
 

1 
 

Supplementary Information 

Supplementary Results 

Prediction of learning outcomes improves with number of lecture segments 

We performed a power analysis across lectures to determine the amount of neural data required 

in order to obtain robust correlations with exam scores (i.e. how early in the course we could 

predict learning outcomes). This was motivated by our desire to inform future studies and 

applications of our measures to real-world scenarios, where resource optimization (i.e. less 

scanning) may be desired. To this end, we first obtained alignment-to-class values for each 

student in each lecture segment (21 in total). Then, we correlated exam scores with alignment 

in the first segment, the first two segments, and so forth until information from all segments was 

accumulated. This has allowed us to examine changes in score prediction quality due to the 

accumulation of information across lectures. An ROI analysis showed that, in the hippocampus, 

prediction quality increased steadily as more data was added, and afforded significant prediction 

after a single scan (Supplementary Fig. 1). To test whether this was the case across the cortex, 

we calculated a “Stable Prediction Index” for every voxel in the brain using searchlight (see 

Methods). On this index, a low number corresponded to regions where few data points were 

required to achieve significant correlation with behavior (i.e. early prediction), and a higher 

number to regions where more data points were required (i.e. late prediction). We found 

significant variance within and across cortical regions. Thus, while alignment-to-class in some 

parts of the angular gyrus afforded early prediction, only late prediction was possible in other 

parts (i.e. given the entire dataset).  
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Correlation between alignment measures during the exam is robust to response length  

We examined the link between alignment-to-class and alignment-to-experts during the exam 

while controlling for response length. While we found a strong positive correlation between these 

alignment measures across ROIS during both recaps and the exam (Table 3), neural responses 

during the exam could conceivably be affected by response length as discussed in the main text. 

To address this, we used a within-participant regression model to predict alignment from answer 

length. This model yielded a residual error term for each question (“residual score”, predicted 

alignment minus true alignment). We then correlated residual alignment-to-class and residual 

alignment-to-experts during the exam (Supplementary Table 2). We found that across ROIs, 

correlation values were somewhat higher in the control analysis, arguing against a contribution 

of response length to the effects shown in Table 3. 
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Variance across the brain in the number of lectures required for 

performance prediction. a. Searchlight analysis results. Per-voxel “predictability index” values 

shown. Note the low index scores across major DMN nodes, indicating prediction of exam score 

can be achieved with a small number of lecture segments. b. Number of lectures required for 

stable prediction in the hippocampus. Yellow rectangles, prediction result for individual lecture 

segments (correlation between exam scores and alignment-to-class in that segment). Brown 

line, prediction of exam score from data accumulated over lecture segments. Asterisks denote 

significant correlation (one-sided permutation test, uncorrected), * p<0.05, ** p<0.01. 
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Supplementary Figure 2. “Same-question” and “Knowledge structure” effects controlled 

for response length. Searchlight analysis results shown. Voxels showing significant correlation 

are shown in color (one-sided permutation test, p<0.05, corrected). a. Correlation 

between same-question alignment-to-class and exam score, controlled for response length. b. 

Correlation between same-question alignment-to-experts and exam score, controlled for 

response length. c. Correlation between “knowledge structure” alignment-to-class and exam 

score, controlled for response length. Note the close correspondence between these maps and 

the results of the original analyses in Fig. 4D and Fig.5C. LH, left hemisphere, RH, right 

hemisphere, Ant., anterior, Post., posterior. 
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Supplementary Figure 3. Correlation of “knowledge structure” alignment-to-experts and 

performance.  

Searchlight analysis results shown. Map thresholded using a liberal statistical threshold (one-

sided permutation test, p<0.01, uncorrected). No voxels survived multiple comparisons 

correction (p<0.05, FDR). Note the qualitative similarities to knowledge structure alignment-to-

class results in medial cortical structures (Fig. 5C). LH, left hemisphere, RH, right hemisphere, 

Ant., anterior, Post., posterior. 
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Supplementary Tables 

 

 
Supplementary Table 1. Prediction of exam score from alignment-to-class during lectures 

using alternative alignment-to-class measures. Left and middle columns, correlation of exam 

score and alignment-to-class computed using 10-second time bins (left) and with no binning 

(middle).  Right column, correlation of exam score with a temporal measure of alignment-to-

class (Inter-Subject Correlation, ISC). Results are shown in DMN ROIs as well as in control 

regions (text shaded in gray) in sensory cortex (visual, intracalcarine cortex; auditory, Heschl's 

gyrus) and subcortex (amygdala). Asterisks denote significant correlation (one-sided 

permutation test, p<0.05, FDR corrected across ROIs). * p<0.05, ** p<0.01, n.s., not significant.  
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Supplementary Table 2. Alignment-to-experts is positively correlated with alignment-to-

class in response length control. Correlation between alignment-to-class (controlled for 

response length) and alignment-to-experts (controlled for response length) during the exam is 

shown. Results are shown in DMN ROIs as well as in control regions (text shaded in gray) in 

sensory cortex (visual, intracalcarine cortex; auditory, Heschl's gyrus) and in subcortex 

(amygdala). Asterisks denote significant correlation (one-sided permutation test, p<0.05, FDR 

corrected across ROIs). * p<0.05, ** p<0.01, n.s., not significant. 
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Supplementary Text 

Exam questions 

 

1. What is recursion? 

2. Suppose that you have written a recursive method in Java. When you run a program 

that calls this method, the program crashes with a StackOverflowError. What is the most 

likely bug in your method? 

3. What is the difference between a static variable and an instance variable in Java? 

(Instance variables are sometimes called state variables, if that terminology is more 

familiar to you.) 

4. What are generics in Java?  

(If you aren't familiar with the term, consider the two instances of String in the 

declaration List<String> s = new ArrayList<String>();).  

Why do we design classes to be parameterized in this way? 

5. What are the restrictions on the types that can be used as a generic parameter? Why 

does this restriction exist? 

6. What is a linked list? What differentiates the variations of singly-linked, doubly-linked, 

and circular linked lists? 

7. What is the time complexity (for instance, in  

big-O or ~ notation) for inserting an arbitrary item into a conventional linked list? 

8. What are the key differences between stacks and queues? 

9. What is a balanced binary search tree? (It may be easiest to answer this question one 

word at a time, backwards: what is a tree, what is a search tree, etc.) 

10. Are there computational problems that are impossible to write an algorithm to solve? If 

so, describe one or more of them. If not, explain why. 

11. Briefly describe the open problem "Does P = NP?". 

12. What is a deterministic finite automaton (DFA)? (You might have seen this structure 

called finite state machine (FSM)). How is this structure related to a regular expression 

(RE)? 

13. What is a Turing machine? What is the key difference between a Turing machine and a 

DFA? 

14. What is 2's complement? What decimal integer value is represented in 8-bit 2's 

complement by 11100011 ? 

15. Suppose you have a bitstring x. What integer value results when you XOR  x  with 

itself? (XOR is the operation ^ in Java.) 

16. Briefly describe a NAND gate or circuit. It may be useful to describe the truth table for a 

binary NAND operation. 


