Cell Reports, Volume 32

# **Supplemental Information**

# Dysregulation of the Synaptic Cytoskeleton

### in the PFC Drives Neural Circuit Pathology,

## Leading to Social Dysfunction

Il Hwan Kim, Namsoo Kim, Sunwhi Kim, Koji Toda, Christina M. Catavero, Jamie L. Courtland, Henry H. Yin, and Scott H. Soderling



Figure S1. (Related to Figure 1). Regional rescue of ArpC3 within the frontal cortex does not affect the frequency of exploring each stimulus (social and nonsocial), but does normalize locomotor activity in *ArpC3<sup>ff</sup>*:*CaMKIICre* KO mice. (A) Schematic Illustration representing the selective re-expression of ArpC3 and GFP in *CaMKII:Cre* positive KO neurons in FC region. Inset shows the regional rescue strategy of Cre-dependent ArpC3 expression. (B) Descriptions of genotypes and treatments for each group of mice. (C) Total number of contacts with both social and non-social stimuli. (D) Mean velocities of each group. The velocity of KO mice is significantly higher than that of control (\*p<0.0001), which is normalized by rescue in the PFC (\*p=0.0005). (E) Total distances traveled of each group of mice. The distance moved is increased in KO mice (\*p<0.0001), which is normalized by rescue in the PFC (\*p=0.0005). *ArpC3<sup>ff</sup>*:*CaMKII:Cre*-GFP (KO; bilateral GFP virus; n=11 male and female mice), and *ArpC3<sup>ff</sup>*:*CaMKII:Cre*-ArpC3 (rescue; bilateral ArpC3 virus; n=15 male and female mice) mice. \*p<0.05. Data are presented as mean ±SEM.



**Figure S2. (Related to Figure 2). Validation for the specificity of the Dre-dependent Cre expression system.** (A) Schematic illustration of the Dre-dependent Cre expression using a combined Dre and split-Cre system, which is visualized by the Cre-dependent GFP expression (Flex-GFP). (B) Combinational expression of WGA-Dre and CreN-Rox-stop-Rox-CreC with Flex-GFP in HEK293T cells to test the specificity of the system. (C-G) In vivo testing of the inability of Dre alone to mediate LoxP dependent recombination. (C) Expression of tdTomato and GFP in amygdala of *Ai-14* mouse two-weeks after the injection of AAV-*WGA-Dre* and the AAV-*hSyn-GFP* (positive control for infection). (D) Autofluorescence detected in the posterior commissure (pc) around 3<sup>rd</sup> ventricle, demonstrating imaging settings could detect faint signals in the tdTomato channel. (E) Under these imaging settings tdTomato fluorescence was not detected in the BLA region in which GFP was expressed (F), demonstrating that Dre recombinase does not non-specifically recombine LoxP sites *in vivo*. (G) Overlay of the three channels; tdTomato, GFP, and DAPI (blue). (H-L) In vivo test of AAV-*CreN-Rox-stop-Rox-CreC* using mouse brain. (H) tdTomato expression in the PFC of *Ai-14* mouse two-weeks after PFC injection of AAV-*CreN-Rox-stop-Rox-CreC*, (I) PFC injection of both AAV-*CreN-Rox-stop-Rox-CreC* and AAV-*WGA-Dre*, and (J) PFC injection of

AAV-*CreN-Rox-stop-Rox-CreC* with BLA injection of AAV-*WGA-Dre*. (K) Compared to the group of coinjection with AAV-*WGA-Dre* in PFC (I), AAV-*CreN-Rox-stop-Rox-CreC* injection without AAV-*WGA-Dre* (H) produced 0.74% of tdTomato-positive cells. (L) When compared to the circuit injection group (AAV-*CreN-Rox-stop-Rox-CreC* in PFC, AAV-*WGA-Dre* in BLA) (J), AAV-*CreN-Rox-stop-Rox-CreC* injection without AAV-*WGA-Dre* (H) produced 4% of tdTomato-positive cells in PFC. n=6 for all three groups. \*p<0.0001. (M) Schematic illustration of the AAV-*hSyn-GFP* injections into the PFC (300nl; 1X10<sup>13</sup> GC/ml) and BLA (30nl; 1X10<sup>13</sup> GC/ml) that are same site/titer/volumes used in all the experiments in this study. Dotted lines indicate the sagittal planes containing PFC (later 0.8mm) and BLA (lateral 3.2mm). (N) The GFP signals were specifically detected in the PFC and BLA regions that are not overlapped with each other, indicating that the AAV viruses were diffused to the restricted regions from injection sites. Data are presented as mean ±SEM.



Figure S3. (Related to Figure 3). Open field and light-dark box tests of the ArpC3 ctKO mice. (A) Schematic illustration of the ctKO strategy using the circuit-selective expression of Cre in the  $ArpC3^{f/f}$ : Ai-14 mice. (B) Schematic of open field test. Three hours of open filed test revealed that the total distance traveled (C), stereotypical activity (D), and vertical activity (E) of the ArpC3 ctKO mice (green; n=10) were not different from those of control mice (orange; n=7). (F) Schematic illustration of light and dark box test. The distance traveled in dark (G) and light (H) boxes, the total distance moved in both boxes (I), the time spent in dark (J) and light (K) box, and the transition number between both boxes (L) of ArpC3 ctKO mice (n=10) were not different from those of control mice (n=7). Data are presented as mean ±SEM.



Figure S4. (Related to Figure 5). Social affiliation test and monitoring of the basal fluorescence during brain endoscopy. (A) The representative of basal fluorescence between WT and ctKO during calcium recording. (B) There is no difference in the basal fluorescence between the groups. n=6 for WT, n=4 for ctKO. (C) Schematic illustrating the brain endoscopic analysis during social affiliation test. (D) Social-categorized WT neurons preferentially respond to social stimulus rather than non-social object. Social (+) neurons are significantly more active when animals are in close state with social stimulus (purple dots) rather than with non-social stimulus (orange dots, \*\*\*p<0.0001). In contrast, social (-) neurons are significantly more active when the animals explore around non-social stimulus (blue dots) rather than social stimulus (green dots, \*\*\*p<0.0001). \*\*\* p < 0.001. All data are presented as mean ±SEM.



Figure S5. (Related to Figure 6). The effects of optogenetic stimulation on the aversiveness and motivation. (A-D) Circuit-selective optogenetic activation of the PL to BLA projection does not drive place preference and does not affect food-based motivation. (A) Schematic representation of the strategy for circuit selective expression of ChR2 and the optogenetic approach to activate the PL to BLA circuit. (B) Schematic of the testing field consisting of two identical non-social arenas (two identical objects in cup A and cup B), which has a virtual laser activation zone around the one of the cups. Opsin free control (C, n=5) and ctKI-ChR2 mice (D, n=6) do not show place preferences demonstrating the stimulus is not aversive. (E) Schematic of the testing field consisting of food and no-food (object) arenas, which have a virtual zone that triggers stimulation upon entering the laser zone around a cup containing food pellets. The food deprived (for 24 hours) opsin free control (F, n=5) and ctKI-ChR2 (G, n=6) mice similarly prefer the food zone under both baseline conditions (no laser) and with 5Hz stimulation of the PL-BLA circuit, demonstrating optogenetic activation does not affect appetite-mediated motivation. Data are presented as mean  $\pm$ SEM.



Figure S6. (Related to Figure 7). Conditional optogenetic inactivation of the PL-BLA circuit marginally influences social interaction of WT mice. (A) The time schedule for the real-time social preference tests with schematic illustrations of the circuit-selective optogenetic inactivation. (B) Representative heat maps of movement traces between social versus non-social stimuli without laser (baselines) or with eArch3.0-mediated optical inactivation within the social stimulus zone. S; social stimulus, NS; nonsocial stimulus. (C) Graph of preference score for social versus non-social stimulus (blue, baseline; green, eArch3.0 inactivation. n=7 male mice for each group). p=0.0735 for baseline versus eArch3.0. (D) Average distance between the experimental mouse and social stimulus. p=0.204 for baseline versus eArch3.0. #p<0.1. Data are presented as mean ±SEM.



**Figure S7. (Related to Figure 7). Optogenetic suppression of PL-BLA circuit does not affect general anxiety of the wild type mice.** (A) Illustration of the open field testing procedure. Open field testing consisted of 5 min acclimation and consecutive 5 min epochs with alternating laser stimulation (OFF-ON-OFF). Continuous green laser stimulation was given during the Laser epoch. (B) Representative heat maps of movement traces during OFF and ON epochs of the open field test. (C) PL-BLA circuit inactivation does not alter the entry frequency to the center area. (E) PL-BLA circuit inactivation does not alter the duration in center area of open field. (F) Illustration of the elevated plus maze testing procedure and mappings indicating the locations of the open arms (white) and the closed arms (black). Elevated plus maze testing consisted of consecutive 5 min epochs with alternating laser stimulation (OFF-ON-OFF). Continuous green laser stimulation was given during the ON epoch. (G) Representative heat maps of movement traces during OFF and ON epochs of the elevated plus maze test. (H) PL-BLA circuit inactivation does not alter the at maps of movement traces during OFF and ON epochs of the elevated plus maze test. (H) PL-BLA circuit inactivation does not alter the at maps of movement traces during OFF and ON epochs of the elevated plus maze test. (H) PL-BLA circuit inactivation does not alter the frequency of open arm entry. (I) PL-BLA circuit inactivation does not change the duration in open arm. Data are presented as mean ±SEM.

## Table S1. Statistical Results. Related to all Figures

| Figure | Test type                                                                                   | n                      | Statistical significance                                                                  | F/t value & effects                                                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1D     | Two-way ANOVA with<br>repeated measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>18, 11, 15 | Posthoc tests.<br>NS-S Vs. NS-NS<br>control: p<0.0001<br>KO: p=0.5228<br>rescue: p=0.0002 | There are effects of Trial ( $F_{(1, 41)}$ = 45.24, p<0.0001), Genotype ( $F_{(2, 41)}$ = 4.981, p=0.0116), and<br>Trial *Genotype interaction ( $F_{(2, 41)}$ = 4.425, p=0.0182) |
| 2Н     | Independent <i>t</i> -test                                                                  | In order 3, 3          | <i>p</i> <0.0001                                                                          | t <sub>(4)</sub> =33.74                                                                                                                                                           |
| 3D     | Two-way ANOVA with<br>repeated measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>7, 10      | Posthoc tests.<br>control Vs. ctKO<br>NS-NS: <i>p</i> >0.9999<br>NS-S: <i>p</i> =0.0062   | There are effects of Genotype ( $F_{(1, 30)}=6.123$ , $p=0.0192$ ) and<br>Trial*Genotype interaction ( $F_{(1, 30)}=4.425$ , $p=0.0463$ )                                         |
| 3E     | Independent <i>t</i> -test                                                                  | In order<br>7, 10      | <i>p</i> =0.2403                                                                          | $t_{(15)}=1.2223$                                                                                                                                                                 |
| 3F     | Independent <i>t</i> -test                                                                  | In order<br>7, 10      | <i>p</i> =0.8037                                                                          | $t_{(15)}=0.2530$                                                                                                                                                                 |
| 3G     | Independent <i>t</i> -test                                                                  | In order<br>7, 10      | <i>p</i> =0.8019                                                                          | $t_{(15)}=0.2554$                                                                                                                                                                 |
| 4D     | Independent <i>t</i> -test                                                                  | In order<br>9, 15      | <i>p</i> =0.1645                                                                          | t <sub>(22)</sub> =1.438                                                                                                                                                          |
| 4E     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>353, 1339  | <i>p</i> <0.0001                                                                          | $D_{(1692)} = 0.1564$                                                                                                                                                             |
| 4F     | Independent <i>t</i> -test                                                                  | In order<br>9, 15      | <i>p</i> =0.0062                                                                          | t <sub>(22)</sub> =3.029                                                                                                                                                          |
| 4G     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>344, 1324  | <i>p</i> <0.0001                                                                          | $D_{(1668)} = 0.3414$                                                                                                                                                             |
| 4I     | Independent <i>t</i> -test                                                                  | In order<br>15, 18     | <i>p</i> =0.2983                                                                          | <i>t</i> <sub>(31)</sub> =1.058                                                                                                                                                   |
| 4J     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>680, 1482  | <i>p</i> =0.5489                                                                          | D <sub>(2162)</sub> =0.0367                                                                                                                                                       |
| 4K     | Independent <i>t</i> -test                                                                  | In order<br>15, 18     | <i>p</i> =0.0068                                                                          | <i>t</i> <sub>(31)</sub> =2.903                                                                                                                                                   |
| 4L     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>665, 1464  | <i>p</i> <0.0001                                                                          | D <sub>(2129)</sub> =0.2378                                                                                                                                                       |
| 4N     | Independent <i>t</i> -test                                                                  | In order<br>13, 14     | <i>p</i> =0.0219                                                                          | t <sub>(25)</sub> =2.445                                                                                                                                                          |
| 40     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>1299, 1401 | <i>p</i> <0.0001                                                                          | D <sub>(2700)</sub> =0.1435                                                                                                                                                       |
| 4P     | Independent <i>t</i> -test                                                                  | In order<br>13, 14     | <i>p</i> =0.0508                                                                          | t <sub>(25)</sub> =2.052                                                                                                                                                          |
| 4Q     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>1286, 1387 | <i>p</i> <0.0001                                                                          | D <sub>(2673)</sub> =0.1903                                                                                                                                                       |
| 48     | Independent <i>t</i> -test                                                                  | In order<br>13, 14     | <i>p</i> =0.0219                                                                          | t <sub>(25)</sub> =2.445                                                                                                                                                          |
| 4T     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>1299, 1239 | <i>p</i> =0.0280                                                                          | D <sub>(2538)</sub> =0.0577                                                                                                                                                       |
| 4U     | Independent <i>t</i> -test                                                                  | In order<br>13, 14     | <i>p</i> =0.0508                                                                          | $t_{(25)}=2.052$                                                                                                                                                                  |
| 4V     | Two-sample Kolmogorov-<br>Smirnov test                                                      | In order<br>1286, 1226 | <i>p</i> =0.2261                                                                          | D <sub>(2512)</sub> =0.0414                                                                                                                                                       |
| 5E     | Independent <i>t</i> -test                                                                  | In order<br>184, 176   | <i>p</i> <0.0001                                                                          | $t_{(358)} = 8.811$                                                                                                                                                               |
| 5F     | Independent <i>t</i> -test                                                                  | In order<br>184, 176   | <i>p</i> <0.0001                                                                          | $t_{(358)}=13.55$                                                                                                                                                                 |
| 5G     | Independent <i>t</i> -test                                                                  | In order<br>184, 176   | <i>p</i> <0.0001                                                                          | $t_{(358)}=6.257$                                                                                                                                                                 |

| 5K                | Two-way ANOVA                                                                               | In order<br>87,97,95,81 | Interaction <i>p</i> =0.0206<br>Social <i>p</i> <0.0001<br>Group <i>p</i> <0.0001                     | $F_{(1,356)} = 5.411$<br>$F_{(1,356)} = 21.01$<br>$F_{(1,356)} = 107.9$<br>Bonferroni posthocs<br>WT social $p < 0.001$                           |
|-------------------|---------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 5L                | Two-way ANOVA                                                                               | In order<br>87,97,95,81 | Interaction <i>p</i> =0.0857<br>Social <i>p</i> <0.0001<br>Group <i>p</i> <0.0001                     | $F_{(1,356)} = 2.936$<br>$F_{(1,356)} = 38.49$<br>$F_{(1,356)} = 90.87$<br>Bonferroni posthocs<br>WT social $p < 0.001$<br>ctKO social $p < 0.01$ |
| 6F                | Paired <i>t</i> -test                                                                       | In order<br>5           | <i>p</i> =0.1966                                                                                      | <i>t</i> <sub>(4)</sub> =1.548                                                                                                                    |
| 6G                | Paired <i>t</i> -test                                                                       | In order<br>5           | <i>p</i> =0.2703                                                                                      | <i>t</i> <sub>(4)</sub> =1.278                                                                                                                    |
| 61                | Paired <i>t</i> -test                                                                       | In order<br>6           | <i>p</i> =0.0038                                                                                      | $t_{(5)}=5.076$                                                                                                                                   |
| 6J                | Paired <i>t</i> -test                                                                       | In order<br>6           | <i>p</i> =0.0028                                                                                      | $t_{(5)}=5.451$                                                                                                                                   |
| 7D                | Paired <i>t</i> -test                                                                       | Number of pairs<br>6    | <i>p</i> =0.043                                                                                       | <i>t</i> (5)=2.691                                                                                                                                |
| 7E                | Paired <i>t</i> -test                                                                       | Number of pairs<br>6    | <i>p</i> =0.039                                                                                       | $t_{(5)}=2.779$                                                                                                                                   |
| S1C               | One-way ANOVA followed by<br>Bonferroni's multiple<br>comparisons.                          | In order<br>18, 11, 15  | Posthoc tests.<br>control Vs. KO: p>0.9999<br>Control Vs. rescue: p>0.9999<br>KO Vs. rescue: p>0.9999 | No effect was found                                                                                                                               |
| S1D               | One-way ANOVA followed by<br>Bonferroni's multiple<br>comparisons.                          | In order<br>18, 11, 15  | Posthoc tests.<br>control Vs. KO: p<0.0001<br>Control Vs. rescue: p=0.1017<br>KO Vs. rescue: p=0.0005 | There are effects of Treatment (virus)<br>( F <sub>(2,41)</sub> =20.12, <i>p</i> <0.0001                                                          |
| S1E               | One-way ANOVA followed by<br>Bonferroni's multiple<br>comparisons.                          | In order<br>18, 11, 15  | Posthoc tests.<br>control Vs. KO: p<0.0001<br>Control Vs. rescue: p=0.0587<br>KO Vs. rescue: p=0.0005 | There are effects of Treatment (virus)<br>( F <sub>(2,41)</sub> =21.09, <i>p</i> <0.0001                                                          |
| S2K               | Independent t-test                                                                          | In order<br>6, 6        | <i>P</i> <0.0001                                                                                      | $t_{(10)}=7.220$                                                                                                                                  |
| S2L               | Independent <i>t</i> -test                                                                  | In order<br>6, 6        | <i>P</i> <0.0001                                                                                      | $t_{(10)}=6.724$                                                                                                                                  |
| S3C               | Two-way ANOVA with<br>repeated measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>6, 10       | No statistical difference was found<br>between control and ctKO groups in<br>all 6 time points        | There is time effect ( $F_{(5, 70)}$ =47.69,<br><i>p</i> <0.0001                                                                                  |
| S3D               | Two-way ANOVA with<br>repeated measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>6, 10       | No statistical difference was found<br>between control and ctKO groups in<br>all 6 time points        | There is time effect ( $F_{(5, 70)}$ =14.41,<br>p<0.0001                                                                                          |
| S3E               | Two-way ANOVA with<br>repeated measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>6, 10       | No statistical difference was found<br>between control and ctKO groups in<br>all 6 time points        | There is time effect ( $F_{(5, 70)}=31.63$ ,<br>p<0.0001                                                                                          |
| S3G               | Independent t-test                                                                          | In order<br>7, 10       | <i>P</i> =0.8083                                                                                      | $t_{(15)}=0.2470$                                                                                                                                 |
| S3H               | Independent t-test                                                                          | In order<br>7, 10       | <i>P</i> =0.8985                                                                                      | $t_{(15)}=0.1297$                                                                                                                                 |
| S3I               | Independent t-test                                                                          | In order<br>7, 10       | <i>P</i> =0.9795                                                                                      | $t_{(15)}=0.0261$                                                                                                                                 |
| S3J               | Independent t-test                                                                          | In order<br>7, 10       | <i>P</i> =0.5010                                                                                      | $t_{(15)}=0.6895$                                                                                                                                 |
| S3K               | Independent t-test                                                                          | In order<br>7, 10       | <i>P</i> =0.6534                                                                                      | $t_{(15)}=0.4581$                                                                                                                                 |
| 83L               | Independent <i>t</i> -test                                                                  | In order<br>7, 10       | <i>P</i> =0.8088                                                                                      | $t_{(15)} = 0.2463$                                                                                                                               |
| S4B<br>Social (+) | Paired <i>t</i> -test                                                                       | In order<br>270         | <i>p</i> <0.0001                                                                                      | <i>t</i> (269)=17.18                                                                                                                              |
| S4B<br>Social (-) | Paired <i>t</i> -test                                                                       | In order<br>189         | <i>p</i> < 0.0001                                                                                     | $t_{(188)} = 15.51$                                                                                                                               |
| S4D               | Independent <i>t</i> -test                                                                  | In order<br>6, 4        | <i>p</i> =0.0745                                                                                      | <i>t</i> <sub>(8)</sub> =2.050                                                                                                                    |

| S5C                        | Paired t-test                                                                             | In order<br>5    | <i>p</i> =0.3810 | t <sub>(4)</sub> =0.9837                               |
|----------------------------|-------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------------------------------|
| S5D                        | Paired <i>t</i> -test                                                                     | In order<br>6    | <i>p</i> =0.6311 | $t_{(5)}=0.5110$                                       |
| S5F                        | Paired t-test                                                                             | In order<br>5    | <i>p</i> =0.6022 | $t_{(4)}=0.5651$                                       |
| S5G                        | Paired t-test                                                                             | In order<br>6    | <i>p</i> =0.6463 | <i>t</i> (5)=0.4879                                    |
| S6C                        | Paired t-test                                                                             | In order<br>7    | <i>p</i> =0.0735 | $t_{(6)}=2.166$                                        |
| S6D                        | Paired t-test                                                                             | In order<br>7    | <i>p</i> =0.7254 | t <sub>(6)</sub> =1.424                                |
| S7C<br>1 <sup>st</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.867  | No effect was found                                    |
| S7C<br>ON                  | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.821  | No effect was found                                    |
| S7C<br>2 <sup>nd</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.202  | No effect was found                                    |
| S7D<br>1 <sup>st</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.190  | No effect was found                                    |
| S7D<br>ON                  | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.098  | No effect was found                                    |
| S7D<br>2 <sup>nd</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.751  | No effect was found                                    |
| S7E<br>1 <sup>st</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.639  | There is time effect ( $F_{(2, 20)}$ =4.292,<br>p<0.05 |
| S7E<br>ON                  | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.454  | There is time effect ( $F_{(2, 20)}$ =4.292,<br>p<0.05 |
| S7E<br>2 <sup>nd</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.575  | There is time effect ( $F_{(2, 20)}$ =4.292,<br>p<0.05 |
| S7H<br>1 <sup>st</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.264  | No effect was found                                    |
| S7H<br>ON                  | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.743  | No effect was found                                    |
| S7H<br>2 <sup>nd</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.755  | No effect was found                                    |
| S7I<br>1 <sup>st</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.521  | There is time effect ( $F_{(2, 20)}=4.423$ , $p<0.05$  |
| 871<br>ON                  | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.667  | There is time effect ( $F_{(2, 20)}$ =4.423,<br>p<0.05 |
| S7I<br>2 <sup>nd</sup> OFF | Mixed ANOVA with repeated<br>measure followed by<br>Bonferroni's multiple<br>comparisons. | In order<br>5, 7 | <i>p</i> =0.861  | There is time effect ( $F_{(2, 20)}$ =4.423,<br>p<0.05 |