Supplementary Figure 1: LXRα S196A increases Clec4f staining in livers without affecting lipid accumulation, or genes expression

(A) Representative hematoxylin and eosin image of liver sections from LXR α WT and LXR α S196A (scale bar = 400 µm), and (B) quantification of lipid droplets in liver sections. (C-D) Expression of cholesterol homeostasis genes by qPCR: cholesterol secretion (*Abca1, Abcg1*), cholesterol excretion (*Abcg5, Abcg8*), fatty acid metabolism (*Srebp1c*), fatty acid uptake (*Cd36*), cholesterol biosynthesis (*Hmgcor*), and lipoproteins uptake (*VldIr, LdIr*), and intestinal cholesterol uptake (*Npc1I1*) in (C) the liver, and (D) the intestine. (E-F) Representative image of Clec4f staining, and quantification of positive cells in liver sections (scale bars: 200µm and 50µm). Data are expressed as mean \pm SD (n=9 for lipid droplet quantification in liver, n=5 for gene expression, and n=7 for Clec4f quantification) and obtained from independent samples. T test; *P<0.05 and **P<0.01.

Supplementary Figure 2: LXRα S196A shows decreased TG in the liver, and full body LXRα S196A increased VLDL secretion and plasma TG clearance

(A) Measurements of TG and total cholesterol from the livers of the $Ldlr^{/-}$ LXR α WT and S196A mice on western diet for 16 weeks. (B-C) VLDL secretion and intestinal metabolism in LXR α WT and LXR α S196A mice on chow diet. (B) VLDL secretion was measured in fasted mice (4 h) by monitoring plasma TG following oral gavage of olive oil at the indicated time points. (C) Intestinal metabolism measured by TG plasma on overnight fasted mice and treated with the LPL inhibitor poloxamer 407 to inhibits lipolysis of TG-rich lipoprotein particles. Data are expressed as mean \pm SD (n=6) and obtained from independent samples. T test; *P<0.05 and **P<0.01.

Supplementary Figure 3: Effect of LXRα S196A on aortic plaque characteristics

(A) Lipid content (Oil Red O), (B) total plaque area quantification, (C) area of macrophages (CD68⁺), and (D) number of cells per section expressing SMaA (smooth muscle cell actin marker) were measured after staining of aortic sections. Data are expressed as mean \pm SD (n=13 per group, except for ORO, and SMaA n=10) and obtained from independent samples. T test; *P<0.05.

Supplementary Figure 4: Effect of LXRα S196A on monocytes and neutrophils in the blood, and in the peritoneal cavity under acute inflammation

(A) Total number of white blood cells in the circulation (WBC) (WT;8.375±2.954, S196A: 8.642±3.600 10⁹ cells/L, p=0.8380). (B) Gating strategy for monocytes and neutrophils quantification by flow cytometry. (C) Ly6C^{low} (WT; 8.0±6.3, S196A: 9.4±5.7 %, p=0.5640) and Ly6C^{high} monocytes (WT:3.7±1.9, S196A: 4.3±2.7 % of total CD45⁺ cells, p=0.5237), and (D) neutrophils (WT:6.3±5.7, S196A: 8.3±3.0 % of total CD45⁺ cells, p=0.4564) were measured by flow cytometry. (E-F) Full body LXR α S196A and WT mice on chow diet were injected intraperitoneally with zymosan A, and (E) monocytes and (F) neutrophils recruitment was measured at 4, 25, and 48 hours. Data are expressed as mean ± SD (n=13 per group, or n=3 for zymosan A-injected monocytes and neutrophils recruitment) and obtained from independent samples. T test; *P<0.05.

Supplementary Figure 5: Flow cytometry of immune cells in atherosclerotic plaque

(A) Gating strategy for immune cells population from aortic digestions of atherosclerotic plaque from *Ldlr-/-* mice reconstituted with WT and S196A bone marrow and fed a western diet for 16 weeks.

(A) Quantification of immune cells by flow cytometry in digested aortas from WT and S196A mice. Total immune cells (CD45⁺ WT:34.94±14.02, S196A:31.12± 10.32%, p=0.6370), dendritic cells (DC WT:6.12±1.48, S196A:3.90±1.88 %, p=0.0723), B cells (Bc WT:2.92±1.15, S196A:3.26±0.90 %, p=0.6198), total macrophages (F4/80⁺ WT:64.12±10.35, S196A:64.46± 5.76 %, p=0.9504), M1-like macrophages (CD11b⁺CD11c⁺ WT:7.43±0.83, S196A:5.58±1.28 %, p=0.0269), M2-like macrophages (CD11b+CD11c- WT:84.60±1.83, S196A:84.10±4.17 %, p=0.8122), total T cells (CD3⁺ WT:38.28±3.90, S196A:37.86±3.56 %, p=0.8631), Killer T cells (CD8⁺ WT:11.55±9.09, S196A:9.35±8.08 %, p=0.6965), CD4⁺ T cells (CD4⁺ WT:9.75±2.82, S196A:9.07±0.50 %, p=0.6144), Treg (CD4+C25+ WT:67.30±11.27, S196A:62.58±4.77 %, p=0.4135), and Helper T cells (CD4+CD25- WT:22.17±9.24, S196A:24.92±4.45 %, p=0.5659) populations. (B) Pie chart representing the percentage of different cell population of immune cells in the plaque. Data are expressed as mean \pm SD (n=5 per group) and obtained from independent samples. T test; *P<0.05.

Supplementary Figure 6: Effects of LXRα S196A bone marrow transplantation

Supplementary Figure 7: Heatmap of plaque CD68⁺ and T cells.

В

Gene	Log(FC)	Gene	Log(FC)
Cox7a1	8.54	Atp5j2	1.09
Cox8b	6.8	Atp5b	1.08
Cox6a2	6.78	Cox7a2	1.07
Cpt1b	4.8	Atp5c1	1.07
Mapk10	4.09	Ndufb4	1.04
Ndufa5	1.84	Ndufs3	1.04
Atp5g1	1.5	Atp5a1	0.95
Atp5o	1.42	Pink1	0.92
Ndufb9	1.41	Prdx3	0.91
Ndufa4	1.41	Atp5h	0.9
Aco2	1.38	Ndufs1	0.89
Cox7b	1.29	Cox4i1	0.88
Pdha1	1.29	Ndufa13	0.87
Uqcrfs1	1.25	Atp5g3	0.86
Cycs	1.2	Vdac1	0.85
Ndufb11	1.18	Ndufs2	0.83
Cox6c	1.17	Atp5I	0.62
Atp5j	1.11	Ogdh	0.62

(A) Heatmap of plaque CD68⁺ cells captured by LCM from LXR α WT and S196A by RNA seq: 570 significant genes; LogFC> 0.6; pvalue<0.05). (B) Genes and fold change of upregulated mitochondrial function-associated genes in CD68⁺ RNA seq. Genes in bold are involved in mitochondrial oxidative phosphorylation pathway. (C) Heatmap of plaque T cells collected by flow cytometry from LXR α WT and S196A by RNA seq: 3970 significant genes; LogFC> 1; FDR<0.05).

Supplementary Figure 8: Effects of LXR α S196A bone marrow transplantation on diet induced obesity

(A) Mouse body weight, (B) food intake, (C) bone mineral density and lean tissue quantification by DEXA scan were determined from *Ldlr^{-/-}* mice reconstituted with bone marrow from WT and S196A mice. (D) Representative F4/80 staining images (scale bar = 400 μ m), (E) quantification of F4/80 staining and (F) of crown-like structures of pWAT sections. Data are expressed as mean \pm SD (n=13 per group except for F4/80 staining and crown-like structure n=12) and obtained from independent samples. T test; *P<0.05.

(A) Gene expression of adipocyte differentiation marker in pWAT adipocytes: *Adipoq* (Adiponectin), *Fabp4* (Fatty acid binding protein 4) and *Plin2* (Perilipin2), and (B) lipolysis activators: *Atgl* (Adipose triglyceride lipase) and *Hsl* (Hormone-sensitive lipase). (C) pWAT protein expression assessed by western blot and quantification of the adipocyte differentiation markers. (D) Plasma adiponectin level. Protein expression of UCP1 in brown adipose tissue (BAT) by (E) western blot, and (F) immunohistochemistry. Representative image of hematoxylin and eosin and UCP1 staining in BAT (scale bars: 400µm). Data are expressed as mean \pm SD (n=6 for gene expression and BAT protein expression, n=5 for pWAT protein expression, and n=7 for adiponectin level) and obtained from independent samples. T test; *P<0.05.

Supplementary Figure 10: LXRα S196A does not affect activity or energy expenditure but increases the respiratory exchange ratio in the dark cycle

(A) Activity, (B) energy expenditure (EE), and (C) respiratory exchange ratio (RER) in LXR α WT or S196A fed a western diet for 16 weeks. Data are expressed as mean \pm SD (n=4) and obtained from independent samples. T test; *P<0.05.

(A) Gating strategy for immune cells population in pWAT from mice expressing WT or S196A from the bone marrow.

Supplementary Figure 12: Effects of LXRa S196A on immune cells in adipose

(A) Quantification of immune cells by flow cytometry in digested pWAT from Ldlr¹⁻ mice reconstituted bone marrow from WT and S196A mice. Total immune cells (CD45+ WT:70.50±6.96, S196A:68.07±6.15 %, p=0.4300), dendritic cells (DC WT:20.49±6.46, S196A:18.88±6.75%, p=0.6038), B cells (Bc WT:15.49±3.55, S196A:13.94±4.672%, p=0.4310), total T cells (CD3+ WT:41.00±9.24, S196A:44.02±11.04%, p=0.5292), Killer T (CD8⁺ WT:6.21±5.93, S196A:3.90±3.07%, p=0.2947), CD4⁺ T cells (CD4⁺ WT:49.01±23.84, cells S196A:57.58±24.23%, p=0.4487), Treg (CD4+C25+ WT:61.02±18.13, S196A:67.57±10.41%, p=0.3414), and Helper T cells (CD4+CD25- WT:35.38±18.07, S196A:28.83±9.92 %, p=0.3343) populations. (B) Pie chart representing the percentage of different populations of immune cells in the pWAT. Data are expressed as mean \pm SD (n=9/10 per group) and obtained from independent samples. T test.

RNA seq analysis of pWAT T cells sorted by flow cytometry from LXR α S196A vs WT mice. (A) Heatmap of pWAT FBC cells from LXR α WT and S196A (RNA seq: 798 significant genes; LogFC > 1, FDR < 0.05). (B) Heatmap of pWAT FB cells from LXR α WT and S196A (RNA seq: 410 significant genes; LogFC > 1, FDR < 0.05). (C) Heatmap of pWAT T cells from LXR α WT and S196A (RNA seq: 1246 significant genes; LogFC > 1, FDR < 0.05). (D) Number of genes regulated in pWAT T cells by LXR α S196A versus WT (LogFC > 1, FDR < 0.05). (E) Enriched pathways in pWAT Y cells in S196A after DGE analysis with IPA. (F) Transcriptional regulators controlling the upregulated or downregulated genes in pWAT T cells.

Supplementary Figure 14: Steady state blood glucose, insulin and glucagon levels in LXR α WT and S196A mice.

(A) Steady-state blood glucose levels from WT and S196A mice on western diet for 16 weeks was determined. Steady state (B) insulin and (C) glucagon levels were also determined from the same cohort of mice as the blood glucose measurements. Data are expressed as mean \pm SD (n=14 for glucose and insulin, and n=8 for glucagon) and obtained from independent samples. T test; **P<0.01.

Supplementary Figure 15: Model for T cell-macrophage cross talk in the plaque of S196A mice

Mice expressing WT LXRα results in macrophage proliferation and atherosclerosis. In bone marrow transplant of S196A, where both innate and adaptive immune cells express S196A, we suggest that signals from T cells, such as IL4 from Th2 cells, are increased in S196A compared to WT, which can antagonize macrophage proliferation, promote a less inflammatory gene expression and metabolic phenotype in the plaque, thereby attenuating atherosclerosis. In the monocyte specific S196A mouse model in Gage *et al.*¹⁷, the increased expression of *II4* from T cells would not occur because it expresses WT LXRα rather than LXRα S196A, and macrophage proliferation would not be restrained, therefore intensifying atherosclerosis. We have not included dendritic cells or B cells for simplicity. We posit similar effects could also be occurring in T cells in VAT that express LXRα S196A to restrain inflammatory macrophage accumulation.

Supplementary Figure 16: Complete western blots from Supplementary Figure 9

A Supplementary Figure 9C - western blot pWAT

B Supplementary Figure 9E - western blot BAT

Supplementary Table 1: Genes within IPA pathways in LXR α S196A versus WT from plaque CD68+ cells

Mito. Function		
Gene	LogFC	
Cox7a1	8.54	
Cox8b	6.80	
Cox6a2	6.78	
Cpt1b	4.80	
Mapk10	4.09	
Ndufa5	1.84	
Atp5g1	1.50	
Atp5o	1.42	
Ndufb9	1.41	
Ndufa4	1.41	
Aco2	1.38	
Cox7b	1.29	
Pdha1	1.29	
Ugcrfs1	1.25	
Cycs	1.20	
Ndufb11	1.18	
Сох6с	1.17	
Atp5j	1.11	
Atp5j2	1.09	
Atp5b	1.08	
Cox7a2	1.07	
Atp5c1	1.07	
Ndufb4	1.04	
Ndufs3	1.04	
Atp5a1	0.95	
Pink1	0.92	
Prdx3	0.91	
Atp5h	0.90	
Ndufs1	0.89	
Cox4i1	0.88	
Ndufa13	0.87	
Atp5g3	0.86	
Vdac1	0.85	
Ndufs2	0.83	
Atp5l	0.62	
Ogdh	0.62	

		_
Oxphos		
Gene	LogFC	
Cox7a1		8.54
Cox8b		6.80
Cox6a2		6.78
Ndufa5		1.84
Atp5g1		1.50
Atp5o		1.42
Ndufb9		1.41
Ndufa4		1.41
Cox7b		1.29
Uqcrfs1		1.25
Cycs		1.20
Ndufb11		1.18
Cox6c		1.17
Atp5j		1.11
Atp5j2		1.09
Atp5b		1.08
Cox7a2		1.07
Atp5c1		1.07
Ndufb4		1.04
Ndufs3		1.04
Atp5a1		0.95
Atp5h		0.90
Ndufs1		0.89
Cox4i1		0.88
Ndufa13		0.87
Atp5g3		0.86
Ndufs2		0.83
Atp5l		0.62

Sirtuin Signaling		
Gene	LogFC	
Pgam2	6.25	
Ppargc1a	5.21	
Ppara	4.82	
Cpt1b	4.80	
Rarb	4.37	
Slc25a4	2.45	
Ndufa5	1.84	
Idh2	1.65	
Pdk1	1.56	
Atp5g1	1.50	
Ndufb9	1.41	
Ndufa4	1.41	
Pdha1	1.29	
Uqcrfs1	1.25	
Ndufb11	1.18	
Atp5j	1.11	
Atp5b	1.08	
Atp5c1	1.07	
Ndufb4	1.04	
Ndufs3	1.04	
Acadl	1.00	
Got2	0.97	
Atp5a1	0.95	
Ndufs1	0.89	
Ndufa13	0.87	
Vdac1	0.85	
Ndufs2	0.83	

TCA Cycle	
Gene	LogFC
Mdh1	1.69
Aco2	1.38
Idh3a	1.30
Fh1	1.10
Mdh2	1.02
Cs	0.74
Ogdh	0.62

β-adrenergic Signaling		
Gene	LogFC	
Ppp1r3a	6.19	
Ryr2	5.70	
Cacna1s	5.47	
Ppp1r3c	5.28	
Adcy1	4.56	
Ppp1r14c	4.18	
Akap6	3.47	
Pde1c	2.70	
Atp2a2	2.39	
Ppp2r3a	1.70	
Prkag2	1.06	
Slc8a1	0.75	

PKA Signaling		
Gene	LogFC	
Myl7	13.56	
Myl1	11.60	
Myl4	10.06	
Mylk3	8.89	
Ttn	7.53	
Tnni3	7.45	
Ppp1r3a	6.19	
Ryr2	5.70	
Pygm	5.34	
Ppp1r3c	5.28	
Myl3	4.75	
Adcy1	4.56	
Ryr3	4.47	
Ppp1r14c	4.18	
Akap6	3.47	
Pde1c	2.70	
Pygb	1.09	
Prkag2	1.06	

NFAT in Immune cells		
Gene LogFC		
Cd79b	-3.26	
Cd86	-1.68	
Lcp2	-0.99	
H2-Aa	-0.88	
Pik3cg	-0.84	
H2-Eb1	-0.83	
Nfatc2	-0.79	
Lyn	-0.77	
H2-Ab1	-0.76	

Antigen Presentation		
Gene	LogFC	
Gm11127	-2.02	
H2-Aa	-0.88	
H2-Eb1	-0.83	
Cd74	-0.83	
H2-Ab1	-0.76	

Leukocyte		
Extra	vasation	
Gene	LogFC	
Nox1	-5.76	
Itgal	-1.98	
Prkcb	-1.93	
Rasgrp1	-1.83	
Arhgap4	-1.50	
Rac2	-1.30	
Spn	-1.24	
Pik3cg	-0.84	
Ncf1	-0.77	
Itaam	-0.72	

FCy Recep-Med Phag		
Gene	LogFC	
Prkcb	-1.93	
Rac2	-1.30	
Fyb	-1.28	
Pld4	-1.14	
Lcp2	-0.99	
Hck	-0.97	
Pik3cg	-0.84	
Lyn	-0.77	
Ncf1	-0.77	

Neuro-Inflammation		
Sig		
Gene	LogFC	
Nox1	-5.76	
Cxcl10	-4.52	
1110	-3.52	
Gm11127	-2.02	
Grin1	-1.91	
Cd86	-1.68	
Tlr1	-1.36	
Irak3	-1.18	
Tlr9	-1.04	
H2-Aa	-0.88	
Pik3cg	-0.84	
H2-Eb1	-0.83	
Nfatc2	-0.79	
Ncf1	-0.77	
H2-Ab1	-0.76	
Birc3	-0.62	

Comm Btw Immune		
	cells	
Gene	LogFC	
Cxcl10	-4.52	
1110	-3.52	
Cd79b	-3.26	
Gm11127	-2.02	
lghm	-2.00	
Cd86	-1.68	
Tlr1	-1.36	
Ccl3	-1.18	
Ccl9	-1.11	
Tlr9	-1.04	
Cd83	-1.00	
H2-Eb1	-0.83	

Supplementary Table 2: Genes within IPA pathways in LXR α S196A versus WT from plaque T cells

Cholesterol Bios. P.	
Gene	LogFC
Acat3	4.10
ldi2	3.07
Sqle	1.73
Tm7sf2	1.51
Msmo1	1.19
Ggps1	1.14
Acat1	1 03

Apelin Liver S.		
Gene	LogFC	
Col18a1	4.3	9
Pdgfrb	4.2	9
Col1a2	3.6	1
Aplnr	2.5	5
Col3a1	2.1	3
Col1a1	1.7	2

GP6	GP6 Signaling	
Gene	LogFC	
Col5a2	5.76	
Lama2	4.87	
Col18a1	4.39	
Col6a1	3.94	
Col1a2	3.61	
Col4a1	3.60	
Lama4	2.85	
Col4a6	2.27	
Col15a1	2.16	
Col3a1	2.13	
Col1a1	1.72	
Lamb3	1.23	
Rasgrp2	1.11	

Wnt/β-catenin Sign.	
Gene	LogFC
Wnt10b	6.45
Sox6	5.43
Wnt3	5.23
Hnf1a	5.04
Wnt16	4.86
Sox17	3.74
Sox9	3.46
Tgfbr3	2.71
Tgfb2	2.54
Sox1	2.30
Cdh5	2.29
Rarb	2.03
Fzd1	1.87
Ppp2r3a	1.83
Lef1	1.80
Ppp2r5b	1.68
Gia1	1.21

ILK Signaling	
Gene	LogFC
Myh11	4.67
Myh14	3.82
Vegfc	3.41
ims2	3.33
Myl9	2.96
-blim1	2.63
Rac3	2.40
Fermt2	2.08
Rhoj	2.07
Snai2	1.99
Ppp2r3a	1.83
_ef1	1.80
Ppp2r5b	1.68
Rps6ka5	1.62
Actn2	1.53
Actn1	1.48
Casp3	1.28
Rnd1	1.03

Reg. EMT Transition	
Gene	LogFC
Wnt10b	6.45
Wnt3	5.23
Hnf1a	5.04
Wnt16	4.86
Lox	2.91
Aph1a	2.02
Snai2	1.99
Fzd1	1.87
Lef1	1.80
Brca1	1.67

Gas Signaling	
Gene	LogFC
Gng11	-6.58
Cngb3	-6.21
Prkar1b	-6.06
Pth1r	-5.49
Rapgef3	-5.37
Adcy5	-5.37
Creb3l4	-5.20
Creb3l3	-5.13
Chrm3	-4.45
Gnb3	-4.00
Adora2a	-2.77
Ptgir	-2.54
Gnb5	-2.05
Adcy9	-2.00
Ryr1	-1.43
Prkaca	-1.29
Creb3	-1.07
Mapk3	-1.04

Axonai GL	lidance Sign
Gene	LogFC
Etna2	-8.2
Pagra	-7.7
Adamts13	-7.3
Gng11	-6.5
Adam21	-6.4
Prkar1b	-6.0
Wnt9a	-6.0
Adamdec1	-5.9
Myl2	-5.8
Erbb2	-5.8
Mmp2	-5.8
Plxnb3	-5.7
Rhod	-5.6
Opn1sw	-5.5
Bmp10	-5.4
MvI7	-5 3
Pik3r3	
Mulch	-5.2
	-5.1
Adam30	-4.9
Gm4/8/	-4.7
Mmp27	-4.4
Mmp28	-4.4
Lrrc4c	-4.3
Mmp23	-4.2
Mmp20	-4.2
Wnt8b	-4.0
Gnb3	-4.0
Prkcz	-3.8
Prkcg	-3.7
Adam32	-3.7
Mmp8	-3.6
Ablim2	-3.3
Fzd4	-3.1
Kif7	-2.7
Pik3r2	-2.7
Unc5b	-2.6
Ablim3	-2.5
Sema6b	-2.2
Rgs3	-2.1
Pdgfa	-2.1
Ptch1	-2.1
Glis2	_2.1
Gnb5	-2.0
Gna15	-1 9
Pik3c3	_1.0
Sema6d	_1.5
Chmn12	-1.0
Сппрта	-1.0
Brac	-1.5
rids Crkl	-1.4
	-1.3
KIC1	-1.3
Prkaca	-1.2
Limk2	-1.2
Sufu	-1.0
ltsn1	-1.0
Mapk3	-1.0
Mmp14	-1.0

Glutathione-Med.	
	Detox
Gene	LogFC
Gstm5	-7.40
Gstm4	-6.59
Gstp2	-5.43
Mgst1	-3.05
Lancl1	-1.82
Ggh	-1.18
Gsto1	-1.08
Gstz1	-1.03

Xenobiotic Met. Sign.	
Gene	LogFC
Gal3st2	-8.74
Gstm5	-7.40
Hs3st3a1	-7.23
Nos2	-6.93
Gstm4	-6.59
Gstp2	-5.43
Pik3r3	-5.28
Aldh5a1	-5.19
Hs6st2	-4.79
Prkcz	-3.88
Prkcg	-3.79
Cyp1b1	-3.05
Mgst1	-3.05
Map3k13	-3.02
Pik3r2	-2.71
Chst2	-2.69
Map3k10	-2.69
Aldh3b1	-2.58
Ugt1a7c	-2.38
Mgmt	-2.23
Camk2a	-1.97
Map2k6	-1.95
Pik3c3	-1.93
Chst1	-1.91
Aldh6a1	-1.68
Mapk7	-1.61
Hs3st4	-1.57
Abcc3	-1.54
Aip	-1.44
Ndst2	-1.43
Rras	-1.40
Fmo5	-1.37
Aldh1a2	-1.25
Camk1	-1.20
Map3k11	-1.14
Gsto1	-1.08
Mapk3	-1.04
Gstz1	-1.03
Map2k4	-1.02
Aldh9a1	-1.01

Oleate Biosynthesis	
Gene	LogFC
Ufsp1	-5.44
Fads2	-4.18
Cyb5a	-2.28
Fads1	-1.86
Aldh6a1	-1.68
Ptprt	-1.65

Gene	LogEC
Nos2	-6.9
Gng11	-6.5
Prkar1h	-6.0
Wnt9a	-6.0
Mmp2	-5.8
Ptger3	-5.7
Phod	-5.6
AdovE	-5.0
Dikara	-5.3
Dhau	-5.2
KIIOV	-5.2
Mmp29	-4.4
Marin 22	-4.4
Mmp23	-4.2
Winip20	-4.2
Cabo	-4.0
	-4.0
маркто	-3.8
Mmp8	-3.6
11r12	-3.5
FZCI4	-3.1
lir6	-2.9
	-2.7
Gnb5	-2.0
Аасуя	-2.0
	-1.9
PIK3C3	-1.9
Nimp19	-1.5
	-1.4
ICT/IZ	-1.2
riKdLd	-1.2
Casha Bhota	-1.1
	-1.1
Tafe	-1.1
Egir Smod 2	-1.0
	-1.0
11055 Marek 2	-1.0
иаркз	-1.0
ічар2к4	-1.0
Mmp14	-1.0

Supplementary Table 3: Genes within IPA pathways in LXR α S196A versus WT from pWAT FBC

Glutamate	
Degradation	
Gene	LogFC
Abat	2.21
Suclg2	1.61

Glutathione Redox R.	
Gene	LogFC
Gpx5	7.24
Gstp-ps	5.88
Gpx2	4.06

Apelin Adipocyte Sign.		
Gene	LogFC	
Gpx5	7.24	
Gstp-ps	5.88	
Gpx2	4.06	
Mapk4	2.76	
Adcv6	2.14	

Matrix Metallop. Inh.		
Gene	LogFC	
Mmp1a	5.96	
Mmp28	3.39	
Mmp15	1.34	
Mmp28 Mmp15		

GABA Recept. Sign.		
Gene	LogFC	
Abat	2.21	
Adcy6	2.14	
Cacna1c	1.78	
(cnq3	1.16	

Lip./Lip. Rafts in Influ.	
Gene	LogFC
Ifng	4.38
Ifnk	3.90

Endothelin-1 Sign.	
Gene	LogFC
Pla2g2e	-5.97
Gucy2c	-3.90
Gnai1	-2.94
Abhd3	-2.75
Casq1	-2.67
Pla2r1	-1.01

Myc-Med. Apoptosis	
Gene	LogFC
Fasl	-4.96
Cdkn2a	-4.58
Prkag1	-1.07

Wnt/β-catenin Sign.	
Gene	LogFC
Hnf1a	-5.86
Cdkn2a	-4.58
Wnt5a	-2.28
Ppm1l	-1.67
Lrp5	-1.06
Ppard	-1.02

Fatty Acid Oxidation	
Gene	LogFC
Bco2	-1.85
Aldh3b3	-1.74

Atherosclerosis Sign.	
Gene	LogFC
Pla2g2e	-5.9
Clu	-4.1
Alox15	-3.8
Abhd3	-2.7
Apom	-2.4
Pla2r1	-1.0

Eicosanoid Signaling	
Gene	LogFC
Pla2g2e	-5.97
Ptgis	-5.69
Alox15	-3.86
Abhd3	-2.75
Pla2r1	-1.01

Supplementary Table 4: Genes within IPA pathways in LXR α S196A versus WT from pWAT FB

Hematopoiesis fr. PSC	
Gene	LogFC
115	5.80
Csf2	3.66
ll12b	3.15
Cd3g	1.77

Hemato	poiesis fr. MSC
Gene	LogFC
115	5.80
Csf2	3.66

Cytokine Prod. in Ma	
Gene	LogFC
Csf2	3.66
ll12b	3.15

Glycolysis		
iene	LogFC	
ldob		4.43
no4		1.18

Gluconeogenesis		
Gene	LogFC	
Aldob	4.43	
Eno4	1.18	

Pyruvate	
Fermentation	
Gene	LogFC
Ldhc	4.53

PI3K/AKT	
Gene	LogFC
ltga3	-2.94
ll21r	-1.41
Il2rg	-1.11
Ikbke	-1.07

IL7 Signaling	
Gene	LogFC
Dntt	-5.87
lghg2c	-5.59
Il2rg	-1.11

Mol. Mech. of Cancer	
Gene	LogFC
Wnt8b	-3.65
Prkar1b	-3.03
Itga3	-2.94
Smad9	-2.35
Wnt5a	-2.02
Bmp8b	-1.90
E2f8	-1.22

Hepatic Fibrosis Sign.	
Gene	LogFC
Wnt8b	-3.65
Prkar1b	-3.03
Itga3	-2.94
Ednra	-2.52
Spp1	-2.39
Wnt5a	-2.02
Ikbke	-1.07

NANOG in ESC	
Pluripot.	
Gene	LogFC
Wnt8b	-3.65
Smad9	-2.35
Wnt5a	-2.02
Bmp8b	-1.90

Primary Immunodef. S.	
Gene	LogFC
Cd19	-6.10
Ada	-2.18
ll2rg	-1.11

Supplementary Table 5: Genes within IPA pathways in LXR α S196A versus WT from pWAT T cells

Th1 and Th2		
Act	ivation	
Gene	LogFC	
114	3.54	
Ccr3	3.08	
Acvr1c	2.98	
Klrc1	2.16	
Cd40lg	2.07	
Icos	1.58	
ll2rb	1.40	
Cd3g	1.40	
Ifng	1.38	
Cd28	1.30	
Cd3d	1.28	
ll18r1	1.25	

Th1		
Gene	LOGIC	
114		3.5
Klrc1		2.1
Cd40lg		2.0
lcos		1.5
Cd3g		1.4
Ifng		1.3
Cd28		1.3
Cd3d		1.2
ll18r1		1.2

Th2		
Gene	LogFC	
114		3.54
Ccr3		3.08
Acvr1c		2.98
lcos		1.58
Il2rb		1.40
Cd3g		1.40
Ifng		1.38
Cd28		1.30
Cd3d		1.28

Crosstalk btw DC & NKC		
Gene	LogFC	
114	3.54	
Csf2	2.79	
Cd40lg	2.07	
Camk2b	2.03	
Il2rb	1.40	
Ifng	1.38	
Cd28	1.30	

T Helper Cell Different.		
Gene LogFC		
114	3.54	
Cd40lg	2.07	
lcos	1.58	
Ifng	1.38	
Cd28	1.30	
ll18r1	1.25	

iCos iCosL Sign. In T H.		
Gene	LogFC	
Cd40lg	2.07	
Camk2b	2.03	
lcos	1.58	
ll2rb	1.40	
Cd3g	1.40	
Cd28	1.30	
Cd3d	1.28	

Antigen Presentation		
Gene	LogFC	
Psmb5	-1.67	
Ciita	-1.26	
H2-		
DMb1	-1.08	
H2-Eb1	-1.06	

Atherosclerosis Sign.	
Gene	LogFC
Rbp4	-6.40
Mmp13	-2.59
Ccl12	-2.28
Lyz1	-2.20
Pdgfa	-2.18
Lpl	-1.56
Арое	-1.15
Pcyox1	-1.13

VDR/RXR Activation	
Gene	LogFC
lgfbp6	-3.17
Pdgfa	-2.18
Hr	-2.06
Vdr	-1.51
Cebpa	-1.36
Ppard	-1.27
Cd14	-1.01

FCy Rec-Med. Phagocyt.	
Gene	LogFC
Src	-2.78
Mapk3	-1.63
Fcgr3	-1.22
Ncf1	-1.21
Fgr	-1.20
Dock1	-1.17
Syk	-1.09
Hck	-1.07

LXR/RXR Activation		
Gene	LogFC	
Rbp4	-6.40	
Ccl12	-2.28	
Lyz1	-2.20	
Lpl	-1.56	
ll1rl2	-1.55	
Apoe	-1.15	
Pcyox1	-1.13	
Pltp	-1.08	
Scd1	-1.04	
Cd14	-1.01	

Complement System		
Gene	LogFC	
C6	-3.01	
C1qc	-2.07	
C5ar1	-1.93	
Cr2	-1.75	
C1qb	-1.64	
C1qa	-1.49	
C3ar1	-1.15	

Supplementary Table 6: Cytokines differentially expressed in LXR α WT versus S196A macrophages and T cells from plaque and pWAT

	Plaque CD68+ cells S196A vs WT				
Gene	logFC	logCPM	PValue	FDR	IN CYTOKINE LIST
Cxcl10	-4.5181803	6.81757319	2.87E-06	0.00145392	TRUE
1110	-3.5216461	5.94293414	0.00727541	0.58578367	TRUE
Ccl3	-1.1810085	6.74318444	0.03047074	1	TRUE

Plaque T cells S196A vs WT					
Gene	logFC	logCPM	PValue	FDR	IN CYTOKINE LIST
1127	-5.0374382	-0.1602636	1.91E-05	0.00034184	TRUE
114	5.33269845	0.96143339	2.40E-05	0.00040759	TRUE
Ccl1	-6.28282	-1.3368069	0.00026277	0.00261577	TRUE
1110	-1.2065791	5.94293414	0.00149055	0.00985684	TRUE
1113	-3.5241425	-0.8243496	0.03704799	0.10843988	TRUE

pWAT FBC S196A vs WT					
Gene	logFC	logCPM	PValue	FDR	IN CYTOKINE LIST
fng	4.37547134	3.53356936	4.37E-05	0.00406814	TRUE
Timp1	2.14935947	3.18141075	0.00517614	0.07674798	TRUE
l1a	1.79310939	4.82842474	0.01678632	0.15108412	TRUE
Ccl1	3.445453	-1.3368069	0.02049116	0.16893682	TRUE
Cxcl9	0.61220416	6.43347952	0.02863999	0.2031894	TRUE
Cxcl10	0.60291901	6.81757319	0.04435914	0.25779763	TRUE

pWAT FB S196A vs WT					
Gene	logFC	logCPM	PValue	FDR	IN CYTOKINE LIST
ll1rn	-0.6892813	7.64877318	0.01738561	0.18644874	TRUE
II13	2.67056433	-0.8243496	0.04863024	0.30770513	TRUE

pWAT T cells S196A vs WT					
Gene	logFC	logCPM	PValue	FDR	IN CYTOKINE LIST
Ccl12	-2.2827551	6.25617007	0.00018375	0.00548422	TRUE
Timp1	-2.839394	3.18141075	0.00179274	0.02606055	TRUE
Ccl3	-0.9298593	6.74318444	0.00206309	0.02866657	TRUE
114	3.54020535	0.96143339	0.0029395	0.03689565	TRUE
Ifng	1.38282339	3.53356936	0.00354547	0.04161017	TRUE
ll1rn	-0.899455	7.64877318	0.00723997	0.06576119	TRUE
Ccl4	-0.6207519	6.34774006	0.04986694	0.2099485	TRUE

* Il4 is induced in plaque and pWAT Tcells

Cyrokine gene symbols			
Human	Mouse		
IL1B	ll1b		
IL27	II27		
IFNG	lfng		
IL1A	ll1a		
TNF	Tnf		
ICAM1	lcam1		
IL6	116		
CXCL1			
CCL4	Ccl4		
CXCL2	Cxcl1		
CCL3	Ccl3		
CXCL9	Cxcl9		
CXCL10	Cxcl10		
CCL2	Ccl12		
CCL5	Ccl5		
TIMP1	Timp1		
IL4	114		
IL13	II13		
IL10	II10		
CCL1	Ccl1		
IL1RN	ll1rn		