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Supplementary Information Text 

Construction of CofactorYeast. We constructed the model CofactorYeast that accounts for 
genome-scale metabolism, translation and cofactor binding processes, which can be divided into 
the following steps: 

1. We expanded the genome-scale metabolic model of Saccharomyces cerevisiae Yeast8 
(version 8.3.5)(https://github.com/SysBioChalmers/yeast-GEM) by adding several 
metabolic, transport and exchange reactions together with gene-protein-reaction 
associations (GPRs). 

2. We split all reversible enzymatic reactions into forward and reverse reactions. 
3. We also split reactions catalyzed by isozymes, resulting in multiple identical reactions 

with various isozymes being as GPRs. 
4. We formulated translation reactions for all proteins in the model. The substrates of 

translation reactions are charged tRNA such as Ala-tRNA(Ala) while the products include 
uncharged tRNA such as tRNA(Ala) and the translated proteins. Note that the charged 
and uncharged tRNA are already metabolites in the original model Yeast8. To formulate 
translation reactions, we collected protein sequence data from the website (http://sgd-
archive.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_referen
ce_genome_R64-2-1_20150113.tgz). Note that we simplified the model by assuming that 
all proteins are translated in cytoplasm and that ribosomes do not participate in the 
process. 

5. We collected enzyme cofactors. First, we collected cofactor information i.e., cofactor type 
and copy, for all proteins (not only metabolic proteins but also others) based on various 
databases including PDBe (https://www.ebi.ac.uk/pdbe/), BRENDA (https://www.brenda-
enzymes.org/) and UniProt (https://www.uniprot.org/). Second, we manually added 
cofactor information from literatures. Third, we manually adjusted cofactor type and copy 
for homologue proteins so that they had identical cofactor information. The homologue 
proteins in yeast were downloaded from SGD website (https://www.yeastgenome.org/). 
Fourth, we excluded cofactors for some proteins since those cofactors are present as 
substrates/products in the reactions catalyzed by these proteins. 

6. We formulated cofactor binding reactions. In this study we focused on eight metal ions 
and iron compounds as enzyme cofactors and therefore only formulated cofactor binding 
reactions for them. Note that the coefficients of cofactors were determined according to 
the collected cofactor copy data. As all proteins were assumed to be synthesized in 
cytoplasm, we also assumed that cofactor binding reactions were in cytoplasm. In 
addition, we assumed that iron and iron compounds such as iron-sulfur clusters and 
heme, which are produced in mitochondrion, can directly bind on proteins in cytoplasm. 

7. We formulated enzyme formation reactions. To do so, we collected protein stoichiometry 
information from PDBe database (https://www.ebi.ac.uk/pdbe/) as well as Complex Portal 
website (https://www.ebi.ac.uk/complexportal/home). 

8. We then formulated enzyme dilution reactions, representing the dilution of enzymes to 
daughter cells during cell division. 

9. We re-formulated biomass equation of Yeast8. As we formulated dilution of all modeled 
proteins, accounting for 46% of total proteome by mass based on PAXdb database 
(https://pax-db.org/), we accordingly decreased the coefficient of protein in the biomass 
equation to 0.54, which was 1 in the original model Yeast8. In addition, we added 
unmodeled cofactor into the biomass equation to account for the cofactors binding onto 
unmodeled proteins, which could be estimated based on PAXdb abundances of the 
unmodeled proteins and cofactor copy numbers of those proteins. 

10. We added a dummy protein in the model to fill up the total proteome in cases of low 
metabolic fluxes, which has average amino acid and cofactor composition. 

11. To implement the parameter θ, we duplicated metabolic reactions catalyzed by cofactor-
containing enzymes but marked the reaction IDs with “_withoutcofactor”, and then 
formulated synthesis and dilution reactions for the enzyme without adding cofactors. This 
enables another parallel coupling constraint for the enzymes losing cofactors. 

12. We imposed a fixed constraint of 0.2116 g/gCDW, i.e., 46%*0.46 g/gCDW, on modeled 
proteome, in which 46% is the fraction of modeled proteome mass in the total proteome 

https://github.com/SysBioChalmers/yeast-GEM
http://sgd-archive.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
http://sgd-archive.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
http://sgd-archive.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_reference_genome_R64-2-1_20150113.tgz
https://www.ebi.ac.uk/pdbe/
https://www.brenda-enzymes.org/
https://www.brenda-enzymes.org/
https://www.uniprot.org/
https://www.yeastgenome.org/
https://www.ebi.ac.uk/pdbe/
https://www.ebi.ac.uk/complexportal/home
https://pax-db.org/
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mass and 0.46 is the fraction of protein in biomass with the unit of g/gCDW. In addition, 
we imposed an upper bound of 0.1 g/gCDW on the mitochondrial proteome with the latter 
being approximately estimated based on published data (1–3). 

13. The turnover rate is essential in coupling constraints. We downloaded a dataset of 
turnover rates of all organisms from BRENDA database, which excluded mutant enzymes 
and included only the maximal value in case that multiple values are available for a given 
substrate and organism. To assign turnover rate for a metabolic reaction, we used the EC 
number of the reaction to search in the dataset. Note that we selected the one with the 
highest confidence score (CS) when multiple values are available. We used the following 
criteria to determine CS. a) If the turnover rate was manually assigned then CS was 5; b) 
If both substrate and organism were matched in the dataset then CS was 4, and we 
assigned the maximal value if multiple values are available; c) If only organism was 
matched but not substrate then CS was 3, and we used the median of all turnover rates 
within the organism. d) If only substrate was matched but not organism then CS was 2, 
and we used the median of all turnover rates within matched substrate. e) If neither 
organism nor substrate was matched, we then used the median of all available values of 
within the EC number and determine CS to be 1; f) If no turnover rate was available for 
the EC number then CS was 0, and we assumed the turnover rate to be median of all 
assigned values. Note that the turnover rate should be adjusted based on the protein 
stoichiometry information, e.g., the turnover rate should time 2 for a dimer enzyme, and 
that the minimal turnover rate among subunits was selected for a complex when its 
subunits had various turnover rates. The turnover rates used in the model are available at 
https://github.com/SysBioChalmers/CofactorYeast/blob/master/kcat.xlsx.  

 
Simulations of CofactorYeast. We performed different types of simulations with CofactorYeast, 
including a) growth on eight carbon sources, b) the Crabtree effect, c) growth on different carbon, 
nitrogen, phosphorus and sulfur sources, d) reduced availability of metal irons, nutrients and 
oxygen, and e) iron deficiency. Note that in some of the simulations, we should find the maximal 
growth rate, which is however an input of the linear programming as the growth rate has been 
integrated into coupling constraints. This can be addressed by a binary search workflow, which 
can search for the maximal growth rate that leads to a feasible solution. Note that we used 
Soplex 4.0.0 (https://soplex.zib.de/) to solve linear programming in this study. All the codes of 
simulations are available at https://github.com/SysBioChalmers/CofactorYeast. 
 
In addition, we performed sensitivity analysis of iron-containing proteins and reduced cost 
analysis of amino acid uptake. Regarding the former, we performed the simulations by fixing the 
iron uptake rate at 50% of the reference value and using the θ value of 0.5, and meanwhile 
removed iron and iron compounds from cofactor binding reactions for iron-containing proteins one 
by one. Regarding the latter, we performed the simulations for both limited (50%) and unlimited 
(100%) iron uptake rate with the θ value of 0.5. In each simulation, we set the uptake rate of an 
amino acid at 0.01 mmol/gCDW/h and searched for the maximal growth rate. The reduced cost 
value can be calculated as (μi - μref)/0.01, in which μi is the simulated maximal growth rate with 
feeding the amino acid while μref is the one without feeding any amino acid. 
 
Simulations of p-HCA production. To investigate in silico production of p-HCA in this study, we 
expanded CofactorYeast to account for p-HCA biosynthesis and then performed simulations with 
the expanded model. 
 
To expand CofactorYeast, we collected metabolic reactions and enzyme information for the p-
HCA biosynthesis pathways based on the original study (4). We then formulated translation 
reactions and cofactor binding reactions for newly added enzymes based on protein sequence 
and cofactor information, which were collected from UniProt and PDBe databases as well as the 
original study (4). We also formulated reactions in the type of “_withoutcofactor” to implement the 
parameter θ. In addition, we assigned turnover rates for all reactions based on BRENDA and 
UniProt databases. 
 

https://github.com/SysBioChalmers/CofactorYeast/blob/master/kcat.xlsx
https://soplex.zib.de/
https://github.com/SysBioChalmers/CofactorYeast
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Next, we used the expanded model to simulate the effects of growth rate and iron uptake rate on 
p-HCA production. To this end, we maximized the p-HCA production rate for combinations of 
growth rates and upper bounds of the iron uptake rate. In all simulations of p-HCA production we 
set the θ value of 0.5. The iron usage of each protein can be estimated by iron copy per protein 
times the simulated protein concentration while iron usage of a pathway was just the sum of iron 
usage of all proteins involved in the pathway. In addition, the total iron usage can be calculated 
as iron uptake rate over growth rate.  
 
Experimental validations of p-HCA production. We cultured a p-HCA producer strain under 
different levels of iron limitation conditions to test the effect of iron on p-HCA production. Strain, 
media, culture conditions and analytical methods are detailed below. 
 
S. cerevisiae QL01 (4) was used as the p-HCA producer strain in this study, and the genotype is 
MATa ura3-52 can1Δ::cas9-natNT2 TRP1 LEU2 HIS3 XII-2::(GPM1p- AtPAL2-FBA1t)+(TDH3p-
AtC4H-CYC1t)+(tHXT7p-AtATR2- pYX212t)+(PGK1p-CYB5-ADH1t). 
 
S. cerevisiae QL01 was cultivated in minimal medium (7.5 g L−1 (NH4)2SO4, 14.4 g L−1 KH2PO4, 
0.5 g L−1 MgSO4·7H2O, and 20 g L−1 glucose), 2 mL L−1 trace metal (3.0 g L−1 FeSO4·7H2O, 4.5 g 
L−1 ZnSO4·7H2O, 4.5 g L−1 CaCl2·2H2O, 0.84 g L−1 MnCl2·2H2O, 0.3 g L−1 CoCl2·6H2O, 0.3 g L−1 
CuSO4·5H2O, 0.4 g L−1 Na2MoO4·2H2O, 1.0 g L−1 H3BO3, 0.1 g L−1 KI, and 19.0 g L−1 
Na2EDTA·2H2O), and 1mL L−1 vitamin solutions (0.05 g L−1 D-biotin, 1.0 g L−1 D-pantothenic acid 
hemicalcium salt, 1.0 g L−1 thiamin–HCl, 1.0 g L−1 pyridoxin–HCl, 1.0 g L−1 nicotinic acid, 0.2 g L−1 
4-aminobenzoic acid, and 25.0 g L−1 myo-inositol) (5) supplemented with 60 mg L−1 uracil. 
 
Three biological replicates were inoculated in tubes with 2 mL minimal medium at 30 °C with 220 
rpm agitation for 24 h. Then, the precultures were inoculated to the initial OD600 of 0.02 in 20 mL 
minimal medium containing 0 µM, 50 µM or 100 µM bathophenanthrolinedisulfonic acid disodium 
salt hydrate (Sigma-Aldrich, St. Louis, MO, USA) in the 100 mL unbaffled shake-flasks. The cells 
were cultured at 30 °C with 220 rpm agitation for 72 h. During the cultured process, samples were 
collected at 12 h and 20 h for OD600 measurement and residual glucose, p-HCA detection. 1 
OD600 = 0.65 gCDW L-1 was used to estimate biomass concentration. 
 
For residual glucose detection, the collected culture samples were centrifuged at 12,000 rpm for 
10 min and filtered through 0.45 μm syringe filter. The supernatants were then quantified by high 
performance liquid chromatography (HPLC) (Thermo Fisher Scientific, CA, USA) equipped with 
an Aminex HPX-87G column (Bio-Rad, Hercules, CA, USA) and a UV and RI detector. 5 mM 
H2SO4 was used as the mobile phase and the column was kept at 45 °C with a flow rate of 0.6 
mL min−1 for 35 min. 
 
For p-HCA detection, the collected samples were thoroughly mixed with an equal volume of 
absolute ethanol (100% v/v) and centrifuged at 12,000 rpm for 10 min. The supernatants were 
used for p-HCA quantification on HPLC (Thermo Fisher Scientific, Waltham, MA, USA) equipped 
with a Discovery HS F5 150 mm x 46 mm column (particle size 5 μm) (Sigma-Aldrich, St. Louis, 
MO, USA). The HPLC analysis was carried out with 10 mM ammonium formate (pH 3.0, adjusted 
by formic acid) (Solvent A) and acetonitrile (Solvent B) as the eluents. The eluent flow rate was 
1.5 mL min−1. The gradient program started with 5% of solvent B (0–0.5 min), increased linearly 
from 5% to 60% (0.5–9.5 min), then the second linear increase from 60% to 100% (9.5–10.5 min) 
and maintained at 100% for 0.5 min (10.5–11 min), at last a linear decrease from 100% to 5% 
(11–11.5 min) and maintained at 5% for 1.5 min (11.5–13 min). p-HCA was detected by 
absorbance at 304 nm with a retention time of 6.3 min. 
 
The glucose and p-HCA concentrations were calculated from the standard curves, and both 
glucose and p-HCA standards were purchased from Sigma-Aldrich. 
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Fig. S1. Statistics of metal ions in yeast. (A) Distribution of metal ions in total proteins. The 
protein count was from https://www.ncbi.nlm.nih.gov/genome/15?genome_assembly_id=22535. 
(B) Distribution of metal ions in metabolic proteins. The number of metabolic proteins was from 
the model CofactorYeast. 

  

https://www.ncbi.nlm.nih.gov/genome/15?genome_assembly_id=22535
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Fig. S2. Simulations of CofactorYeast as a proteome-constrained model. (A) Simulated growth 
rates on various carbon sources compared with measured data (6, 7). (B) Simulated glucose 
uptake rates, ethanol production rates and oxygen uptake rates with changing growth rates 
compared with measured data (8). 
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Fig. S3. Simulated growth rates with reduced uptake rates of metal ions. 
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Fig. S4. Experiments of p-HCA production. (A) p-HCA titers, (B) OD600 and (C) residual glucose 
concentrations of samples at fermentation time of 12 h and 20 h upon different levels of iron 
limitation. Statistical analysis was performed by using Student’s t test (two-tailed; two-sample 
unequal variance; n.s.: p ≥ 0.05; *: 0.01 ≤ p < 0.05; **: 0.001 ≤ p < 0.01; ***: p < 0.001). All data 
represent the mean of n = 3 biologically independent samples and error bars show standard 
deviations. 
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Dataset S1 (separate file). Newly added metabolic reactions to Yeast8 model. 

Dataset S2 (separate file). A collected dataset of cofactors in the yeast proteome. 

Dataset S3 (separate file). Experimentally measured abundances of metal ions from different 
published studies. 

Dataset S4 (separate file). Information to expand CofactorYeast to account for biosynthesis of p-
HCA, including metabolic reactions, protein sequences, cofactor information and turnover rates. 
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