Supplementary Material and Methods

Evaluation of the DPP-4-like peptidase activity of the strains tested

Strains were incubated in 96-well optical black plates (Nunc, ThermoFisher Scientific, Rochester, NY, USA) at 10⁷ CFU/ml with 1 mM Gly-Pro-AMC (Merck, Molsheim, France), a specific substrate of the dipeptydil-peptidase-4 (DPP-4), in phosphate saline buffer pH 7.4 (PBS) in the presence or not of DPP-4 inhibitor(s). Ile-Pro-Ile (Diprotin A) was used at a final concentration of 0.5 mM and 5 μ L of a commercial DPP-IV inhibitor coming from Millipore (Merck) was added in relevant wells. Fluorescence was recorded every 2 min for 20 min under constant stirring at 37 °C using a Xenius spectrofluorometer (Safas Monaco, Monaco). Excitation and emission wavelengths were set to 260 nm and 480 nm, respectively. Data were expressed as the slope from the linear regression of the percentage of fluorescence as a function of time (n=3).

Supplementary Tables

Strains designation	Improvement of Epithelial Barrier	IL-10 Induction	Anti- Inflammatory Profile (II-10/II -12)		
B lactic I A 306			(II-10/IL-12) ++		
B hifidum I A 803	' ++	· ·			
B. lactic I A 804		++++			
B hraza I A 805	· · · ·		····		
B. longum PI10					
B. hifidum PI22	11				
La rhamnocue I A 205	++ _	++++	++++		
Li calizzarino I A 207	+	++	+++		
Li. suitourius LASO7	T	++	+++		
L. gusseri LA000	++++	+/-	+/-		
Li. suitourius P12	+	++	++		
Lp. plantarum P13	+	+	++		
L. acidophilus P14	++	+	+/-		
L. helveticus PI5	++++	+	++		
La. casei P18	+++	++	++		
L. acidophilus PI11	++++	+/-	+/-		
L. helveticus PI13	++	++	+		
La. paracasei PI15	++	++	++		
La. paracasei PI18	+++	++	++		
Lp. plantarum PI19	+	+	+/-		
La. casei PI20	++	+	+++		
La. rhamnosus PI28	+	+/-	0		
S. thermophilus PI21	0	+/-	0		
Lc. lactis PI23	0	+/-	0		

Table S1: *In vitro* abilities of the probiotic strains to restore or strengthen an epithelial barrier and to exhibit an anti-inflammatory profile (from Alard *et al*, 2017).

	D12450B: 10% fat (LFD)	D12451: 45% fat (HFD)
Casein, 30 Mesh	200	200
L-Cystine	3	3
Corn Starch	315	72.8
Maltodextrin 10	35	100
Sucrose	350	172.8
Cellulose, BW200	50	50
Soybean Oil	25	25
Lard	20	177.5
Mineral MIX S10026	10	10
Dicalcium Phosphate	13	13
Calcium Carbonate	5.5	5.5
Potassium Citrate, 1 H ₂ O	16.5	16.5
Vitamin MIX V10001	10	10
Choline Bitartrate	2	2
FD&C Yellow Dye #5	0.05	0
FD&C Red Dye #40	0	0.05

Table S2: Composition of the diets used in the study (g) (source: Research Diets).

bact-F	5'- CTAAGGCCAACCGTGAAAAC -3'
bact-R	5'- ACCAGAGGCATACAGGGACA -3'
tnfa-F	5'-CCCTCACACTCAGATCATCTTCTC -3'
tnfa-R	5'-GGCTACAGGCTTGTCACTCG -3'
cd36-F	5'-TCATTGCAACTGAGTGG -3'
cd36-R	5'-TCATAAGCTCTGTGTCAG -3'
cd68-F	5'-TGGCGGTGGAATACAATGTG -3'
cd68-R	5'-GATGAATTCTGCGCCATGAA -3'
mcp1-F	5'-TCAGCCAGATGCAGTTAACGC -3'
mcp1-R	5'-TGATCCTCTTGTAGCTCTCCAGC -3'
hcrt-F	5'-CCGTAACTACCACCGCTTTAGC -3'
hcrt-R	5'-AAGAGACTGACAGCGGCGAG -3'
pomc-F	5'-CCGGTGAAGGTGTACCCCAA -3'
pomc-R	5'-TCCAAGCCTAATGGCCGCT -3'
lep-F	5'-AGGATGACACCAAAACCCTCAT -3'
lep-R	5'-AGTCCAAGCCAGTGACCCTCT -3'
lepR-F	5'-CAGTGTGCGCTGGTTCTGTC -3'
lepR-R	5'-TGTGAGGAGGTACGTGGTGAAG -3'
fabp1-F	5'-CCAATTGCAGAGCCAGGAGA -3'
fabp1-R	5'-CCCCTTGATGTCCTTCCCTTT -3'
tgr5-R	5'-CCCAACTTTTGTTTCCTTTCCC -3'
tgr5-F	5'-TAGCCGCACACTTCCATGG -3'
gln-R	5'-AGGGACCTTTACCAGTGATGT -3'
gln-F	5'-AATGGCGACTTCTTCTGGGAA -3'

Table S3: Forward and reverse primers' sequences used in the study.

Bile acid cluster	Acronym and definition
Free cholic acid	CA
Free chenodeoxycholic acid	CDCA
Free deoxycholic acid	DCA
Free lithocholic acid	LCA
Free ursodeoxycholic acid	UDCA
Free hyocholic acid	НСА
Free hyodeoxycholic acid	HDCA
Free alpha-muricholic acid	αΜCΑ
Free beta-muricholic acid	βΜCΑ
Free omega-muricholic acid	ωMCA
Glyco-cholic acid	GCA
Glyco-chenodeoxycholic acid	GCDCA
Glyco-deoxycholic acid	GDCA
Glyco-lithocholic acid	GLCA
Glyco-ursodeoxycholic acid	GUDCA
Glyco-hyocholic acid	GHCA
Glyco-hyodeoxycholic acid	GHDCA
Tauro-cholic acid	TCA
Tauro-chenodeoxycholic acid	TCDCA
Tauro-deoxycholic acid	TDCA
Tauro-lithocholic acid	TLCA
Tauro-ursodeoxycholic acid	TUDCA
Tauro-hyocholic acid	THCA
Tauro-hyodeoxycholic acid	THDCA
Tauro-alpha-muricholic acid	ΤαΜCΑ
Tauro-beta-muricholic acid	ΤβΜCΑ
Tauro-omega-muricholic acid	ΤωΜCΑ
Total CDCA	CDCA + GCDCA + TCDCA
Total DCA	DCA + GDCA + THCA
Total LCA	LCA + GLCA + TLCA
Total UDCA	UDCA + GUDCA + TUDCA
Total HCA	HCA + GHCA + THCA
Total HDCA	HDCA + GHDCA + THDCA
Total primary BAs	Total CA + Total CDCA + Total α MCA + Total β MCA
Total secondary BAs	Total DCA + Total LCA + Total UDCA + Total HCA + Total HDCA
Total free BAs	CA + CDCA + DCA + LCA + UDCA + HCA + HDCA
Total conjugated	GCA + GCDCA + GDCA + GLCA + GUDCA + GHCA + GHDCA + TCA + TCDCA + TDCA + TLCA + TUDCA + THCA + THDCA
Total primary	CA + CDCA + TCA + TCDCA + GCA + GCDCA + α MCA + β MCA
Total secondary	DCA + LCA + UDCA + HCA + HDCA + ωMCA + TDCA + TLCA + TUDCA + THCA + THDCA + ΤωMCA
Total BAs	Total Free BAs + Total Conjugated BAs
Total 12αOH BAs	Total CA + Total DCA
Total non12 α OH BAs	Total CDCA + Total LCA + Total UDCA + Total HCA + Total HDCA
Ratio 12aOH	Total 12α OH BAs / Total non 12α OH BAs

Table S4. Definition of bile acid clusters and ratios.

Table S5 : Relative abundance of families and genera evaluated by 16S rRNA MiSeq sequencing in cecal contents of lean (LFD) and obese (HFD) mice treated or not with PI10 (HFD PI10) or the mixture (HFD + LA804/LA806).

	LFD	HFD	HFD + PI10	HFD + LA804/ LA806
Actinobacteria	402.25 ± 173.78	79 ± 24.97	331.62 ± 99.19	792.75 ± 261.53
Alcaligenaceae	108.75 ± 70.02	41.875 ± 25.72	13 ± 10.62	37.375 ± 11.13
Bifidobacteriaceae	306.25 ± 136.91	21 ± 7.49	225.5 ± 72.92	203.625 ± 25.41
Clostridiaceae	48.75 ± 18.74	94.625 ± 31.99	269.125 ± 78.29	13.5 ± 7.28
Coriobacteriaceae	96 ± 42.15	58 ± 14.74	106.125 ± 28.61	589.125 ± 250.92
Peptostreptococcaceae	3 ± 1.68	36.125 ± 16.16	23.125 ± 10.52	4.25 ± 2.20
Ruminococcaceae	1482.25 ± 619.68	1107.25 ± 78.97	1986.25 ± 252.09	1414.375 ± 133.40

	LFD	HFD
Bifidobacteriaceae	306.25 ± 136.91	21 ± 7.49
Peptostreptococcaceae	3 ± 1.68	36.125 ± 16.16
Streptococcaceae	272.25 ± 76.41	707 ± 77.33
Eubacterium rectale	12.25 ± 3.01	0.5 ± 0.37
Bifidobacterium	306.25 ± 273.82	21 ± 7.49
Blautia	78 ± 91.72	557.625 ± 125.80
Eisenbergiella	31.5 ± 9.32	1.125 ± 0.47
Faecalibacterium	535.75 ± 999.23	0.25 ± 0.25
Lachnospiraceae NK4A136	944 ± 503.80	404.375 ± 86.95
Lactococcus	269.25 ± 149.97	700.75 ± 77.76
Oscillibacter	38.25 ± 32.11	129.625 ± 13.49
Parabacteroides	16 ± 5.35	141.75 ± 45.43
Peptoclostridium	3 ± 3.36	36.125 ± 16.16
Peptococcus	4.75 ± 4.92	14.625 ± 2.54
<i>Rikenellaceae</i> RC9 gut	397 ± 350.68	74.875 ± 16.96
Ruminiclostridium	17.75 ± 13.04	84.875 ± 20.24
Ruminiclostridium 9	139.75 ± 64.2	359 ± 43.09
Ruminococcaceae UCG-014	302.5 ± 129.97	49.125 ± 16.39
Ruminococcus 1	0.25 ± 0.5	21.125 ± 7.18
Turicibacter	0 ± 0.00	29.625 ± 9.46

	HFD	HFD-PI10		HFD	HFD + LA804/ LA806
Actinobacteria	79 ± 24.97	331.625 ± 99.19	Actinobacteria	79 ± 24.97	792.75 ± 261.53
Bifidobacteriaceae	21 ± 7.49	225.5 ± 72.92	Bifidobacteriaceae	21 ± 26.16	203.625 ± 25.41
Ruminococcaceae	1107.25 ± 78.97	1986.25 ± 252.09	Clostridiaceae 1	94.625 ± 25.87	13.5 ± 7.28
			Coriobacteriaceae	58 ± 16.87	589.125 ± 250.49
Bifidobacterium	21 ± 7.49	225.5 ± 72.92			
Blautia	557.625 ± 125.8	207.75 ± 40.48	Bifidobacterium	21 ± 7.49	203.625 ± 25.41
Enterorhabdus	33.125 ± 8.48	73.625 ± 16.73	Clostridium sensu stricto 1	94.625 ± 90.48	13.5 ± 7.28
Lachnoclostridium	446.125 ± 112.71	167.625 ± 40.25	Coriobacteriaceae UCG-002	22.875 ± 28.06	460.125 ± 244.42
Parabacteroides	141.75 ± 45.43	36 ± 15.10	Oscillibacter	129.625 ± 38.15	59.875 ± 7.78
Roseburia	220.125 ± 39.73	36.125 ± 6.82			
Ruminococcaceae UCG-014	49.125 ±16.39	560.625 ± 143.67			
Ruminococcus 1	21.125 ± 7.18	143.25 ± 42.09			

Data are expressed as mean ± SEM values.

nM	LFD	HFD	HFD- P10	HFD- LA804/LA806	p (HFD vs LFD)	p (HFD- P10 vs HFD)	p (HFD- LA804/LA806- vs HFD)
CA	2921	1521	1547	1512	0.23	0.80	>0.99
CD CA	(1664)	(1383)	(1087)	(1460-	0.00	0 = (
CDCA	(100)	47	61 (104)	38	0.036	0.76	0.75
	(198) 407	(74) 549	(104) 591	(36) 471	0.65	0.69	0.46
DCA	(244)	(360)	(261)	(298)	0.05	0.09	0.40
LCA	(244)	0	0	0	>0.99	>0.99	>0.99
2011	(0)	(0)	(0)	(0)	0177		
UDCA	856	286	101	372	0.009	0.28	0.61
	(318)	(233)	(118)	(342)			
αΜCΑ	656	240	288	673	0.036	0.39	0.31
	(499)	(468)	(376)	(1164)			
βΜCΑ	4848	1406	1131	1945	0.042	0.78	0.54
	(994)	(1989)	(1390)	(2327)			
ωΜCΑ	2103	723	583	1099	0.11	0.96	0.46
	(1071)	(903)	(571)	(1659)			
HCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)	0 5	0.1.4	0.94
HDCA	99 (107)	63 (80)	124 (115)	58 (04)	0.5	0.14	0.84
ТСА	2045	863	(113)	1006	0.11	0.87	0.87
ICA	2045	(670)	(584)	(813)	0.11	0.07	0.07
TCDCA	(1121)	102	126	87	0.53	0.69	>0 99
102011	(93)	(97)	(100)	(66)	0.00	0.07	
TDCA	119	256	245	258	0.16	>0.99	0.96
	(63)	(148)	(124)	(189)			
TLCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
TUDCA	51	50	48	53	0.93	>0.99	0.96
	(19)	(40)	(24)	(49)			
ΤαΜCΑ	937	495	587	670	0.11	0.64	0.40
	(516)	(503)	(483)	(588)	0.00	0.07	0 51
трмСА	1206	618 (911)	500	759 (EOE)	0.22	0.87	0.51
TaMCA	(338) 110	(811) 60	(416) 215	(383) 224	0.5	0.27	0.11
IWIVICA	(114)	(123)	(268)	22 4 (268)	0.0	0.37	0.11
THCA	(114)	0	(200) ()	0	>0 99	>0 99	>0 99
1110/1	(0)	(0)	(0)	(0)	. 0,77	- 0.77	
THDCA	7	17	41	17	0.17	0.41	0.33
	(14)	(14)	(51)	(27)			

Table S6. **Portal plasma BA concentrations.** Means (and SEM), p-values from non-parametric Mann-Whitney test. p-values in bold are statistically significant.

%	LFD	HFD	HFD-	HFD-	p (HFD	p (HFD-	p (HFD-
			P10	LA804/LA806	vs LFD)	P10 vs	LA804/LA806-
						HFD)	vs HFD)
CA	5	6	6	6	0.46	0.80	0.83
	(2)	(2)	(2)	(4)			
CDCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
DCA	17	32	29	28	0.006	0.24	0.33
	(2)	(6)	(6)	(10)			
LCA	0	1	0	0	0.24	0.13	0.10
	(0)	(0)	(0)	(0)			
UDCA	4	2	3	4	0.40	0.47	0.15
	(3)	(2)	(1)	(2)			
αMCA	10	9	12	13	0.55	0.16	0.10
	(3)	(4)	(4)	(4)			
βΜCΑ	33	16	21	26	0.012	0.16	0.020
	(7)	(6)	(7)	(7)			
ωΜCΑ	24	25	18	16	0.69	0.0009	0.002
	(3)	(4)	(2)	(3)			
HCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
HDCA	4	5	6	4	0.31	0.50	0.09
	(1)	(2)	(2)	(1)			
TCA	0	1	0	0	>0.99	>0.99	0.56
	(0)	(0)	(0)	(0)			
TCDCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
TDCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
TLCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
TUDCA	0	0	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			
ΤαΜCΑ	1	0	1	0	0.55	>0.99	>0.99
	(0)	(0)	(0)	(0)	0.00	0.11	
Трмса	1	1	2	1	0.83	0.11	>0.99
	(U)	(1)	(1)	(U) 0	> 0.00	0.49	0.27
IOMCA	1	1	1	0	>0.99	0.48	0.27
	(0)	(U) 0	(1)	(U) 0	>0.00	>0.00	>0.00
THCA	0	0	0	0	>0.99	>0.99	>0.99
TUDOA	(0)	(U) 0	(0)	(U)	> 0.00	> 0.00	> 0.00
THDCA	0	U (D)	0	0	>0.99	>0.99	>0.99
	(0)	(0)	(0)	(0)			

Table S7. BA proportions in cecal contents. Means (and SEM). p-values from non-parametric Mann-Whitney test. P-values in bold are statistically significant.

Α

Figure S1 : DPP-4 like activity of the strains. (A) DPP-4-like activity of the strains evaluated by their ability to cleave the Gly-Pro-AMC which led to fluorescence emission. **(B)** DPP-IV-like activity of the three strains used *in vivo* in presence or absence of DPP-IV inhibitors: IPI and Millipore. The DPP-IV-like activity is expressed by the slope from the linear regression of the percentage of fluorescence as a function of time (n=3).