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S2 Appendix

Derivation of the likelihood function

Here we derive the likelihood function, Eq 14.

Problem: We want to compute

p(x|s,g) =
〈
δN (x− f(η, ε))

〉
η,ε

(S2-1)

with the following assumptions:

• x ∈ RN is a sequence of normalized and uncorrelated observations, with zero
mean 〈x〉 = 0N and unit covariance Cov(x) = IN .

• s = (s1, · · · , sN ) is a clustering map that assigns each site i ∈ {1, · · · , N} to a
cluster index si ∈ {1, · · · ,K}. Without loss of generality, we can assume that
si ≤ sj whenever i < j (ordered indexing).

• η ∼ N (0N ,Λ) and ε ∼ N (0N ,Σ) are i.i.d. gaussian random variables, where Λ
and Σ are N ×N covariance matrices. The cluster-dependent covariance is a
block diagonal matrix Λ = [Λs] = [1ns1

>
ns

], defined element-wise as (Λ)ij = δsi,sj .
The site-wise variation is assumed to be uncorrelated, with a unit covariance
matrix Σ = IN , or (Σ)ij = δij .

• The clustering strength g = (g1, · · · , gK) parameterizes the target function f ,
defined element-wise as

fi(η, ε) =

√
gsiηi + εi√
1 + gsi

, i = 1, · · · , N. (S2-2)

Two lemmas will be useful. The Gaussian integral lemma:∫
RN

dz N (z|µ,M) eia
>z = exp

(
−1

2
a>Ma

)
, a ∈ RN ; (S2-3)

and the Sherman-Morrison formula:

(A+ uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
. (S2-4)
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Solution: Let us abbreviate the coefficients as αs ≡
√
gs/(1 + gs) and

βs ≡ 1/
√

1 + gs, such that fi = αsiηi + βsiεi. Further define A ≡ diag(αsi) and
B ≡ diag(βsi), to write f = Aη +Bε. Taking the inverse Fourier transform of the Dirac

delta function, we can write δN (x− f) =
∫

dk
(2π)N

ei(x−f)
>k =

∫
dk

(2π)N
ei(x−Aη−Bε)>k,

where
∫

=
∫
RN unless otherwise specified. Now we can rewrite Eq S2-1, and evaluate

the gaussian integrals using the lemma (Eq S2-3):

p(x|s,g) =

∫
dk

(2π)N
eix

>k

∫
dη N (η) e−iAη>k

∫
dε N (ε) e−iBε>k

=

∫
dk

(2π)N
exp

(
ix>k− 1

2
(Ak)>Λ(Ak)− 1

2
(Bk)>Σ(Bk)

)
=

∫
dk

(2π)N
exp

(
ix>k− 1

2
k>Qk

)
, (S2-5)

where Q ≡ (AΛA+BΣB). Recognizing that this is another (unnormalized) gaussian
integral with covariance matrix Q−1, we use the lemma (Eq S2-3) once again:

p(x|s,g) =
√

(2π)N detQ−1
∫

dk

(2π)N
N (k|0, Q−1) eix

>k

= exp

(
−1

2
x>Q−1x− 1

2
log detQ

)
. (S2-6)

With uncorrelated ε, both Q and Q−1 are block diagonal matrices, the exponent is
completely separable by clusters:

log p(x|s,g) = −1

2

K∑
s=1

(
x>s Q

−1
s xs + log detQs

)
, (S2-7)

where xs is the corresponding ns-dimensional subset of x, and
Qs = AsΛsAs +BsΣsBs = α2

sΛs + β2
sΣs, is the ns × ns block matrix corresponding to

cluster index s; element-wise, (Qs)ij = α2
s + β2

sδij .
We now simplify the two terms in the summand of Eq S2-7, and show that the

resulting expression corresponds to Eq 14. First, the quadratic term can be expanded
by using the Sherman-Morrison formula (Eq S2-4):

Q−1s = (β2
sIns + (αs1ns)(αs1ns)>)−1 =

1

β2
s

(
I − (α2

s/β
2
s )11>

1 + (α2
s/β

2
s )1>1

)
. (S2-8)

The quadratic form is

x>s Q
−1
s xs = (1 + gs)

(
ns −

gscs
1 + gsns

)
, (S2-9)

where x>s xs =
∑N
i=1(xi)

2δsi,s ≈ 〈x2i 〉
∑N
i=1 δsi,s = ns, and

x>s (11>)xs =
∑N
i,j=1 xixjδsi,sδsj ,s ≡ cs.

Second, the log-determinant term can be calculated by considering the eigenvalues of
the matrix Qs. Solving for Qsz = λsz for an arbitrary ns-dimensional vector z,

λsz = αss(1
>z)1 + β2

sz; (S2-10)

there are two types of solutions. The first possibility is to have the eigenvector z ∝ 1, in
which case λs,1 = α2

sns + β2
s = (1 + gsns)/(1 + gs). The other possibility is to have
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(λs − β2
s )z vanish, where λs,2 = · · · = λs,ns

= β2
s = 1/(1 + gs); the degenerate

eigenvectors span the remaining (ns − 1)-dimensional subspace. Therefore

det(Qs) = (α2
sns + β2

s ) · (β2
s )ns−1 =

1 + gsns
(1 + gs)ns

, (S2-11)

and
log det(Qs) = log(1 + gsns)− ns log(1 + gs). (S2-12)

Substitution of Eq S2-9 and Eq S2-12 into Eq S2-7 yields Eq 14.
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