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Figure S1. Robust generation of in vitro-transcribed mRNA for T-cell engineering. In this example,
65 linearized CAR plasmids were in vitro-transcribed, capped, and tailed as described in the Materials
and Methods. The resultant mMRNA was assessed for integrity and expected transcript size by RNA

TapeStation gel analysis.
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Figure S2. Efficiency of mRNA electroporation into primary human T cells. Flow cytometric
evaluation of primary human T cells following CAR mRNA electroporation. Five unigue CAR mRNAs were
electroporated into T cells, while Mock indicates T cells electroporated with no mRNA. Inset,
representative brightfield and fluorescent images of T cells following CAR mRNA electroporation. GFP

fluorescence was used to assess transfection efficiency.
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Figure S3. Identification of HLA-A3 allele-specific scFvs with phage display technology. (A) T cells
expressing a CAR grafted with either a GAP.A3 (a-A3) or BB7.2 (a-A2) scFv were co-incubated with
target cell lines expressing A2 and A3 (T2A3) or A2 only (T2). T-cell activation was assessed by ELISA
for secreted IFN-y. Data are representative of two independent experiments demonstrating the same
trend in response. (B) Following panning, enriched candidate A3 phage clones were evaluated for binding
to cell lines expressing A2 and A3 (T2A3 cells) or A2 only (T2 cells) by flow cytometry. NC, no phage
control. (C) T cells expressing a CAR grafted with either a BB7.2 (a-A2) or Clone 13 (a-A3) scFv were co-
incubated with COS-7 cells transfected with the indicated HLA-A or HLA-B allele at an E:T ratio of 1:1. T-

cell activation was assessed by ELISA for secreted IFN-y. Data are representative of four independent



experiments demonstrating the same trend in response. In addition, similar results were obtained in
separate experiments with HLA KO isogenic cancer cell lines and when employing constructs containing

fluorophores (e.g. GFP, mCherry).
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Figure S4. Evaluation of pHLA antigen integrity. pHLA complexes were evaluated for antigen integrity
by performing an ELISA using the W6/32 antibody, which recognizes only folded HLA. Data represent

means + SD of three technical replicates.



Activating CAR Inhibitory CAR (iCAR)
[l cpsa [ ] cD28 [l CcD3¢ B cpsa [ PD-1 [ | CTLA-4
scFv
= X
Hinge
— &
Transmembrane
—3 - T4
Cytoplasmic i LJ
(A)  (B) () (@) (B (F)

Figure S5. CAR and iCAR design illustrations. A summary of the CAR and iCAR designs employed
during NASCAR optimization. (A) CD28-hinged 2" generation CAR. (B) CD8a-hinged 2" generation
CAR. (C) PD-1 cytoplasmic domain with CD8a hinge and transmembrane domain iCAR. (D) PD-1
cytoplasmic domain with endogenous PD-1 hinge and transmembrane domain iCAR. (E) CTLA-4
cytoplasmic domain with CD8a hinge and transmembrane domain iCAR. (F) CTLA-4 cytoplasmic domain

with endogenous CTLA-4 hinge and transmembrane domain iCAR.
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Figure S6. NASCAR inhibitory module optimization. T cells configured with the indicated CAR and
variant iCAR combinations were co-incubated with COS-7 cells transfected with the indicated HLA-A
allele(s) at an E:T ratio of 1:1. T-cell activation was assessed by ELISA for secreted IFN-y. Data are
representative of three independent experiments demonstrating the same trend in response. In addition,
similar results were obtained in separate experiments when the mirrored combination of CAR and iCAR
(e.g. A3-CAR, A2-iCAR) was tested and when employing constructs containing fluorophores (e.g. GFP,

mCherry). TM, transmembrane.
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Figure S7. NASCAR activating module optimization. T cells configured with the indicated hinge variant
CAR and iCAR combinations were co-incubated with CFPAC-1 HLA KO isogenic cell lines with the
indicated HLA-A allele status at an E:T ratio of 1:1. T-cell activation was assessed by ELISA for secreted
IFN-y. Data are representative of four independent experiments demonstrating the same trend in
response tested in two separate donors. In addition, similar results were obtained in separate

experiments employing constructs containing fluorophores (e.g. GFP, mCherry).
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Figure S8. Correlation between electroporated mRNA and CAR expression. The indicated amounts
of CAR mRNA were electroporated into primary human T cells. CAR expression, as assessed by GFP

levels, was evaluated by flow cytometry.
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Figure S9. NASCAR stoichiometric optimization for allele-specific inhibition. T cells configured with
the indicated amounts and ratios of CAR and iCAR were co-incubated with CFPAC-1 HLA KO isogenic
cell lines with the indicated HLA-A allele status at an E:T ratio of 1:1. T-cell activation was assessed by
ELISA for secreted IFN-y. Data are representative of three independent experiments demonstrating the
same trend in response. In addition, similar results were obtained in separate experiments employing

constructs containing fluorophores (e.g. GFP, mCherry).
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Figure S10. Assessment of NASCAR autoreactivity and re-challenge in “autologous” T cells. (A)
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A2-CAR T cells or NASCAR T cells targeting A3 loss from two different donors with the indicated HLA-A

alleles were independently cultured. T-cell autoreactivity was assessed by ELISA for secreted IFN-y. Data

are representative of three independent experiments demonstrating the same trend in response. (B) A2-

CAR T cells or NASCAR T cells targeting A3 loss from two different donors with the indicated HLA-A

alleles were co-incubated with CFPAC-1 HLA KO isogenic cell lines with the indicated HLA-A allele status

at an E:T ratio of 1:1. T-cell activation, upon re-challenge to CFPAC-1 target cells, was assessed by

ELISA for secreted IFN-y. Data are representative of three independent experiments demonstrating the

same trend in response.
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Figure S11. Generation and allele-specificity of CRISPR-engineered NASCAR T cells. (A) Flow
cytometric evaluation with Protein L and a-CD3 antibody of CRISPR-engineered A3-CAR T cells or
NASCAR T cells targeting A2 loss following knock-in of the indicated expression cassette at the B2M
locus, with or without simultaneous TRAC KO. (B) Flow cytometric evaluation with A2 or A3 pHLA
tetramers of CRISPR-engineered A3-CAR T cells or NASCAR T cells targeting A2 loss following knock-in
of the indicated expression cassette at the B2M locus with simultaneous TRAC KO. (C) CRISPR-
engineered A3-CAR T cells or NASCAR T cells targeting A2 loss were co-incubated with CFPAC-1 HLA
KO isogenic cell lines with the indicated HLA-A allele status at an editing efficiency-corrected E:T ratio of
1:1. T-cell activation was assessed by ELISA for secreted IFN-y (top) and IL-2 (bottom). Data represent

means + SD of two technical replicates.
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Figure S12. Body weight assessment of subcutaneous xenograft tumor model. A single-flank,
subcutaneous xenograft model of NSG mice was employed, and CRISPR-engineered A3-CAR T cells
and NASCAR T cells targeting A2 loss were introduced via tail vein IV injection 10 days following tumor
inoculation. Body weights of the mice were serially monitored throughout the duration of the 75-day

experiment. N = 6 mice per group. Data represent means * SD.
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Table S1. Frequencies of chromosome 6p LOH in cancer.

Cancer Type Reported 6p Arm Loss Reference
Bladder 35% (96)
24% (98)
Breast 27% (126)
Cenical 68% (91)
13.8% (89)
Colon 25% (19)
40% (96)
Glioblastoma 41.4% (97)
Laryngeal 17.6% (89)
53% (96)
Lung 40% (93)
41% (95)
15.3% (89)
Melanoma 23% (96)
Ovarian 28% (127)
Pancreas 50% (94)
Renal 6% (96)

Reported frequencies of chromosome 6p LOH across various cancer types; cancer type denoted in left

column, 6p LOH frequency in center column, and corresponding reference in right column (96, 98, 126,

91, 89, 19, 97, 93, 95, 127, 94).
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Table S2. Authentication of HLA KO isogenic target cell lines.

Query Name Top Matches Match % THO01 D5S818 D13S317 D7S820 D16S539 CSF1PO vWA TPOX
lCFPAC-1 (A2/A3) CFPAC-1 [CRL-1918] 100 8 10,11 12 8,10 9, 11 10 17 8
CFPAC-1 (— /A3) CFPAC-1 [CRL-1918] 100 8 10, 11 12 8,10 9,11 10 17 8
ICFPAC-1 (A2/—) CFPAC-1 [CRL-1918] 100 8 10, 11 12 8, 10 9; 11 10 17 8
NCI-H441 (A2/A3) NCI-H441 [HTB-174] 100 9.3 1,12 9 10 9,13 1,92 A7 8, 10
NCI-H441 (— /A3) NCI-H441 [HTB-174] 100 93 11,12 9 10 9,13 11120 A7 8, 10
INCI-H441 (A2/—) NCI-H441 [HTB-174] 100 93 11,32 9 10 9,13 19,428 ¢ 8, 10
RPMI-6666 LucGFP (A2/A3) RPMI-6666 [CCL-113] 100 6,9 11,12 M1 9,10 11,12 12,13 14,18 10, 11
RPMI-6666 LucGFP (— /A3) RPMI-6666 [CCL-113] 100 6,9 11,12 1M1 9,10 11,12 12,13 14,18 10, 11
IRPMI-6666 LucGFP (A2/— ) RPMI-6666 [CCL-113] 100 6,9 11,12 11 9, 10 1,12 12,13 14,18 10, 11

Final HLA KO isogenic clones were subject to STR profiling. Eight core STR loci were tested, and the top

profile match in the ATCC STR database, along with match percentage, is displayed.
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