

Figure S1. Characterization of *hfq*-deletion and *hfq-gfp* strains. (A) Plate motility assays of the wild type, Δhfq , *hfq-gfp*, and complemented Δhfq strains. (B) Immunoblot analysis of the wild type and *hfq-gfp* strains with an α -GFP antibody. (C) Light micrographs of the filament morphology for the wild type and *hfq*-deletion strains at 0 h and 24 h post hormogonium induction. Carets indicate the presence of heterocysts attached to filaments. Hormogonia can be distinguished from vegetative filaments by the absence of heterocysts, smaller cell size, and presence of tapered cells at the filament termini. (D)

8	Immunoblot analysis of cellular HmpD, PilA, and RbcL, and immunofluorescence analysis of extracellular
9	PilA in the wild type and $\Delta h f q$ strains 24 h after hormogonium induction. RbcL is the large subunit of
10	RUBISCO and serves as a protein loading control. Depicted are merged images of fluorescence
11	micrographs acquired using a 63x objective lens from cellular autoflourescence (red) and PilA
12	immunofluorescence (cyan). (E) Lectin staining analysis of HPS. Depicted are merged images of
13	fluorescence micrographs acquired using a 10x objective lens from cellular autoflourescence (red) and
14	UEA-fluorescein stained HPS (yellow) 24 h after hormogonium induction. (F) Fluorescence micrographs
15	of the <i>hfq-gfp</i> strain at 0 and 24 post hormogonium induction. The upper panel depicts merged images
16	of fluorescence micrographs acquired using a 63x objective lens from cellular autoflourescence (red) and
17	GFP fluorescence (cyan). The lower panel depicts quantification of fluorescence intensity derived from
18	Hfq-GFP for the regions indicated with white rectangles in the upper panel.
19	
20	SMOV1. Time lapse motility assays of individual filaments from the wild type and Δhfq strains.
21	
22	
23	
25	
24	
25	
26	
27	
28	

Figure S2. Dynamic localization of HmpF-GFP in response to light in immobilized hormogonium
filaments. (A) Fluorescence micrographs of cellular autofluorescence (red) and GFP fluorescence (cyan)
of the *hmpF-gfp* strain exposed to a light regiment of 405 nm for 1 min, followed by darkness for 1 min,
and subsequently incubated in white light for 1 min. (B) Quantification of positional fluorescence
intensity. Using imageJ, a line was drawn along the length of the filament and the pixel intensity was
measured at the indicated time points in the light regimen. Note the bright fluorescent focus at the far

36	right of the filament (in panel A), which delocalizes, and re-localizes to the same position in the filament,
37	whereas the bands of polar fluorescence show a positional shift indicating the relocalization of HmpF-
38	GFP to the opposite pole of the cell.
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

Α				hmpF-gfp			
wild type	wild type	∆pilB	∆pilT1	∆pilT2	∆hfq	∆hmpD	∆hmpE
2 mm		•	•	•	•	•	•
В		hmpF-gfp	∆ptxE				
wild type	wild type	∆ptxE	∆pixJ				
2 mm	1	•	•	≜			
				light			

69 **Figure S4. (A)** Plate motility and **(B)** phototaxis assays of the wild-type and *hmpF-gfp* strain harboring

deletions in genes encoding components of the T4P, Hmp, Ptx, and Pix systems. Images were taken at 48

71 h (A) or 72 h (B) post hormogonium induction.

72			
73			
74			
75			
76			
77			
78			
79			
80			

Figure S5. Localization of HmpF-GFP in response to light in strains harboring deletions in genes encoding

85 components of the T4P system. Depicted are fluorescence micrographs of cellular autofluorescence

86 (red) and GFP fluorescence (cyan) at each interval of a light regiment with exposure to white light for 1

87 min (L), followed by darkness for 1 min (1m D), and subsequently white light for 1 min (1m L).

97 Figure S6. Box plots depicting the quantitative analysis of polar and cytoplasmic fluorescence from

98 HmpF-GFP in strain harboring deletions in genes encoding components of the T4P, Hmp, Ptx, and Pix

99 systems.

105 Figure S7. BACTH analysis between various proteins of *N. punctiforme* and *Synechocystis* sp. strain 106 PCC6803. (A) Depicted are the results from qualitative assays on MacConkey agar and quantitative 107 analysis of β -galactosidase activity. The positive control strain harbors plasmids pKT25-zip and pUT18czip, while the negative control strain harbors the empty vectors pKT25 and pUT18c. Error bars = +/- 1 108 109 S.D. p-values determined by two-tailed Student's t-Test between the negative control and each 110 experimental combination of plasmids, n=3. (B) Immunoblot analysis of protein expression in E. coli 111 BL21(DE3) harboring pUT18c plasmids expressing the indicated protein. - control is BL21(DE3) not 112 harboring any pUT18c derivatives.

113	SMOV2. Time lapse motility assays of individual filaments from the <i>hmpF-gfp</i> strain treated with either
114	CCCP or DMSO alone (- control).
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	

Strains	Relevant Characteristic(s)	source
Nostoc punctiforme strains		
ATCC 29133	wild type	ATCC
UCD153	Laboratory derivative of N. punctiforme ATCC 29133 with reduced motility	(1)
UCD598	Δ <i>ptxE</i> (Npun_F2165) *	(2)
TNM703	UCD153 with a Tn5-1063 insertion after nucleotide 242 of hfq (Npun_F5230)	This study
UOP157	hmpF-gfp (Npun_R5959)	(3)
UOP160	$\Delta ptxE, hmpF$ -gfp	This study
UOP161	$\Delta pilB, hmpF$ -gfp	This study
UOP162	ΔhmpD (Npun_F5963), hmpF-gfp	This study
UOP163	∆ <i>pilT1</i> (Npun_R0117), <i>hmpF-gfp</i>	This study
UOP164	Δ <i>pilT2</i> (Npun_F2507), <i>hmpF-gfp</i>	This study
UOP173	$\Delta ptxE$, $\Delta pixJ$ (Npun_R6012), hmpF-gfp	This study
UOP185	$\Delta h f q$	This study
UOP191	$\Delta hmpE$ (Npun_F5964), $hmpF$ -gfp	This study
UOP 193	hfq-gfp	This study
UOP200	$\Delta hfq, hmpF$ -gfp	This study
Plasmids		
pAM504	Mobilizable shuttle vector	(4)
pRL278	Mobilizable suicide vector	(5)
pRL1063a	Suicide vector carrying Tn5-1063, a Tn5 derivative transposon	(6)
pSCR569	Mobilizable suicide vector for C-terminal gfpuv translational fusions	(7)
pSCR583	Suicide vector for in-frame deletion of <i>hmpD</i>	(8)
pDDR136	Suicide vector for in-frame deletion of <i>hmpE</i>	(9)
pDDR293	Suicide vector for in-frame deletion of <i>pilT2</i>	(10)
pDDR354	Suicide vector for in-frame deletion of <i>pilT1</i>	(10)
pDDR368	Suicide vector for in-frame deletion of <i>pilB</i>	(10)
pDDR465	Suicide vector for allelic substitution of <i>hmpF</i> with <i>hmpF-gfpuv</i>	(3)
pDDR476	Suicide vector for in-frame deletion of <i>hfq</i> [1-4] †	This study

Table S1. Strains and plasmids used in this study

pTVH102	Suicide vector for in-frame deletion of <i>pixJ</i> [5-8]	This study
pEZ101	Suicide vector for allelic substitution of hfq with hfq-gfpuv [5,8,9,10]	This study
pEZ102	Shuttle vector containing hfq and the 241 bp 5' to the start codon [11-12]	This study
pEZ103	pKT25-hfq [13-14]	This study
pEZ104	pKNT25-hfq [13-14]	This study
pEZ105	pUT18- <i>hfq</i> [13-14]	This study
pEZ106	pUT18c- <i>hfq</i> [13-14]	This study
pEZ109	pUT18- <i>pilB</i> [15-16]	This study
pEZ110	pUT18c- <i>pilB</i> [15-16]	This study
pTVH105	pUT18-hmpF [17-18]	This study
pTVH106	pUT18c- <i>hmpF</i> [17-18]	This study
pTVH107	pKT25-hmpF [17-18]	This study
pTVH108	pKNT25-hmpF [17-18]	This study
pTVH109	pUT18- <i>hmpE</i> [19-20]	This study
pTVH110	pUT18c- <i>hmpE</i> [19-20]	This study
pTVH113	pUT18-hmpE1183-1865 [20-21]	This study
pTVH114	pUT18c- <i>hmpE</i> 1183-1865 [20-21]	This study
pDDR480	pUT18-hfq (ssr3341, Synechocystis sp. strain PCC6803) [22-23]	This study
pDDR481	pUT18c-hfq (ssr3341, Synechocystis sp. strain PCC6803) [22-23]	This study
pDDR482	pUT18-pilL-C (slr0322, Synechocystis sp. strain PCC6803) [24-25]	This study
pDDR483	pUT18c-pilL-C (slr0322, Synechocystis sp. strain PCC6803) [24-25]	This study
pDDR484	pKT25-hmpF (slr1301, Synechocystis sp. strain PCC6803) [26-27]	This study
pDDR485	pKNT25-hmpF (slr1301, Synechocystis sp. strain PCC6803) [26-27]	This study
pDDR486	pUT18- <i>pilT1</i> [28-29]	This study
pDDR487	pUT18c- <i>pilT1</i> [28-29]	This study
pDDR488	pUT18-pilT1 (slr0161, Synechocystis sp. strain PCC6803) [30-31]	This study
pDDR489	pUT18c-pilT1 (slr0161, Synechocystis sp. strain PCC6803) [30-31]	This study
pDDR490	pUT18- <i>pilT</i> 2 [32-33]	This study
pDDR491	pUT18c- <i>pilT2</i> [32-33]	This study
pDDR492	pUT18-pilT2 (sll1533, Synechocystis sp. strain PCC6803) [34-35]	This study
pDDR493	pUT18c-pilT2 (sll1533, Synechocystis sp. strain PCC6803) [34-35]	This study

pDDR494	pUT18- <i>hmpB</i> (Npun_F5961) [36-37]	This study
pDDR495	pUT18c- <i>hmpB</i> [36-37]	This study

132	* locus tag and genes derived from Synechocystis sp. strain PCC6803 rather than N. punctiforme denoted in parentheses
133	† numbers in brackets correspond to primers used to construct plasmid. Detailed information on primers can be found
134	in Table S2
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	
157	

Table S2. Oligonucleotides used in this study

Oligonucleotide	Sequence	Number
NpF5230-5'-F	ATATAGGATCCTCGTAGTAAGGACTTTAGTC	1
NpF5230-5'-R-new	CTTGTTTTCGGGGTGTCAAATTCGGTAAGC	2
NpF5230-3'-F-new	GAATTTGACACCCCGAAAACAAGTTAGAAATAG	3
NpF5230-3'-R	ATATAGAGCTCCAGTATTAGGGCAAAACGATTC	4
NpR6012-5'-F	ATATAGGATCCCTGATGGTTATCTATCAAAACC	5
NpR6012-5'-R	CTAAAATCTATTTGACCAAAAATGTCATTTGATTAACCTC	6
NpR6012-3'-F	CAAATGACATTTTTGGTCAAATAGATTTTAGATTTTGG	7
NpR6012-3'-R	ATATAGAGCTCGTTAACAGCTTCAGCAATAC	8
hfq-gfp-SmaI-R	ATATACCCGGGAACTTGTTTTCGGTTTGATG	9
hfq-gfp-3'-F	ATATAACTAGTAAATAGAATTTTGCTTGCGATCG	10
Phfq-BamHI-F	ATATAGGATCCTGCCGTTTTCTCCAGGTAG	11
hfq-SacI-R	ATATAGAGCTCCTAACTTGTTTTCGGTTTGATGTATG	12
hfq-TH-BamHI-F	ATATAGGATCCCATGCTTACCGAATTTGACAC	13
hfq-TH-KpnI-R	ATATAGGTACCCGACTTGTTTTCGGTTTGATGTATG	14
pilB-TH-BamHI-F	ATATAGGATCCCATGACTTACTCGTCACCAC	15
pilB-TH-KpnI-R	ATATAGGTACCCGAAACCGAGATGTCATACAG	16
hmpF-TH-BamHI-F	ATATAGGATCCCGTGCTGTATTTAGCAGAAG	17
hmpF-TH-KpnI-R	ATATAGGTACCCGAGACGCTAATAATTCTGG	18
hmpE-TH-BamHI-F	ATATAGGATCCCATGCTGCCGGAACAACAACAG	19
hmpE-TH-SacI-R	ATATAGAGCTCGGAACATTACTCGTAGTGCTAAC	20
hmpE1183-TH-BamHI-F	ATATAGGATCCCATGGATGAATTTGGTGACTTGGAG	21
hfqsyn-TH-BamHI-F	ATATAGGATCCCATGAGCAGATTTGATAGC	22
hfqsyn-TH-KpnI-R	ATATAGGTACCCGACGGCGGGGGGGGAGTAATGTAG	23
pilL-Csyn-TH-BamHI-F	ATATAGGATCCCATGACTAGCGATCCCAATCC	24
pilL-Csyn-TH-SacI-R	ATATAGAGCTCGGCTCGTCTGCACTTAGAGC	25
hmpFsyn-TH-XbaI-F	ATATATCTAGATGTGCTCTATCTGGCTGAAATTAAG	26
hmpFsyn-TH-KpnI-R	ATATAGGTACCCGACCGCCAAACAATAGGGTC	27
pilT1-TH-BamHI-F	ATATAGGATCCCATGGAAATGATGATTGAAGACTTG	28
pilT1-TH-KpnI-R	ATATAGGTACCCGATGTGCTTTGGCAGCCGCAC	29

pilT1syn-TH-BamHI-F	ATATAGGATCCCATGGCTTTGGAATACATGATC	30
pilT1syn-TH-KpnI-R	ATATAGGTACCCGACGACGTTTAGCGGCAACC	31
pilT2-TH-BamHI-F	ATATAGGATCCCATGACAGAATCACAGTCTCC	32
pilT2-TH-KpnI-R	ATATAGGTACCCGAACTCTACCTCGGAGAAAC	33
pilT2syn-TH-BamHI-F	ATATAGGATCCCATGAACCAACCTCCCCG	34
pilT2syn-TH-KpnI-R	ATATAGGTACCCGGGTTCTGCCCCGCAGTC	35
hmpB-TH-BamHI-F	ATATAGGATCCCATGAGTACAGTTCTGATTGTG	36
hmpB-TH-KpnI-R	ATATAGGTACCCGTCCTCGCAGCAGTTGTTTG	37
Tn5-seq-F	CGATGAAGAGCAGAAGTTATC	38
Tn5-seq-R	GGCTCTATTCAGGATAAATC	39
Tn5-seq-F-nest	CGTTACCATGTTAGGAGGTC	40

176 Supplemental References

- 177 1. Campbell EL, Summers ML, Christman H, Martin ME & Meeks JC (2007) Global gene expression
- 178 patterns of *Nostoc punctiforme* in steady-state dinitrogen-grown heterocyst-containing cultures and at
- single time points during the differentiation of akinetes and hormogonia. *J Bacteriol* 189(14): 5247-5256.
- 2. Campbell EL, *et al* (2015) Genetic analysis reveals the identity of the photoreceptor for phototaxis in
 hormogonium filaments of *Nostoc punctiforme. J Bacteriol* 197(4): 782-791.
- 182 3. Cho YW, et al (2017) Dynamic localization of HmpF regulates type IV pilus activity and directional
- 183 motility in the filamentous cyanobacterium *Nostoc punctiforme. Mol Microbiol* 106(2): 252-265.
- 4. Wei TF, Ramasubramanian TS & Golden JW (1994) *Anabaena* sp. strain PCC 7120 *ntcA* gene required
 for growth on nitrate and heterocyst development. *J Bacteriol* 176(15): 4473-4482.
- 5. Cai YP & Wolk CP (1990) Use of a conditionally lethal gene in *Anabaena* sp. strain PCC 7120 to select
 for double recombinants and to entrap insertion sequences. *J Bacteriol* 172(6): 3138-3145.
- 6. Wolk CP, Cai Y & Panoff JM (1991) Use of a transposon with luciferase as a reporter to identify
 environmentally responsive genes in a cyanobacterium. *Proceedings of the National Academy of Sciences* 88(12): 5355-5359.
- 191 7. Risser DD, Wong FC & Meeks JC (2012) Biased inheritance of the protein PatN frees vegetative cells to 192 initiate patterned heterocyst differentiation. *Proc Natl Acad Sci U S A* 109(38): 15342-15347.

9. Risser DD, Chew WG & Meeks JC (2014) Genetic characterization of the *hmp* locus, a chemotaxis-like
gene cluster that regulates hormogonium development and motility in *Nostoc punctiforme. Mol Microbiol* 92(2): 222-233.

- 199 10. Khayatan B, Meeks JC & Risser DD (2015) Evidence that a modified type IV pilus-like system powers
- gliding motility and polysaccharide secretion in filamentous cyanobacteria. *Mol Microbiol* 98(6): 1021 1036.
- 201 10

^{8.} Risser DD & Meeks JC (2013) Comparative transcriptomics with a motility-deficient mutant leads to
identification of a novel polysaccharide secretion system in *Nostoc punctiforme. Mol Microbiol* 87(4):
884-893.