:50	L	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	789,069	3	2365,193	2365,192	0,4	2903,69
	1:100	Н	Bcd1p-Bcd1p	K16-K62	¹⁵ [YKBPR] ¹⁹	57[QADDDKHER]65	659,984	3	1977,939	1977,939	0,03	401,83
	1:100	L	Bcd1p-Bcd1p	K16-K62	¹⁵ [YKBPR] ¹⁹	57[QADDDKHER]65	494,234	4	1973,914	1973,913	0,5	401,76
	1:100	н	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVQKmDAR] ⁹¹	699,023	3	2095,054	2095,055	-0,4	839,91
	1:100	L	Bcd1p-Bcd1p	K16-K88	¹⁵ [YKBPR] ¹⁹	⁸² [MVHVQKmDAR] ⁹¹	697,681	3	2091,028	2091,030	-1,0	930,05
	1:100	н	Bcd1p-Bcd1p	K16-K151	¹⁵ [YKBPR] ¹⁹	¹⁵⁰ [SKWDK] ¹⁵⁴	382,703	4	1527,792	1527,793	-0,7	914,83
	1:100	L	Bcd1p-Bcd1p	K16-K151	¹⁵ [YKBPR] ¹⁹	¹⁵⁰ [SKWDK] ¹⁵⁴	381,697	4	1523,767	1523,768	-0,5	924,37
	1:100	н	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	²⁵⁸ [KLVELAIHEK] ²⁶⁷	682,058	3	2044,160	2044,156	2,0	1559,56
	1:100	L	Bcd1p-Bcd1p	K16-K258	¹⁵ [YKBPR] ¹⁹	²⁵⁸ [KLVELAIHEK] ²⁶⁷	408,832	5	2040,133	2040,131	0,7	1565,29
	1:100	н	Bcd1p-Bcd1p	K62-T77/K80	⁵⁷ [QADDDKHER] ⁶⁵	⁷² [DYNYLTQLKR] ⁸¹	856,760	3	2568,265	2568,263	0,8	1790,24
	1:100	L	Bcd1p-Bcd1p	K62-T77/K80	⁵⁷ [QADDDKHER] ⁶⁵	⁷² [DYNYLTQLKR] ⁸¹	855,417	3	2564,238	2564,238	0,1	1803,40
	1:100	н	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	¹⁸⁷ [IKETDFLVQGMGK] ¹⁹⁹	757,406	3	2270,205	2270,204	0,3	2376,95
	1:100	L	Bcd1p-Bcd1p	K151-K188	¹⁵⁰ [SKWDK] ¹⁵⁴	¹⁸⁷ [IKETDFLVQGMGK] ¹⁹⁹	756,065	3	2266,181	2266,179	0,8	2391,04
	1:100	н	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	790,412	3	2369,223	2369,217	2,3	2902,24
	1:100	L	Rtt106p-Bcd1p	S177-K151	¹⁷¹ [NLGLLDSNVTDFEK] ¹⁸⁴	¹⁵⁰ [SKWDK] ¹⁵⁴	789,070	3	2365,196	2365,192	1,7	2907,60

Supplementary Table 3. Oligonucleotides used in this study

Oligonucleotide	Sequence	Reference
U3 -800nts ^{for}	AACAGTTGTCCAACAAGTGC	This study
U3 -800nts ^{rev}	AATGGCTGAATCCCATAGAC	This study
U3 -400nts ^{for}	CCATGGATGGGTAAAGTCAT	This study
U3 -400nts ^{rev}	TCAGAATTTGTTCTGCCTGG	This study
U3 prom ^{for}	CACATACAGCGCCTTAAGG	This study
U3 prom ^{rev}	GAAGTACGTCGACACAGAT	This study
U3 intron ^{for}	AATATACCCCAAACATTTTACCC	This study
U3 intron ^{rev}	TGTAGAATGTGTTAGTCAAAAGCTG	This study
U3 exon 2 ^{for}	GAGCCACTGAATCCAAC	15
U3 exon 2 ^{rev}	GTACATAGGATGGGTCA	15
U3 term ^{for}	GCTTTGCCGTTGCATTTGT	This study
LI3 term ^{rev}		This study
U3 +100nts ^{for}	CCTATTGTAGGAATTGTGGC	This study
13 ± 100 nterev	CTTECTECAATCAACTCACC	This study
13 ± 800 nts ^{for}	CONTROLOGICATION CONTROLOGIC	This study
		This study
		15
		15
		15
	GATACTACAGTATACGATCACTC	15
SNR52 ¹⁰¹		15
snR52 ^{rev}	TICAGAAGGAAGGCAACATAAG	15
snR54 ¹⁰¹	CCGAAAAAGGIGCGAAIAIG	15
snR54 ^{rev}	AATGCGCTTTTTAATCATCCA	15
snR32 ^{ior}	IGCAGGGAAIGACIAAAAGCC	15
snR32 ^{rev}	TCAGAAATGATCAACACCAGGC	15
Chr.V ^{for}	GCAATCAACATCTGAAGAAAAGAAAGTAGT	15
Chr.V ^{rev}	CATAATCTGCGTAAAAATGGCGTAAAT	15
snR54 ^{tor}	CCGAAAAAGGTGCGAATATG	This study
snR54 ^{rev}	AATGCGCTTTTTAATCATCCA	This study
Alg9 ^{for}	TGTCACGGATAGTGGCTTTG	16
Alg9 ^{rev}	TACCATTCACGTCCCGTACA	16
HTB1 downstream ^{for}	CGAAACTTCAGAGCATTGGC	17
HTB1 downstream ^{rev}	GGGTTCAATCTCCAAGGCAT	17
HTA/B1 prom ^{for}	ATAGTTAACGACCCAACCGCGT	17
HTA/B1 prom rev	ACGGGCGTTTCTTCAACAACGA	17
HTA1 downstream ^{for}	AGGTTCATTGGGCACTGTTG	17
HTA1 downstream ^{rev}	ACAGTTCTCCGTGACAGGAT	17
HTA/B2 prom ^{for}	AATGGTAGCACGTCGCGTTT	17
HTA/B2 prom ^{rev}	TGACGGCAAGTGTCTCACTGTT	17
HMR a1 for	TGGATGATATTTGTAGTATGGCGGA	17
HMR a1 rev	TCCCTTTGGGCTCTTCTCTT	17
KanMx ^{for}	ATTGACCACACCTCTACCGGGACATGGAGGCCCA	This study
	GAATACCCTCCTTGACAGTCTTGACGTGCGC	····· otday
KanMx ^{rev}	GCGCACGTCAAGACTGTCAAGGAGGGTATTCTG	This study
	GCCTCCATGTCCCGGTAGAGGTGTGGTCAAT	The study
Bcd1 1-115 for	GTGGGCGGCCACAACTCTAATTTCAAGAAGAAGAA	This study
	GATACGATATATGAGCCAATTTCTTATGATTTAT	The study
Bod1 1-115 rev		This study
		The study

Supplementary Table 4. Plasmids used in this study

Plasmid	Characteristics	Reference	
• • • •			
S. cerevisiae			
p416GPD	GPD promoter, <i>URA3</i> , Amp ^r	18	
p416GPD::FLAG-Bcd1p	FLAG-Bcd1p	This study	
p413TEF	TEF promoter, <i>HIS3</i> , Amp ^r	18	
p413TEF::FLAG-Rtt106p	FLAG-Rtt106p	This study	
pGBKT7::Gal4-BD-Bcd1p	ADH promoter, TRP1, Kan ^r , BD-Bcd1p	This study	
pACT2::GAL4-AD	ADH promoter, <i>LEU2</i> , Amp ^r	This study	
pACT2::GAL4-AD-Rtt106p	AD-Rtt106p	This study	
pACT2::GAL4-AD-Rtt106-Mp	AD-Rtt106-Mp	This study	
pACT2::GAL4-AD-Spt16-Mp	AD-Spt16-Mp	This study	
pACT2::GAL4-AD-Pop3p-Mp	AD-Pop3-Mp	This study	
pFA6a-KanMX6-pGAL1-3HA	Kan ^r - Amp ^r	This study	
	·	-	
E. coli			
pnCS::Bcd1p	Bcd1p	This study	
pnCS ::Rtt106-Mp	Rtt106-Mp	This study	
pnCS ::Rtt106p	Rtt106p	This study	
pnEA-3cH::HIS-Bcd1p	HIS-Bcd1p	This study	
pnEA-3cH::HIS-Rtt106-Mp	HIS-Rtt106-Mp	This study	
pnEA-3cH::HIS-Rtt106p	HIS-Rtt106p	This study	

Supplementary Table 5. Yeast strains used in this study

Strain	Background	Genotype	Reference
BY4741	S288C	MATa ; his3⊿1; leu2⊿0; met15⊿0; ura3⊿0	19
rtt106∆	S288C	MATa ; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; ynl206cΔ::kanMX4	This study
BCD1-TAP	S288C	MATa ; ade2 ; arg4 ; leu2–3,112 ; trp1–289 ; ura3–52; HIS3::TAP- YHR040w	20
BCD1-TAP; rsa1∆	S288C	MATa ; his3⊿1; leu2⊿0; met15⊿0; ura3⊿0 ; HIS3::TAP-YHR040w ; YPL193w::LEU2	This study
BCD1-TAP; pih1∆	S288C	MATa ; his3⊿1; leu2⊿0; met15⊿0; ura3⊿0 ; HIS3::TAP-YHR040w ; YHR034c::LEU2	This study
BCD1-TAP; rtt106∆	S288C	MATa ; ade2 ; arg4 ; leu2–3,112 ; trp1–289 ; ura3–52; HIS3::TAP- YHR040w; ynl206cΔ::kanMX4	This study
GAL1::3HA-BCD1	S288C	MATa ; his3⊿1; leu2⊿0; met15⊿0; ura3⊿0 ; pGAL1-3HA::kanMX6- YHR040w	This study
BCD1 ₁₋₁₁₅	S288C	MATa ; his3⊿1; leu2⊿0; met15⊿0; ura3⊿0 ; kanMX6-YHR040w 1-115	This study
RTT106-TAP	S288C	MATa ; ade2 ; arg4 ; leu2–3,112 ; trp1–289 ; ura3–52; HIS3::TAP- YNL206C	This study
RTT106-TAP; GAL1::3HA-BCD1	S288C	MATa ; ade2 ; arg4 ; leu2–3,112 ; trp1–289 ; ura3–52; HIS3::TAP- YNL206C ; pGAL1-3HA::kanMX6- YHR040w	This study
RTT106-TAP; GAL1::3HA-BCD1; rsa1∆	S288C	MATa ; ade2 ; arg4 ; leu2–3,112 ; trp1–289 ; ura3–52; HIS3::TAP- YNL206C ; pGAL1-3HA::kanMX6- YHR040w ; YPL193w::LEU2	This study
Y187		MATα, gal4Δ, gal80Δ, ade2-101, his3-200, leu2-3, 112, lys2-801, trp1-901, ura3-52, URA3::Gal1UASGAL1TATA-lacZ, LYS2::GAL1UASHisTATA-HIS3	
Y190		МАТа gal4∆, gal80∆, ade2-101, his3-200, leu2-3, 112, lys2-801, trp1-901, ura3-52, URA3::Gal1UASGAL1TATA-lacZ, LYS2::GAL1UASHisTATA-HIS3	

Supplementary References

- 1. Jeronimo, C. *et al.* Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. *Molecular cell* **27**, 262-274, doi:10.1016/j.molcel.2007.06.027 (2007).
- 2. Boulon, S. *et al.* HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. *Molecular cell* **39**, 912-924, doi:10.1016/j.molcel.2010.08.023 (2010).
- 3. Horejsi, Z. *et al.* Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. *Cell reports* **7**, 19-26, doi:10.1016/j.celrep.2014.03.013 (2014).
- 4. Horejsi, Z. *et al.* CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. *Molecular cell* **39**, 839-850, doi:10.1016/j.molcel.2010.08.037 (2010).
- 5. Izumi, N., Yamashita, A., Hirano, H. & Ohno, S. Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. *Cancer science* **103**, 50-57, doi:10.1111/j.1349-7006.2011.02112.x (2012).
- 6. Takai, H., Xie, Y., de Lange, T. & Pavletich, N. P. Tel2 structure and function in the Hsp90dependent maturation of mTOR and ATR complexes. *Genes & development* **24**, 2019-2030, doi:10.1101/gad.1956410 (2010).
- 7. Bizarro, J. *et al.* NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. *Nucleic acids research* **43**, 8973-8989, doi:10.1093/nar/gkv809 (2015).
- Cloutier, P. *et al.* R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. *Nature communications* 8, 15615, doi:10.1038/ncomms15615 (2017).
- 9. Malinova, A. *et al.* Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. *The Journal of cell biology* **216**, 1579-1596, doi:10.1083/jcb.201701165 (2017).
- 10. Cloutier, P. *et al.* High-resolution mapping of the protein interaction network for the human transcription machinery and affinity purification of RNA polymerase II-associated complexes. *Methods* **48**, 381-386, doi:10.1016/j.ymeth.2009.05.005 (2009).
- 11. Ruotolo, B. T., Benesch, J. L., Sandercock, A. M., Hyung, S. J. & Robinson, C. V. Ion mobilitymass spectrometry analysis of large protein complexes. *Nature protocols* **3**, 1139-1152, doi:10.1038/nprot.2008.78 (2008).
- 12. Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular systems biology* **7**, 539, doi:10.1038/msb.2011.75 (2011).
- 13. Su, D. *et al.* Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. *Nature* **483**, 104-107, doi:10.1038/nature10861 (2012).
- 14. Liu, Y. *et al.* Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. *The Journal of biological chemistry* **285**, 4251-4262, doi:10.1074/jbc.M109.055996 (2010).
- 15. Paul, A. *et al.* Bcd1p controls RNA loading of the core protein Nop58 during C/D box snoRNP biogenesis. *Rna*, doi:10.1261/rna.067967.118 (2019).
- 16. Teste, M. A., Duquenne, M., Francois, J. M. & Parrou, J. L. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. *BMC Mol Biol* **10**, 99, doi:10.1186/1471-2199-10-99 (2009).
- Zunder, R. M. & Rine, J. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. *Molecular and cellular biology* 32, 4337-4349, doi:10.1128/MCB.00871-12 (2012).

- Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. *Gene* 156, 119-122, doi:10.1016/0378-1119(95)00037-7 (1995).
- 19. Brachmann, C. B. *et al.* Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* **14**, 115-132, doi:10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 (1998).
- 20. Gavin, A. C. *et al.* Functional organization of the yeast proteome by systematic analysis of protein complexes. *Nature* **415**, 141-147, doi:10.1038/415141a (2002).