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S1. Satellite Retrieval of NO2 and HCHO 

We use multi-satellite products of daily tropospheric NO2 and HCHO vertical columns 

accessed from the QA4ECV project (http://www.qa4ecv.eu/ecvs). The Differential Optical 

Absorption Spectroscopy (DOAS) method has been applied to retrieve NO2 and HCHO column 

densities from spectral measurements at UV and visible wavelengths.1 The retrieval of 

tropospheric NO2 vertical column includes three steps:2 1) retrieval of the total slant column 

density along the optical path; 2) subtraction of the stratospheric NO2 slant column (assimilation 

in the TM5-MP model) from the total slant column density;3,4 3) conversion of the tropospheric 

slant column density to vertical column density using air mass factors obtained from radiative 

transfer calculations that account for the viewing geometry, a priori vertical profiles of NO2, and 

the presence of clouds and surface properties.2,5 The retrieval of HCHO vertical column also 

involves retrieving the slant column and calculating air mass factors.6 Improved spectral fitting 

algorithms are applied to the retrieval of slant column densities of NO2 and HCHO, which has 

been shown to significantly reduce the errors of spectral fitting.7 To reduce the latitude-dependent 

biases, HCHO slant columns are first adjusted using a two-step normalization with reference to 

background columns in the remote Pacific Ocean, where methane oxidation is assumed to be the 

only source of HCHO.6 The a priori vertical profiles used for HCHO and NO2 retrievals are 

obtained daily from TM5-MP chemical transport model simulations at 1°×1° degree resolution.4  

 
S2.  Gridding of Satellite Products  

To grid satellite observations to a regular Cartesian grid, we calculate the area-weighted 

average:  
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where Wi is the retrieved column density of each observation that overlaps with the grid cell x at a 

given temporal scale, and wi is the overlapping area. While the target grid is smaller than the 

footprint of satellite observation, since the locations of the daily observations shift, a finer spatial 

resolution can be achieved by averaging over multiple time periods (a.k.a. spatial over-

sampling).8,9 

 
S3. Choice of Resolution  

The choice of the coarse and fine horizontal resolution is subjective. To harmonize WNO2, 

we use 0.125˚× 0.125˚ as the fine resolution, which captures the spatial heterogeneity of NO2 

within urban areas.10 After comparing the difference between OMI WNO2 and SCIAMACHY WNO2 

at four different coarse resolutions, we selected 2 ˚ × 0.5˚ as the coarse resolution at which the 

difference is mostly systematic (Figure S1). Furthermore, we do not observe any significant 

temporal trends in ∆WNO2_Coarse at 2˚ × 0.5˚, indicating that we can use the long-term climatology 

of ∆WNO2_Coarse to adjust SCIAMACHY WNO2 for the years with no OMI observations. 
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Supplementary Figures 

 
Figure S1. Difference between summertime average OMI WNO2 and SCIAMACHY WNO2 during 
the overlap period from 2005 to 2012 (∆ΩNO2_Coarse:::::::::::::::(𝑥=,𝑚), Equation 2) at multiple resolutions: 
(a) 0.25˚× 0.25˚; (b) 0.5˚× 0.5˚; (c) 1˚× 0.5˚; (d) 2˚× 0.5˚. 
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Figure S2. Resolution correction factor for WNO2 (RCNO2) retrieved from (a) OMI, (b) 
SCIAMACHY, and (c) GOME. RCNO2 is estimated as the ratio of long-term summertime 
average WNO2 at a fine-resolution (0.125˚× 0.125˚) to that at a coarse resolution (2˚ × 0.5˚). We 
first grid satellite products to fine and coarse resolution grids by calculating area-weighted 
averages (Equation S1).   
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Figure S3. Year-to-year variability in summertime RCNO2_OMI for five cities from 2005 to 2012. 
The error bars represent the spatial variations within each metropolitan area.    
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Figure S4. Temporal correlation (Pearson correlation coefficient R) between RCNO2_OMI and 
RCNO2_SCIA during the overlap period. The temporal correlation is calculated monthly for June, 
July and August from 2005 to 2012. White space indicates insufficient data to calculate R value.   
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Figure S5. (a) Resolution correction of OMI WHCHO (RCHCHO_OMI) factor, which is estimated as 
the ratio of the long-term summertime average WHCHO on a fine-resolution (0.25˚× 0.25˚) to that 
on a coarse-resolution (2˚ × 0.5˚) grid. (b) Difference between summertime average OMI WHCHO 
and SCIAMACHY WHCHO during the overlap period (∆ΩHCHO::::::::::(𝑥=,𝑚), Equation 8) at (b) 0.25˚× 
0.25˚and (c) 2˚× 0.5˚.  
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Figure S6. Same as Figure 1b but plotted with individual panels for seven cities and all sites 
combined using three models: (1) moving average (black), (2) 2nd degree polynomial model 
(blue), and (3) 3rd degree polynomial model (orange). R is the Pearson correlation coefficient 
between predictor and predicted values.  
 

  
Figure S7. Same as Figure 1b but separated to two periods: before and after 2009.  
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Figure S8. Summertime WNO2 averaged from 1996 to 2000 over the continental U.S.A. produced 
from (a) the harmonized GOME data using our new approach; (b) the original GOME satellite 
data.  
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Figure S9. (a) Relative changes (%) in summertime average satellite-based WNO2 and the 
ground-based NOx measurements in 1996 – 2000 versus 2013 - 2016 for seven cities. Satellite 
observations are sampled consistently over the locations with ground-based measurements of 
NOx. We only include sites with at least 15 years observations available between 1996 and 2016. 
The underestimate of the relative change over Pittsburgh is caused by the low WNO2 in 1999, 
likely due to a retrieval issue. (b) Relative changes (%) in summertime average satellite-based 
WHCHO over urban versus non-urban areas in 1996 – 2000 versus 2013 - 2016 for seven cities. 
The error bars indicate the spatial variation within each area. The separation of urban vs. non-
urban areas is based on MODIS land cover type yearly Level-3 data in 2016 at 0.05˚ degree.11  

 

 
Figure S10. Time series of summertime satellite-based WNO2 (first row) and ground-based NOx 
(second row) between 1996 to 2016 averaged for each Core-Based Statistical Area (CBSA). 
Satellite observations are sampled consistently over the locations with ground-based 
measurements of NOx. We only select sites with at least 15 years of observations available 
between 1996 and 2016. The error bars show the spatial standard deviation across the region.  
 



 S12 

 
Figure S11. Same as Figure 2 but for 2001 – 2004, 2005 – 2008, 2009 – 2012.  
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Figure S12. Time series of summertime satellite-based WHCHO between 1996 to 2016 averaged 
for each CBSA. The error bars show the spatial standard deviation across the region.  
 
 

 
Figure S13. Maps of relative change in summertime isoprene emissions between 1996 – 2000 
and 2013 – 2016. The isoprene emissions are generated with GEOS-Chem 12.3.0 using 
MEGAN2.1 driven by the MERRA2 meteorology at 0.5 ˚ × 0.625˚ resolution12,13. The data are 
accessed from 
http://geoschemdata.computecanada.ca/ExtData/HEMCO/OFFLINE_BIOVOC/v2019-10.  
 
 

 
Figure S14. Time series of summertime satellite-based HCHO/NO2 between 1996 to 2016 
averaged for each CBSA. The error bars show the spatial standard deviation across the region. 
The pink bars indicate the transitional regimes derived from Figure 1b.  
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Figure S15. Weekday-to-weekend difference in AQS observed summertime average O3 
(weekend ∆O3) in seven regions at high temperature (> median summer average temperature) 
during five periods 1996 – 2000, 2001 – 2004, 2005 – 2008, 2009 – 2012, 2013 – 2016). Sites 
with p<0.1 are labeled with stars, otherwise circles.  
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Figure S16. Same as Figure 5(b) but for moderate temperature (< median and higher than 18 ̊C).   
 
 

 
Figure S17. Weekday-to-weekend difference in average summertime temperature (weekend 
∆temperature) in seven cities during five periods sampled over the ground-based sites. We use 
North American Regional Reanalysis temperature data at 10m.14  
 
REFERENCES 

(1) Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy; Springer Science & 
Business Media: Berlin, Heidelberg, 2008. 

(2) Boersma, K. F.; Eskes, H. J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van 
Geffen, J. H. G. M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving 
algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality 
assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 
2018, 11 (12), 6651–6678. 

(3) Dirksen, R. J.; Boersma, K. F.; Eskes, H. J.; Ionov, D. V.; Bucsela, E. J.; Levelt, P. F.; 
Kelder, H. M. Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring 
Instrument: Intercomparison, diurnal cycle, and trending. J. Geophys. Res. 2011, 116 
(D8), 283–22. 



 S16 

(4) Williams, J. E.; Boersma, K. F.; Le Sager, P.; Verstraeten, W. W. The high-resolution 
version of TM5-MP for optimized satellite retrievals: description and validation. Geosci. 
Model Dev. 2017, 10 (2), 721–750. 

(5) Boersma, K. F.; Eskes, H. J.; Dirksen, R. J.; A, der, R. J. V.; Veefkind, J. P.; Stammes, 
P.; Huijnen, V.; Kleipool, Q. L.; Sneep, M.; Claas, J.; et al. An improved tropospheric 
NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. 
Tech. 2011, 4 (9), 1905–1928. 

(6) De Smedt, I.; Theys, N.; Yu, H.; Danckaert, T.; Lerot, C.; Compernolle, S.; Van 
Roozendael, M.; Richter, A.; Hilboll, A.; Peters, E.; et al. Algorithm theoretical baseline 
for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmos. 
Meas. Tech. 2018, 11 (4), 2395–2426. 

(7) Zara, M.; Boersma, K. F.; De Smedt, I.; Richter, A.; Peters, E.; van Geffen, J. H. G. M.; 
Beirle, S.; Wagner, T.; Van Roozendael, M.; Marchenko, S.; et al. Improved slant 
column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A 
from QA4ECV: intercomparison, uncertainty characterisation, and trends. Atmos. Meas. 
Tech. 2018, 11 (7), 4033–4058. 

(8) McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. 
P.; Yang, K. Air quality over the Canadian oil sands: A first assessment using satellite 
observations. Geophys. Res. Lett. 2012, 39 (4). 

(9) Zhu, L.; Jacob, D. J.; Keutsch, F. N.; Mickley, L. J.; Scheffe, R.; Strum, M.; Gonzalez 
Abad, G.; Chance, K.; Yang, K.; Rappenglück, B.; et al. Formaldehyde (HCHO) As a 
Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and 
Inferring Cancer Risks in the United States. Environ. Sci. Technol. 2017, 51 (10), 5650–
5657. 

(10) Duncan, B. N.; Lamsal, L. N.; Thompson, A. M.; Yoshida, Y.; Lu, Z.; Streets, D. G.; 
Hurwitz, M. M.; Pickering, K. E. A space-based, high-resolution view of notable 
changes in urban NOx pollution around the world (2005-2014). J. Geophys. Res. Atmos. 
2016, 121 (2), 976–996. 

(11) Friedl, M. A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; 
Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and 
Characterization of New Datasets. Remote Sensing of Environment 2010, 114 (1), 168–
182. https://doi.org/10.1016/j.rse.2009.08.016. 

 (12) Guenther, A. B.; Jiang, X.; Heald, C. L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L. 
K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 
(MEGAN2.1): an extended and updated framework for modeling biogenic emissions. 
Geosci. Model Dev. 2012, 5 (6), 1471–1492.  

(13) Gelaro, R.; McCarty, W.; Suarez, M. J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C. 
A.; Darmenov, A.; Bosilovich, M. G.; Reichle, R.; Wargan, K.; Coy, L.; Cullather, R.; 
Draper, C.; Akella, S.; Buchard, V.; Conaty, A.; Silva, A. M. da; Gu, W.; Kim, G.-K.; 
Koster, R.; Lucchesi, R.; Merkova, D.; Nielsen, J. E.; Partyka, G.; Pawson, S.; Putman, 
W.; Rienecker, M.; Schubert, S. D.; Sienkiewicz, M.; Zhao, B. The Modern-Era 
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal 
of Climate 2017, 30 (14), 5419–5454.  

(14) Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, and Coauthors: North American Regional 
Reanalysis. Bulletin of the American Meteorological Society, 2006, 87, 343–
360, doi:10.1175/BAMS-87-3-343. 

 


