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S2 Appendix

Derivation of the likelihood function

Here we derive the likelihood function, Eq 14.

Problem: We want to compute

p(xls, g) = (7 (x — £(n,€))) (52-1)

n,€

with the following assumptions:

e x € RY is a sequence of normalized and uncorrelated observations, with zero
mean (x) = Oy and unit covariance Cov(x) = Iy.

e s=(s1, - ,$n) is a clustering map that assigns each site i € {1, -+, N} to a
cluster index s; € {1,--- , K}. Without loss of generality, we can assume that
s; < s; whenever i < j (ordered indexing).

e 7~ MN(Oy,A) and € ~ N(Oy,X) are i.i.d. gaussian random variables, where A
and X are N x N covariance matrices. The cluster-dependent covariance is a
block diagonal matrix A = [A,] = [1,,,1] ], defined element-wise as (A);; = &, s,
The site-wise variation is assumed to be uncorrelated, with a unit covariance
matrix ¥ = Iy, or (X);; = d;;.

e The clustering strength g = (g1, -+, gx) parameterizes the target function f,
defined element-wise as

gsini+€i .
(e =Yt j—=1,... N. S2-2
film) = Yo (52:2)

Two lemmas will be useful. The Gaussian integral lemma:
; 1
/ dz N (z|p, M) e’ % — exp (QaTMa> , acRY; (52-3)
RN

and the Sherman-Morrison formula:

A luvT A1

A Nl —————.
(A+uv’) 1+viA-1u

(S2-4)
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Solution: Let us abbreviate the coefficients as as = \/gs/(1 + gs) and
Bs = 1/4/1T+ gs, such that f; = as,m; + Bs,€;. Further define A = diag(as,) and
B = diag(8s, ), to write f = An + Be. Taking the inverse Fourier transform of the Dirac

f(2dk ’L(X )Tk f(2dk 1(x An—Be) T k

where [ = f]RN unless otherwise specified. Now we can rewrite Eq S2-1, and evaluate
the gaussian integrals using the lemma (Eq S2-3):

pixts.8) = [ o o7 [Lam ) = [ e (o) e

= / (Qdﬂ_l;N exp (ika — %(Ak)TA(Ak) - ;(Bk)TE(Bk))

dk 1
= / 7(271’)]\7 exp <iXTk — 2kTQk) , (52-5)

where Q = (AAA + BXB). Recognizing that this is another (unnormalized) gaussian
integral with covariance matrix Q 1, we use the lemma (Eq S2-3) once again:

p(x|s,g) = 1/ (27)N det Q— / dk N(k[0,Q71) ¢ ik

= exp (—;xTle -3 log det Q) . (S2-6)

delta function, we can write %V (x — f)

With uncorrelated €, both @ and Q! are block diagonal matrices, the exponent is
completely separable by clusters:

K
1
log p(x]s, g) ~5 Z (x4 Q; 'x, +logdet Q) , (S2-7)
s=1

where x; is the corresponding n-dimensional subset of x, and
Qs = AAAg + BX By = o2 + 23, is the ng X ng block matrix corresponding to
cluster index s; element-wise, (Q;);; = a2 + $25;;.

We now simplify the two terms in the summand of Eq S2-7, and show that the
resulting expression corresponds to EEq 14. First, the quadratic term can be expanded
by using the Sherman-Morrison formula (Eq S2-4):

- a1 s/Bu’
Qs t= (ﬁgjnq + (O‘s]-ns)(as]-ns)—r) t= @ <I - 1_<:¥<O{§/5)52)1-|—1> . (82_8)

The quadratic form is

TAH-1 gsC
Xs Qs Xs = (1 +gs) (ns - 1_|_ngns> ’ (82'9)
N N
where x]x, = Y (220, & (@) N, 6,0 = o, and
N
X;r(llT)XS = Zi,j:l xixj(;sqz,s(ss‘],s‘ = Cs-
Second, the log-determinant term can be calculated by considering the eigenvalues of
the matrix Q5. Solving for Qsz = A\sz for an arbitrary ns-dimensional vector z,

Aoz = ai(172)1 + 2z; (S2-10)

there are two types of solutions. The first possibility is to have the eigenvector z o< 1, in
which case A\s 1 = a?ng + 82 = (1 + gsns)/(1 + gs). The other possibility is to have
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(/\s - ﬁf)z vanish, where )\s,2 == >\s,n3 = 5? = 1/(1 + gs); the degenerate
eigenvectors span the remaining (ns — 1)-dimensional subspace. Therefore

— 1+ gsng
det(Q.) = (02, + B2) - (B2t = At 0l So.11
(Qs) = ( Bs) - (B5) A ( )
and
log det(Qs) = log(1 + gsns) — nslog(l + gs).- (52-12)

Substitution of Eq S2-9 and Eq S2-12 into Eq S2-7 yields Eq 14.
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