The intracellular domain of homomeric glycine receptors modulates agonist efficacy

Josip Ivica¹, Remigijus Lape¹, Vid Jazbec², Jie Yu³, Hongtao Zhu³, Eric Gouaux⁴, Matthew G. Gold¹ and Lucia G. Sivilotti¹*

From the ¹Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, Gower St, London WC1E 6BT, United Kingdom; ²Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia. ³Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA, ⁴Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.

Supporting Information

Figure S1

Figure S2

Table S1

Signal peptide

human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	MYSFNTLRLYLWETIVFFSLAASKEAEAARSAPKPMSPSDFLDKLMGRTSGYDARIRPNF MFALGIYLWETIVFFSLAASQQAA-ARKAASPMPPSEFLDKLMGKVSGYDARIRPNF MFALGIYLWETIVFFSLAASQQAA-APSEFLDKLMGKVSGYDARIRPNF MYSFNTLRLYLWETIVFFSLAASQQAA-ARKAASPMPPSEFLDKLMGKVSGYDARIRPNF MYSFNTLRLYLWETIVFFSLAASKEAEAARSAPKPMSPSDFLDKLMGRTSGYDARIRPNF # ## # # # ##	60 56 48 56 60 60
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	$\label{eq:constraint} \begin{split} & KGPVNVSCNIFIINSFGSIAETMDYNVIFI^{\mathbf{R}}_{\mathbf{Q}}QWNDPRIAYSEYPDSLDLDPSMLDS\\ & KGPVNVTCNIFINSFGSIAETMDYNNIIF^{\mathbf{R}}_{\mathbf{Q}}QWNDPRLAYSEYPDSLDLDDSMLDS\\ & KGPVNVCNIFINSFGSIAETMDYNNIF^{\mathbf{R}}_{\mathbf{Q}}QWNDPRLAYSEYPDSLDLDDSMLDS\\ & KGPVNVSCNIFINSFGSIAETMDYNNIF^{\mathbf{R}}_{\mathbf{Q}}QWNDPRLAYNEYPDSSLDLDDSMLDS\\ & KGFVNVSSNIFINSFGSIAETMDYNNIF^{\mathbf{R}}_{\mathbf{Q}}QWNDPRLAYNEYPDSSLDLDDSMLDS\\ & KGFFVNNSSNSNINSSNDSNDNSNSNSNSNSNDSNDSNSNSNSNSNSNSNNSNNSNSNSSNSNSNSNSNSNSNSNSNNSNSNSSNNSNSNNSNNSNSNNSNNNNSNSNNSNSNSSNSNSNSNSNSNSNSNNNSNSNSNSNSNNNSNSNSNNNSNNNSNNNNNNNNNN$	120 116 108 116 120 120
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	IWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC IWKPDLFFANEKGANFHEVTTDNKLLRISKNGNVLYSIRITLVLACPMDLKNFPMDVQTC IWKPDLFFANEKGANFHEVTTDNKLLRISKNGNVLYSIRITLVLACPMDLKNFPMDVQTC IWKPDLFFANEKGANFHEVTTDNKLLRISKNGNVLYSIRITLVLACPMDLKNFPMDVQTC IWKPDLFFANEKGANFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC IWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC IWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC IWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC IWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQTC	180 176 168 176 180 180
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	IMQLESFGYTMNDLIFEWQEQGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWDEKGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWDEKGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWQEQGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWQEQGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWQEQGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKTTCIEA IMQLESFGYTMNDLIFEWQEQGAVQVADGLTLPQFILKEEKDLRYCTKHYNTGKFTCIEA	240 236 228 236 240 240
	TM1 TM2	
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	RFHLERQMGYYLIQMYIPSLLIVILSWISFWINMDAAPARVGLGITTVLTMTTQSSGSRA RFHLERQMGYYLIQMYIPSLLIVILSWVSFWINMDAAPARVGLGITTVLTMTTQSSGSRA RFHLERQMGYYLIQMYIPSLLIVILSWVSFWINMDAAPARVGLGITTVLTMTTQSSGSRA RFHLERQMGYYLIQMYIPSLLIVILSWVSFWINMDAAPARVGLGITTVLTMTTQSSGSRA RFHLERQMGYYLIQMYIPSLLIVILSWISFWINMDAAPARVGLGITTVLTMTTQSSGSRA RFHLERQMGYYLIQMYIPSLLIVILSWISFWINMDAAPARVGLGITTVLTMTTQSSGSRA	300 296 288 296 300 300
	# TM3 ICD	
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	SLPKVSYVKAIDIWMAVCLLFVFSALLEYAAVNFVSRQHKELLRFRRKRRHHKEDEAGEG SLPKVSYVKAIDIWMAVCLLFVFSALLEYAAVNFIARQHKELLRFQRRRRHLKEDEAGDG SLPKVSYVKAIDIWMAVCLLFVFSALLEYAAVNFIAR	360 356 327 335 339 339
	*** TM4	
human α1 GlyR zebrafish α1 GlyR zebrafish α1 GlyREM zebrafish α1 GlyR Δ ICD human α1 GlyR Δ ICD hu α1 GlyR ΔICD + zf TM4	RFNFSAYGMGPACLQAKDGISVKGANNSNTTNPPPAPSKSPEEMRKLFIQRAKKIDKISR RFSFAAYGMGPACLQAKDGMAIKGNNNNAPTST-NPPEKTVEEMRKLFISRAKRIDTVSR 	420 415 343 351 355 355
human αl GlyR zebrafish αl GlyR zebrafish αl GlyREM zebrafish αl GlyR Δ ICD human αl GlyR Δ ICD hu αl GlyR ΔICD + zf TM4	C-term IGFPMAFLIFNMFYWIIYKIVRREDVHNQ 449 VAFPLVFLIFNIFYWITYKIIRSEDIHKQ 444 VAFPLVFLIFNIFYWITYKLVPRGS 368 VAFPLVFLIFNIFYWITYKIIRSEDIHKQ 380 IGFPMAFLIFNMFYWIIYKIVRREDVHNQ 384 VAFPLVFLIFNIFYWITYKIIRSEDIHKQ 384 ** ** ** ** **	

Figure S 1. Clustal W alignment of GlyR constructs used in this work. Differences between human $\alpha 1$ GlyR and zebrafish $\alpha 1$ GlyR outside the ICD are marked with #. The amino acids involved in glycine binding are highlighted in green. The AGT linker used to replace the native ICD in some of the GlyR constructs is the same as used by Du.et al. for zebrafish $\alpha 1$ GlyR_{EM} and is highlighted in yellow (1).

Figure S 2. Sublevel of amplitude observed in human a1 GlyR $\triangle ICD$. A Cluster of single channel activity evoked by saturating concentration of Glycine (top trace). The area enclosed with a rectangle is presented in the bottom trace. The events that are not reaching full closure are annotated with *. B) Cluster of single channel activity evoked by saturating concentration of GABA (top trace). The area enclosed with a rectangle is presented in the bottom trace. The events that are not reaching full closure are annotated with *. B) Cluster of single channel activity evoked by saturating concentration of GABA (top trace). The area enclosed with a rectangle is presented in the bottom trace. The events that are not reaching full closure are annotated with *.

GlyR pair			Agonist (p value)		
	parameter	GABA	Taurine	Balanine	Glycine
human α1 GlyR & zebrafish α1 GlyR _{EM}	EC ₅₀	<10-4	0.0004	0.0006	0.0010
	I _{rel}	<10-4	<10-4	<10-4	/
	maxPoepn	<10-4	<10-4	<10-4	0.3396
human α1 GlyR & human α1 GlyR Δ ICD	EC ₅₀	0.0093	0.0146	0.0235	0.0049
	I _{rel}	0.0001	<10-4	0.0061	/
	maxPoepn	<10-4	<10-4	0.0004	0.3397
zebrafish α1 GlyR & zebrafish α1 GlyR _{EM}	EC ₅₀	<10-4	0.0037	0.0344	0.0111
	I _{rel}	<10-4	0.0008	0.0003	/
	$maxP_{open}$	<10-4	<10-4	0.0503	0.2548
human α1 GlyR & zebrafish α1 GlyR	EC ₅₀	0.0006	0.0004	0.0003	0.1384
	I _{rel}	<10-4	0.0266	0.0143	/
	$maxP_{oepn}$	<10-4	<10-4	0.0006	0.6696
human α1 GlyR Δ ICD& zebrafish α1 GlyR _{EM}	EC ₅₀	<10-4	0.0002	0.0014	0.0084
	I _{rel}	<10-4	0.0036	0.0004	/
	maxPoepn	<10-4	0.0203	0.0151	0.1084
human α1 GlyR Δ ICD & huα1 GlyR Δ ICD+ TM4 zf	EC ₅₀	0.0009	0.9264	0.1040	0.0223
	I _{rel}	0.2456	0.7757	0.9124	/
	maxPopen	0.6194	0.7895	0.2263	0.0054
zebrafish α1 GlyR _{EM} & zebrafish α1 GlyR Δ ICD	maxP _{open}	0.8052	0.5591	0.6066	0.0454

Table S 1. Pairwise comparison of parameters from whole-cell and single-channel recording. P values are estimated using two tail randomization test (10000 randomization iterations).

References

1. Du, J., Lu, W., Wu, S., Cheng, Y., and Gouaux, E. (2015) Glycine receptor mechanism elucidated by electron cryo-microscopy. *Nature* **526**, 224-229