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1 Web Appendix A: Derivation of Nonparametric Identifi-
ability Results Stated in Section 3.2

We derive results achieving nonparametric identifiability of CEP (s1, s0) for (s1, s0) ∈

{(0, 0), (1, 0), (1, 1), highlighting how A4, A4′, A4′′, A5, and Case CB reduce the number

of non-identified terms.

A1–A3, A5, Variable Biomarker (VB) Sτ (0). We start with a slightly weaker assump-

tion set than scenario NEE-VB. Our objective is to estimate the three CEP (s1, s0) pa-

rameters [for (s1, s0) ∈ {(0, 0), (1, 0), (1, 1)}], by estimating each of the three risk pairs

{risk1(0, 0), risk0(0, 0)}, {risk1(1, 1), risk0(1, 1)}, and {risk1(1, 0), risk0(1, 0)}. Because

(Y τ (1), Sτ (1)) and (Y τ (0), Sτ (0)) are never both observed, these risk pairs are not identi-

fied from A1–A3, A5. Following Shepherd et al. (2011), without additional assumptions 3

sensitivity parameters are needed to nonparametrically identify each of the three risk pairs,

totaling 9 sensitivity parameters. For example, define

π(s1, s0) ≡ P (Sτ (1) = s1, S
τ (0) = s0, Y

τ (1) = Y τ (0) = 0),

π1(s1, s0) ≡ P (Sτ (1) = s1, Y
τ (1) = 0|Sτ (0) = s0, Y

τ (0) = 0, Y (0) = 1),

π0(s1, s0) ≡ P (Sτ (0) = s0, Y
τ (0) = 0|Sτ (1) = s1, Y

τ (1) = 0, Y (1) = 1).

Then {risk1(0, 0), risk0(0, 0)}, {risk1(1, 1), risk0(1, 1)}, and {risk1(1, 0), risk0(1, 0)} are

identified by the three triplets of parameters {π(0, 0), π1(0, 0), π0(0, 0)}, {π(1, 1), π1(1, 1),



π0(1, 1)}, and {π(1, 0), π1(1, 0), π0(1, 0)}, respectively. From equation (2), each riskz for

z = 0, 1 is also identified by these 9 sensitivity parameters because p(s1, s0) = π(s1, s0)/

{π(0, 0) + π(1, 1) + π(1, 0)}. Other sensitivity parameterizations can also achieve identifia-

bility, but at least 9 sensitivity parameters will still be required.

Under A1–A3, A4′, A5, Variable Biomarker Sτ (0). Adding A4′ to A1–A3 and A5,

π(1, 1) and risk0(1, 1) are nonparametrically identified as P (Sτ (0) = 1, Y τ (0) = 0) and

P (Y (0) = 1|Sτ (0) = 1, Y τ (0) = 0). Therefore, identifying risk1(1, 1) requires only one

sensitivity parameter, π0(1, 1). Identifying riskz(0, 0) for z = 0, 1 requires specifying three

parameters, {π(0, 0), π1(0, 0), π0(0, 0)}. Once π(0, 0) is specified, π(1, 0) is identified as

π(1, 0) = P (Sτ (0) = 0, Y τ (0) = 0)− π(0, 0); also everyone with {Sτ (0) = 0, Y τ (0) = 0}

who does not have {Sτ (1) = 0, Y τ (1) = 0} has to have {Sτ (1) = 1, Y τ (1) = 0}, and

therefore specifying π1(0, 0) also fixes π1(1, 0) = 1−π1(0, 0) and thus identifies risk0(1, 0).

Hence, only one additional sensitivity parameter, π0(1, 0), is needed to identify risk1(1, 0),

bringing the total number of sensitivity parameters to 5.

Under A1–A5, Variable Biomarker Sτ (0) [Scenario NEE-VB]. Strengthening A4′ to

A4, π(1, 1) and risk0(1, 1) are still nonparametrically identified, and identification of risk1(1, 1)

still requires only one sensitivity parameter, π0(1, 1). This same sensitivity parameter also

identifies risk1(1, 0) as π0(1, 0) = 1 − π0(1, 1) because by A4 everyone with (Sτ (1) =

1, Y τ (1) = 0) must have Y τ (0) = 0. Then π(0, 0) and risk1(0, 0) are also nonparamet-

rically identified. Therefore, to identify risk0(0, 0) only the sensitivity parameter π1(0, 0)

needs to be specified. As before under A4′, specifying π1(0, 0) also identifies risk0(1, 0).

Hence a total of two sensitivity parameters are needed in scenario NEE-VB.

Under A1–A4, Constant Biomarker [Scenario NEE-CB]. Scenario NEE-CB is similar

to scenario NEE-VB except that now the cell (Sτ (0) = 1, Sτ (1) = 1, Y τ (0) = 0, Y τ (1) =

0) is empty. This implies that riskz(1, 1) is undefined, for z = 0, 1. Also, in addition to

risk1(0, 0) being identified, risk1(1, 0) is now also nonparametrically identified. Similar to

scenario NEE-VB, risk0(0, 0) is identified with a sensitivity parameter π1(0, 0) which then
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also identifies risk0(1, 0). Therefore, only one sensitivity parameter is needed for scenario

NEE-CB.

Under A1–A3, A4′, Constant Biomarker [Scenario NEH-CB]. Identifiability is more

challenging when relaxing A4 to A4′, as 3 sensitivity parameters (e.g., π(0, 0), π0(0, 0),

and π1(0, 0)) are needed to identify {risk1(0, 0), risk0(0, 0)}. The sensitivity parameters

π(0, 0) and π1(0, 0) also identify risk0(1, 0). Moreover, one additional sensitivity parame-

ter, π0(1, 0), is required to identify risk1(1, 0). Hence a total of 4 sensitivity parameters are

needed.

Under A1–A3, A4′′, Constant Biomarker [Scenario NEB-CB]. When relaxing A4 to

A4′′, risk1(0, 0) and risk1(1, 0) remain nonparametrically identified. To identify risk0(0, 0),

similar to scenario NEE-CB, we need to specify a sensitivity parameter π1(0, 0). However,

unlike scenario NEE-CB, this additional parameter does not also identify risk0(1, 0); to

identify it, we need an additional sensitivity parameter π1(1, 0). Therefore, a total of 2

sensitivity parameters are needed for identification.

2 Web Appendix B: Application of Chiba and VanderWeele’s
(2011) SACE Method for Evaluating a Binary Interme-
diate Response Endpoint as a Principal Stratification Ef-
fect Modifier Under Scenarios NEE-VB and NEE-CB

Under Scenario NEE-VB, we show how the simple SACE method of Chiba and Vander-

Weele (2011) can be applied to evaluate a binary intermediate response endpoint as a prin-

cipal stratification effect modifier using an additive contrast h(x, y) = x − y. Define two

sensitivity parameters αk, k = 0, 1, by αk ≡ P (Y (k) = 1|Z = 1, Sk = 1) − P (Y (k) =

1|Z = 0, Sk = 1) with S0 ≡ [1− Y τ ][1− Sτ ] and S1 ≡ [1− Y τ ]Sτ . Then

CEP (k, k;αk) = P (Y = 1|Z = 1, Sk = 1)− P (Y = 1|Z = 0, Sk = 1)− αk (1)

= µ1k − µ0k − αk for k = 0, 1.
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A simple approach to estimating each µzk, (z, k) ∈ {(0, 0), (0, 1), (1, 0)}, solves∑n
i=1RiU

0zk
i (Oi;µzk)/π(Oi, ψ̂) = 0 with U0zk

i (Oi;µzk) ≡ (1 − Y τ
i )I(Zi = z)I(Sτi =

k)(Yi−µzk). Then, CEP (k, k;αk) is estimated by µ̂1k− µ̂0k−αk where αk is a known con-

stant fixed by the user. Lastly, plugging the above estimates into equation (3) of the main ar-

ticle yields estimates of risk1(1, 0;α1) and risk0(1, 0;α0), and hence of CEP (1, 0;α0, α1).

By standard estimating equation theory, the above estimators are consistent and asymp-

totically normal for given fixed α0 and α1. To obtain Wald confidence intervals for each

CEP (s1, s0;α0, α1), consistent sandwich variance estimators may be used, e.g., the esti-

mated variance of µzk for each k = 0, 1 is given by
∑n

i=1

(
Ri/π(Oi, ψ̂)

) [
U0zk
i (Oi; µ̂zk)

]2
.

The estimated variance of ˆCEP (1, 0) may be obtained by the delta method.

To perform a sensitivity analysis, the user may specify a plausible range [lk, uk] (or max-

imum possible) for each αk, k = 0, 1. An ignorance interval for CEP (s1, s0) may be calcu-

lated as the minimum and maximum estimates (obtained with α0 and α1 set to the boundary

values). Using the method of Imbens and Manski (2004) and Vansteelandt et al. (2006),

a Wald asymptotic (1-α)% estimated uncertainty interval (EUI) for CEP (s1, s0) may be

calculated as in formulas (40) and (41) of Richardson et al. (2014), using the variance es-

timates of the minimum and maximum CEP (s1, s0) estimates. This approach requires that

CEP (k, k;αk) is monotone in αk, which holds by (1).

3 Web Appendix C: Adapting the SACE Methods for a
Time-to-Event Outcome with Right-Censoring

The approach to estimation of CEP (0, 0), CEP (1, 0), and CEP (1, 1) using the published

SACE methods described above is similar if the binary outcome Y is defined as Y ≡ I(T ≤

t) with T subject to right-censoring and t is a fixed time point of interest. The estimating

equations used to estimate the needed terms are the same as those described above, except

that new estimating functions U(Oi; ·) are swapped into the equations that are designed to
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handle the right-censoring. For example, consider the first estimating equation in Section

5.2 of the main article,
∑n

i=1 U
0z
i (Oi; riskz) = 0. With Y ≡ I(T ≤ t), the same estimating

equation can be used swapping in the estimating function of the Kaplan-Meier estimator

(Reid, 1981) or of the targeted maximum likelihood estimator of a survival curve (Moore

and van der Laan, 2009). The same type of swap is made for the other estimating equations.

For implementing the IPW GBH SACE Method approach, as described in Shepherd et al.

(2006, 2011), a modification to the weight functions wz(·;αz, βz) is needed, where now they

are indexed by time t: wz(t;αz, βz) = {1 + exp(−αz−βzmin(t, ν))}−1, where ν is near the

end of follow-up. In addition, the summation
∑1

y=0w0(y;α0, β0)P̂ (Y (0) = y|S(0) = 1) in

equation (4) of the main article is changed to
∫∞
0
w0(t;α0, β0)P̂ (T (0) ≤ t|S(0) = 1) and

the summation
∑1

y=0w1(y;α1, β1)P̂ (Y (1) = y|S(1) = 1) in equation (5) of the main article

is changed to
∫∞
0
w1(t;α1, β1)P̂ (T (1) ≤ t|S(1) = 1).

4 Web Appendix D: Additional Figures Showing Results of
the First and Second Simulation Studies, and Details of
the Second Simulation Study

Web Figures 1–4 present results for the first simulation study.

Web Figures 5–9 present results for the second simulation study. Here we provide de-

tails for the second simulation study. In this second study, data were simulated under sce-

nario NEH-CB (A1–A3, A4′, Case CB) such that A4 in scenario NEE-CB failed. First

(Y τ (1), Y τ (0)) was set to (0,0), (0,1), or (1,1) with probabilities 0.7, 0.2, and 0.1, such that

A4′ (NEH) holds. If Y τ (z) = 1, then Y (z) was set to 1, for z = 0, 1. Similar to the first

simulation, if (Y τ (1), Y τ (0)) = (0, 0), then (Sτ (1), Sτ (0)) was set to (0,0) or (1,0) with

probabilities 0.4 and 0.6. If (Y τ (1), Y τ (0)) = (0, 1), then Sτ (1) was set to 0 or 1 with prob-

abilities 0.4 and 0.6. Data were otherwise simulated the same as for the first simulation (e.g.,

Y (1), Y (0), Z, other observed data). Analyses used [lj, uj] ∈ {[0, 0], [−0.5, 0.5], [−1, 1]}

for j = 0, 2, 3, 4. As for the NEE-CB simulations, all data sets were simulated under no
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selection bias.

Results based on 2000 simulated data sets are shown in Web Figures 5–9. As for the

methods under scenario NEE-CB, power and precision diminished as the interval [l0, u0]

became wider and the subcohort size decreased.
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Web Figure 1. Average 95% EUI width for the first simulation study for methods with

Scenario NEE-CB assumptions. Solid lines denote full cohort and dashed (dotted) lines

denote case-cohort with 10% (25%) random subcohort.
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Web Figure 2. 95% EUI coverage for the first simulation study for methods with Scenario

NEE-CB assumptions. Solid line denotes full cohort, dashed (dotted) line denotes case-

cohort with 10% (25%) random subcohort.
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Web Figure 3. Bias for the first simulation study for methods under Scenario NEE-CB as-

sumptions. The middle and lower panels show bias of the minimum and maximum estimates

of CEP (1, 0)−CEP (0, 0) over the plausible region Γ = [l0, u0] of the sensitivity parameter

β0. Solid line denotes full cohort, dashed (dotted) line denotes case-cohort with 10% (25%)

random subcohort.
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(ASE) for the first simulation study for methods under Scenario NEE-CB assumptions. Solid

line denotes full cohort, dashed (dotted) line denotes case-cohort with 10% (25%) random

subcohort.
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Web Figure 5. Power to reject H0 : µ = CEP (1, 0) = CEP (0, 0) for the second sim-

ulation study for methods under Scenario NEH-CB assumptions. Solid black lines denote

full cohort and dashed (dotted) lines denote case-cohort with 10% (25%) random subcohort.

Horizontal gray lines denote significance level 0.05.
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Web Figure 6. Average 95% EUI width for the second simulation study for methods under

Scenario NEH-CB assumptions. Solid lines denote full cohort and dashed (dotted) lines

denote case-cohort with 10% (25%) random subcohort.
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Web Figure 7. 95% EUI coverage for the second simulation study for methods under Sce-

nario NEH-CB assumptions. Solid line denotes full cohort, dashed (dotted) line denotes

case-cohort with 10% (25%) random subcohort.
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Web Figure 8. Bias for the second simulation study for methods under Scenario NEH-

CB assumptions. The middle and lower panels show bias of the minimum and maximum

estimates of CEP (1, 0)−CEP (0, 0) over the plausible region Γ = [l0, u0] of the sensitivity

parameter β0. Solid line denotes full cohort, dashed (dotted) line denotes case-cohort with

10% (25%) random subcohort.
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Web Figure 9. Ratio of empirical standard error (ESE) to average estimated standard error

(ASE) for the second simulation study for methods under Scenario NEH-CB assumptions.

Solid line denotes full cohort, dashed (dotted) line denotes case-cohort with 10% (25%)

random subcohort.
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5 Web Appendix E: Additional Analyses for the HVTN 505
Application

5.1 Explanation of How the Results of the HVTN 505 Application are
Very Similar for the Scenario NEE-CB and NEB-CB Methods

In this web appendix we show that under the condition P (Y (0) = 1|Y τ (1) = 1, Y τ (0) =

0) = P (Y (0) = 1|Y τ (1) = 0, Y τ (0) = 0), then the scenario NEE-CB and scenario NEB-

CB methods are equivalent. The typical estimand of interest in the article, CEP (1, 0) −

CEP (0, 0), is a function of risk1(1, 0), risk1(0, 0), risk0(1, 0), and risk0(0, 0). Under

the set-up for scenario NEB-CB in the application section, we switch the direction of the

monotonicity assumption which, when combined with Case CB, identifies risk1(1, 0) and

risk1(0, 0). Thus, risk1(1, 0) and risk1(0, 0) are estimated in exactly the same way for the

two scenarios:

ˆrisk1(j, 0) = P̂ (Y (1) = 1|Sτ (1) = j, Sτ (0) = 0, Y τ (1) = 0, Y τ (0) = 0)

= P̂ (Y (1) = 1|Sτ (1) = j, Y τ (1) = 0)

= P̂ (Y = 1|Sτ = j, Y τ = 0, Z = 1), j = 0, 1.

Therefore the results under each scenario will only differ in estimation of risk0(1, 0) and

risk0(0, 0).

Scenario NEE-CB. Under scenario NEE-CB, risk0(1, 0) and risk0(0, 0) are estimated with

a SACE method equivalent to solving the following mixing equations:

exp(β0) =
risk0(0, 0)/(1− risk0(0, 0))

risk0(1, 0)/(1− risk0(1, 0))

and

risk0 = p(0, 0)risk0(0, 0) + (1− p(0, 0))risk0(1, 0),

where risk0 and p(0, 0) are identifiable under the assumptions of scenario NEE-CB. By
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NEE, we estimate:

ˆrisk0 = P̂ (Y (0) = 1|Y τ (1) = 0, Y τ (0) = 0)

= P̂ (Y (0) = 1|Y τ (0) = 0) = P̂ (Y = 1|Y τ = 0, Z = 0),

which is solved by the estimating equation∑
i

(1− Zi)(1− Y τ
i )(Y − risk0) = 0.

In addition, by NEE and Case CB,

p̂(0, 0) = P̂ (Sτ (1) = 0, Sτ (0) = 0|Y τ (1) = 0, Y τ (0) = 0)

= P̂ (Sτ (1) = 0|Y τ (1) = 0) = P̂ (Sτ = 0|Y τ = 0, Z = 1),

which is solved by the estimating equation∑
i

Zi(1− Y τ
i )(1− Sτ − p(0, 0)) = 0.

Then risk0(1, 0), and risk0(0, 0) are estimated by solving the mixing equations once β0 is

specified.

Scenario NEB-CB. Under scenario NEB-CB, we relax the NEE assumption [P (Y τ (1) =

Y τ (0)) = 1] to NEB [P (Y τ (1) ≥ Y τ (0)) = 1]. Now, risk0 = P (Y (0) = 1|Y τ (1) =

Y τ (0) = 0) is no longer identifiable. So first, an intermediate SACE method must be per-

formed to estimate risk0, and then the same SACE method as above is performed to estimate

risk0(1, 0) and risk0(0, 0). We can write mixing equations in a similar form to those in the

previous section, with new sensitivity parameter β5 defined in assumption B.5 of the main

text:

exp(β5) =
risk0/(1− risk0)

P (Y (0) = 1|Y τ (1) = 1, Y τ (0) = 0)/(1− P (Y (0) = 1|Y τ (1) = 1, Y τ (0) = 0))

and

P (Y (0) = 1|Y τ (0) = 0) = P (Y τ (1) = 0|Y τ (0) = 0)risk0

+ P (Y τ (1) = 1|Y τ (0) = 0)P (Y (0) = 1|Y τ (1) = 1, Y τ (0) = 0)
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where P (Y τ (1) = 1|Y τ (0) = 0) = 1 − P (Y τ (1) = 0|Y τ (0) = 0). Note that β5 = 0

expresses the equality P (Y (0) = 1|Y τ (1) = 1, Y τ (0) = 0) = P (Y (0) = 1|Y τ (1) =

0, Y τ (0) = 0). Now, when β5 = 0, we estimate

ˆrisk0 = P̂ (Y (0) = 1|Y τ (1) = 1, Y τ (0) = 0)

= P̂ (Y (0) = 1|Y τ (0) = 0) = P̂ (Y = 1|Y τ = 0, Z = 0),

which is found by solving the same estimating equation as in scenario NEE-CB:

∑
i

(1− Zi)(1− Y τ
i )(Y − risk0) = 0.

Therefore the estimate for risk0 in scenario NEB-CB will be the same as that in scenario

NEE-CB when β5 = 0. In addition, the estimate for p(0, 0) under scenario NEB-CB will be

the same as that under scenario NEE-CB by monotonicity and Case CB:

p̂(0, 0) = P̂ (Sτ (1) = 0, Sτ (0) = 0|Y τ (1) = 0, Y τ (0) = 0)

= P̂ (Sτ (1) = 0|Y τ (1) = 0) = P̂ (Sτ = 0|Y τ = 0, Z = 1),

which is solved by the same estimating equation:

∑
i

Zi(1− Y τ
i )(1− Sτ − p(0, 0)) = 0.

After estimating these terms, risk0(1, 0) and risk0(0, 0) are estimated via the same SACE

method described for scenario NEE-CB. We have shown that when β5 = 0, the estimated

risk0 and p(0, 0) used in the mixing equations will be the same as those estimated in sce-

nario NEE-CB. Thus, the estimated risk0(1, 0) and risk0(0, 0) (as well as the estimate of

CEP (1, 0)− CEP (0, 0)) will be the same under each scenario when β5 = 0.

As β5 moves further away from 0, the estimates for risk0 will become more different

between the two methods, as will the subsequent results. Note that this is different from

what was described in the main article about the scenario NEH-CB method, which is more

complex due to the monotonicity assumption being in the usual direction.
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As described in the application section of the main text, there may be situations where

it is not clear whether the assumptions of scenario NEE-CB or NEB-CB hold for the data

being used. We study this issue by simulating the difference in EUI widths for the two

scenarios under various supposed values of P (Y τ (1) = 1, Y τ (0) = 0), which is implicitly

assumed to be 0 under Scenario NEE-CB, but not under scenario NEB-CB. Each point on

the plot in Web Figure 9 is the average of the differences in EUI widths calculated across

100 simulations. The red line represents the estimated value of P (Y τ (1) = 1, Y τ (0) = 0)

for the HVTN 505 data set analyzed in the application section.

For data sets with a small estimated value of P (Y τ (1) = 0, Y τ (0) = 1), we would

expect the two methods to give very similar results, with the intervals from scenario NEB-

CB being only slightly wider than those from scenario NEE-CB. For such data sets it may

be unclear whether to analyze under scenario NEE-CB or scenario NEB-CB. In general,

justification for use of the scenario NEE-CB method would need to come from knowledge

that the NEE assumption is plausibly true. In addition, use of the NEB-CB method would

require knowledge that A7′ is plausible.

5.2 Comparison of results in the Application for scenarios NEE-CB or
NEB-CB under different early infection data distributions

Web Figure 10 shows the identical results as Figure 2 in the main article, except conducting

the analysis under scenario NEE-CB instead of under scenario NEB-CB
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Web Figure 10. Difference in 95% EUI width for the HVTN 505 application in the main

article for analysis under scenario NEE-CB (labeled B on the y-axis) versus under scenario

NEB-CB (labeled C on the y-axis).
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6 Web Appendix F: R Computer code

R code is provided on the first author’s website that implements the simulation studies and

the data analysis of the HVTN 505 study:

http://faculty.washington.edu/peterg/programs.html?
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