Physico-chemical properties and toxicological effects on plant and algal models of carbon nanosheets from a nettle fibre clone

Syed Shaheen Shah¹, Mohammed Ameen Ahmed Qasem¹, Roberto Berni^{2,3}, Cecilia Del Casino², Giampiero Cai², Servane Contal⁴, Irshad Ahmad⁵, Khawar Sohail Siddiqui⁶, Edoardo Gatti⁷, Stefano Predieri⁷, Jean-Francois Hausman⁸, Sébastien Cambier⁴, Gea Guerriero^{8,*} and Md. Abdul Aziz^{1,*}

¹Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

²University of Siena, Department of Life Sciences, via P.A. Mattioli 4, I-53100 Siena, Italy.

³TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

⁴Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, avenue des Hauts-Fourneaux, Esch-sur-Alzette, Luxembourg.

⁵Life Sciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

⁶School of Biotechnology and Biomolecular Sciences (BABS), The University of New South Wales, Sydney, NSW2052, Australia.

⁷Institute of Bioeconomy (IBE), National Research Council, Via P. Gobetti, 101-I, I-40129, Bologna, Italy.

⁸Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940, Hautcharage, Luxembourg.

*Authors to whom correspondence should be addressed: gea.guerriero@list.lu; maziz@kfupm.edu.sa

Supplementary Figure 1: Anatomy of the nettle stem. (a): Toluidine Blue O staining of a stem cross section (the square indicates bast fibres); (b): Magnified image showing a small cluster of three adjacent bast fibres (the dotted square indicates one bast fibre in transversal cross section); (c): immunoTEM image showing the gelatinous wall of nettle bast fibre (blue double-headed arrow) with gold nanoparticles denoting the presence of crystalline cellulose. The G-layer of nettle fibres shows a region with loose appearance (asterisk).

Supplementary Figure 2: Aggregates formed by the nettle CNS. (a) Stem-derived CNS, (b, c) leaf-derived CNS in BK_{suc} medium observed with an inverted microscope. FESEM images at low magnification of CNS prepared at 650 °C from nettle stem (d), leaves (e, f) and using NaHCO₃ as an activating agent. The ratio of nettle powder and NaHCO₃ is 1:1 (a, d and b, e) and 1:2 (c and f).

Supplementary Figure 3: Representative inverted microscopy image showing adhesion of CNS (in this case leaf CNS1:2 at 100 μ g/mL) to the pollen grains.