Supplementary Information for:

A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C

Ji Hyun Bak, Min Hyeok Kim, Lei Liu, Changbong Hyeon

S2 Appendix

Derivation of the likelihood function

Here we derive the likelihood function, Eq 14.

Problem: We want to compute

$$
p(\mathbf{x}|\mathbf{s}, \mathbf{g}) = \left\langle \delta^N \left(\mathbf{x} - \mathbf{f}(\eta, \epsilon) \right) \right\rangle_{\eta, \epsilon} \tag{S2-1}
$$

with the following assumptions:

- $\mathbf{x} \in \mathbb{R}^N$ is a sequence of normalized and uncorrelated observations, with zero mean $\langle \mathbf{x} \rangle = \mathbf{0}_N$ and unit covariance $Cov(\mathbf{x}) = I_N$.
- $\mathbf{s} = (s_1, \dots, s_N)$ is a clustering map that assigns each site $i \in \{1, \dots, N\}$ to a cluster index $s_i \in \{1, \dots, K\}$. Without loss of generality, we can assume that $s_i \leq s_j$ whenever $i < j$ (ordered indexing).
- $\eta \sim \mathcal{N}(\mathbf{0}_N, \Lambda)$ and $\epsilon \sim \mathcal{N}(\mathbf{0}_N, \Sigma)$ are i.i.d. gaussian random variables, where Λ and Σ are $N \times N$ covariance matrices. The cluster-dependent covariance is a block diagonal matrix $\Lambda = [\Lambda_s] = [\mathbf{1}_{n_s} \mathbf{1}_{n_s}^\top]$, defined element-wise as $(\Lambda)_{ij} = \delta_{s_i, s_j}$. The site-wise variation is assumed to be uncorrelated, with a unit covariance matrix $\Sigma = I_N$, or $(\Sigma)_{ij} = \delta_{ij}$.
- The clustering strength $\mathbf{g} = (g_1, \dots, g_K)$ parameterizes the target function \mathbf{f} , defined element-wise as

$$
f_i(\eta, \epsilon) = \frac{\sqrt{g_{s_i}} \eta_i + \epsilon_i}{\sqrt{1 + g_{s_i}}}, \quad i = 1, \cdots, N.
$$
 (S2-2)

Two lemmas will be useful. The Gaussian integral lemma:

$$
\int_{\mathbb{R}^N} d\mathbf{z} \, \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, M) \, e^{i\mathbf{a}^\top \mathbf{z}} = \exp\left(-\frac{1}{2}\mathbf{a}^\top M \mathbf{a}\right), \quad \mathbf{a} \in \mathbb{R}^N; \tag{S2-3}
$$

and the Sherman-Morrison formula:

$$
(A + uvT)-1 = A-1 - \frac{A-1uvTA-1}{1 + vTA-1u}.
$$
 (S2-4)

Solution: Let us abbreviate the coefficients as $\alpha_s \equiv \sqrt{g_s/(1+g_s)}$ and $\beta_s \equiv 1/\sqrt{1+g_s}$, such that $f_i = \alpha_{s_i}\eta_i + \beta_{s_i}\epsilon_i$. Further define $A \equiv \text{diag}(\alpha_{s_i})$ and $B \equiv \text{diag}(\beta_{s_i})$, to write $\mathbf{f} = A\pmb{\eta} + B\pmb{\epsilon}$. Taking the inverse Fourier transform of the Dirac delta function, we can write $\delta^N(\mathbf{x} - \mathbf{f}) = \int \frac{d\mathbf{k}}{(2\pi)^N} e^{i(\mathbf{x} - \mathbf{f})^\top \mathbf{k}} = \int \frac{d\mathbf{k}}{(2\pi)^N} e^{i(\mathbf{x} - A\boldsymbol{\eta} - B\boldsymbol{\epsilon})^\top \mathbf{k}},$ where $\int = \int_{\mathbb{R}^N}$ unless otherwise specified. Now we can rewrite **Eq [S2-1](#page-0-0)**, and evaluate the gaussian integrals using the lemma $(Eq S2-3)$ $(Eq S2-3)$ $(Eq S2-3)$:

$$
p(\mathbf{x}|\mathbf{s}, \mathbf{g}) = \int \frac{d\mathbf{k}}{(2\pi)^N} e^{i\mathbf{x}^\top \mathbf{k}} \int d\boldsymbol{\eta} \ \mathcal{N}(\boldsymbol{\eta}) \ e^{-i\boldsymbol{A}\boldsymbol{\eta}^\top \mathbf{k}} \int d\boldsymbol{\epsilon} \ \mathcal{N}(\boldsymbol{\epsilon}) \ e^{-i\boldsymbol{B}\boldsymbol{\epsilon}^\top \mathbf{k}} = \int \frac{d\mathbf{k}}{(2\pi)^N} \exp\left(i\mathbf{x}^\top \mathbf{k} - \frac{1}{2}(\boldsymbol{A}\mathbf{k})^\top \boldsymbol{\Lambda}(\boldsymbol{A}\mathbf{k}) - \frac{1}{2}(\boldsymbol{B}\mathbf{k})^\top \boldsymbol{\Sigma}(\boldsymbol{B}\mathbf{k})\right) = \int \frac{d\mathbf{k}}{(2\pi)^N} \exp\left(i\mathbf{x}^\top \mathbf{k} - \frac{1}{2}\mathbf{k}^\top \boldsymbol{Q}\mathbf{k}\right),
$$
 (S2-5)

where $Q \equiv (A\Lambda A + B\Sigma B)$. Recognizing that this is another (unnormalized) gaussian integral with covariance matrix Q^{-1} , we use the lemma (**Eq [S2-3](#page-0-1)**) once again:

$$
p(\mathbf{x}|\mathbf{s}, \mathbf{g}) = \sqrt{(2\pi)^N \det Q^{-1}} \int \frac{d\mathbf{k}}{(2\pi)^N} \mathcal{N}(\mathbf{k}|\mathbf{0}, Q^{-1}) e^{i\mathbf{x}^\top \mathbf{k}}
$$

= $\exp\left(-\frac{1}{2}\mathbf{x}^\top Q^{-1}\mathbf{x} - \frac{1}{2}\log \det Q\right).$ (S2-6)

With uncorrelated ϵ , both Q and Q^{-1} are block diagonal matrices, the exponent is completely separable by clusters:

$$
\log p(\mathbf{x}|\mathbf{s}, \mathbf{g}) = -\frac{1}{2} \sum_{s=1}^{K} (\mathbf{x}_s^{\top} Q_s^{-1} \mathbf{x}_s + \log \det Q_s), \qquad (S2-7)
$$

where x_s is the corresponding n_s -dimensional subset of x , and

 $Q_s = A_s \Lambda_s A_s + B_s \Sigma_s B_s = \alpha_s^2 \Lambda_s + \beta_s^2 \Sigma_s$, is the $n_s \times n_s$ block matrix corresponding to cluster index s; element-wise, $(Q_s)_{ij} = \alpha_s^2 + \beta_s^2 \delta_{ij}$.

We now simplify the two terms in the summand of $\mathbf{Eq} S2-7$ $\mathbf{Eq} S2-7$, and show that the resulting expression corresponds to Eq [14](#page-0-2). First, the quadratic term can be expanded by using the Sherman-Morrison formula (Eq [S2-4](#page-0-3)):

$$
Q_s^{-1} = (\beta_s^2 I_{n_s} + (\alpha_s \mathbf{1}_{n_s})(\alpha_s \mathbf{1}_{n_s})^\top)^{-1} = \frac{1}{\beta_s^2} \left(I - \frac{(\alpha_s^2/\beta_s^2) \mathbf{1} \mathbf{1}^\top}{1 + (\alpha_s^2/\beta_s^2) \mathbf{1}^\top \mathbf{1}} \right). \tag{S2-8}
$$

The quadratic form is

$$
\mathbf{x}_s^\top Q_s^{-1} \mathbf{x}_s = (1 + g_s) \left(n_s - \frac{g_s c_s}{1 + g_s n_s} \right),\tag{S2-9}
$$

where $\mathbf{x}_s^{\top} \mathbf{x}_s = \sum_{i=1}^{N} (x_i)^2 \delta_{s_i,s} \approx \langle x_i^2 \rangle \sum_{i=1}^{N} \delta_{s_i,s} = n_s$, and $\mathbf{x}_s^\top(\mathbf{1}\mathbf{1}^\top)\mathbf{x}_s = \sum_{i,j=1}^N x_i x_j \delta_{s_i,s} \delta_{s_j,s} \equiv c_s.$

Second, the log-determinant term can be calculated by considering the eigenvalues of the matrix Q_s . Solving for $Q_s \mathbf{z} = \lambda_s \mathbf{z}$ for an arbitrary n_s -dimensional vector \mathbf{z} ,

$$
\lambda_s \mathbf{z} = \alpha_s^s (\mathbf{1}^\top \mathbf{z}) \mathbf{1} + \beta_s^2 \mathbf{z};\tag{S2-10}
$$

there are two types of solutions. The first possibility is to have the eigenvector $z \propto 1$, in which case $\lambda_{s,1} = \alpha_s^2 n_s + \beta_s^2 = (1 + g_s n_s)/(1 + g_s)$. The other possibility is to have

 $(\lambda_s - \beta_s^2)$ **z** vanish, where $\lambda_{s,2} = \cdots = \lambda_{s,n_s} = \beta_s^2 = 1/(1+g_s)$; the degenerate eigenvectors span the remaining $(n_s - 1)$ -dimensional subspace. Therefore

$$
\det(Q_s) = (\alpha_s^2 n_s + \beta_s^2) \cdot (\beta_s^2)^{n_s - 1} = \frac{1 + g_s n_s}{(1 + g_s)^{n_s}},
$$
\n(S2-11)

and

$$
\log \det(Q_s) = \log(1 + g_s n_s) - n_s \log(1 + g_s). \tag{S2-12}
$$

Substitution of Eq [S2-9](#page-1-1) and Eq [S2-12](#page-2-1) into Eq [S2-7](#page-1-0) yields Eq [14](#page-0-2).