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Supporting Information Text13

1. Schema Redescription Theory14

A. Boolean minimization and prime implicants. The minimization of Boolean functions is a well known problem in electrical15

engineering and computer science. In both fields, the goal is typically to reduce the components and complexity needed to16

implement Boolean logic in electronic circuitry by removing redundancy from the computation of multivariate logical functions.17

The Quine-McCluskey algorithm (Q-M) is one of the best-known methods to remove the redundancy from logical functions18

(1, 2). Boolean minimization in the Q-M algorithm is achieved by uncovering the prime implicants (PI) of a Boolean function,19

i.e. an implication that resolves the logical value of the function (output) utilizing the least number of input variable states (or20

literals) possible. PI are thus minimal conditions (a conjunction of literals) to achieve automata state transition —minimal in21

the sense that the removal of any literal from the implication results in not knowing the output state (1). The first step of22

Q-M yields the set of all PI, or the Blake Canonical Form of a Boolean function—a disjunctive normal form of all PI. In our23

method, we represent PI by wildcard schemata, and the set of schemata that redescribe the automaton is a disjunction of all24

PI, equivalent to its Blake Canonical Form(3).25

In the standard application of Q-M for Boolean minimization, the set of all PI is further reduced to uncover the essential26

prime implicants, which are PI that cover at least an entry of the LUT that cannot be covered by a combination of other PI.27

These essential PI are always needed to minimize a Boolean function. In contrast, redundant PI cover LUT entries that are28

already covered by a combination of essential PI. Finally, selective PI are neither essential nor redundant, and are selected at29

the end of Q-M to ensure coverage of all entries of the LUT. In the typical application of Boolean minimization, all redundant30

PI are removed and the final form of the Boolean function is a disjunction of all essential PI, plus selected PI needed to cover31

the entire LUT—selective PI are chosen to minimize the number of literals (maximizing wildcards).32

In contrast to the engineering view of Boolean minimization, we are interested in characterizing the redundancy present in33

all possible interventions, even if some of those interventions can be built by combinations of other interventions. Therefore, we34

keep the entire set of PI, or the full Blake canonical form in schemata form. This allows us to preserve all possible mechanisms35

that change dynamical state in automata and are thus, in principle, amenable to control or perturbation interventions. In this36

sense, our goal is distinct from Boolean minimization of circuit design where the focus is on guaranteeing correct function37

computation with the least amount of wiring: to remove all redundancy in the computation of the full function. See (3) for38

additional details, including why the set of all PI is also necessary to infer symmetry constraints in schemata.39

To appreciate why it is important to use all PI in the computation our proposed measures, consider the following example
LUT of a Boolean function of k = 3 inputs f(x1, x2, x3):

000→ 0
001→ 0

010 → 1
011 → 0
100 → 0
101 → 1
110→ 1
111→ 1

Its schema redescription, or Blake canonical form with all PI is:

00#→ 0
0#1 → 0
#00 → 0
#10 → 1
1#1 → 1
11#→ 1

where the essential PI are shown in bold, with corresponding unique LUT entries also shown in bold in LUT. Note that a PI is40

essential if it redescribes at least one LUT entry that is not redescribed by any other PI (e.g. 010→ 1 is only redescribed by41

#10→ 1). From this redescription, the measures from main text eqs. 3-5 yield: r1 = r2 = 3/8, r3 = 1/4, e1 = e2 = 5/8, e3 =42

3/4, a1 = a2 = a3 = 1/2. If we considered the full Boolean minimization process, we would use (in this case) only the essential43

PI shown in bold, yielding: r1 = r2 = 1/2, r3 = 0, e1 = e2 = 1/2, e3 = 1, a1 = a2 = 1/2, a3 = 1. Notably, using only the44

essential PI would lead to incorrect inferences about the result of possible interventions. First, the effectiveness of input x345

would be inferred as maximal (1), when the non-essential PI 00# → 0 and 11# → 1 show that in reality it is possible to46

determine the state of f not knowing the state of x3, or conversely, to control f with x1 and x2 alone (collective canalization).47

This can also be seen in traditional logical form; the minimized expression is f = (x2 ∧ ¬x3) ∨ (x1 ∧ x3), whereas adding the48

non-essential PI yields f = (x2 ∧ ¬x3) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2) (showing an extra term without x3.)49
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Our analysis with all PI reveals the fact that while x3 is more effective in determining the state of f (e3 > e1 = e2), it50

has some redundancy (r3 = 1/4) and is therefore not fully effective (e3 = 3/4). Moreover, our formula (eq. 5 in main text)51

for deriving activity is only accurate when using all PI (see proof below). Indeed, the correct activity for input x3 in this52

automaton is a3 = 1/2 (only half the time this input changes its state leads f to change its output), not a3 = 1 as using only53

the essential PI would have us infer. This example demonstrates that if our goal is to study which minimal interventions lead54

to state changes (rather than minimizing Boolean functions), we must include all PI in schema redescription.55

Finally, this example also serves to highlight the difference between edge effectiveness and activity. While the latter does56

not distinguish the role of the three inputs (a1 = a2 = a3 = 1/2), the former characterizes input x3 as a little more effective at57

changing the state of f than inputs x1 and x2 (e1 = e2 = 5/8, e3 = 3/4.) Indeed, this is the only input that does not appear as58

wildcard in any of the essential PI (appears always as literal), thus it is a little more effective (less redundant) than the other59

too. Our measures distinguish this behavior because the LUT entries (000, 001, 110, and 111) redescribed by the non-essential60

schemata/PI with wildcards in the x3 position (00# and 11#), can also be redescribed by essential PI which have no wildcards61

in the x3 position (#00, 0#1,#10, and 1#1), and all other LUT entries are redescribed by schemata that also do not have62

wildcards in the x3 position. In contrast, in the case of input variables x1 and x2, there are two (our of eight) LUT entries63

for each than can only be redescribed by essential PI/schemata that have wildcards in the x1 or x2 positions: 010 and 10064

redescribed by #10 and #00 for x1, and 011 and 101 redescribed by 0#1 and 1#1 for x2, respectively. In summary, there are65

more possibilities (PI) to intervene on the state of function f that must include x3 than is the case for the other two inputs,66

which are thus a little more redundant as measured by our collective canalization measures, but not by activity. Naturally, the67

node-level measures of collective canalization (eqs. 1-2 in main text) also paint a more accurate description of redundancy than68

sensitivity: kr(f) = 1, ke(f) = 2, s(f) = 3/2. As can be seen by the PI/schemata, one always needs two inputs to determine69

the state of f , so only one is redundant on average and the effective connectivity of the automaton is two inputs on average. In70

contrast, because it does not account for collective canalization (kc(f) = 1/2), sensitivity posits that f is sensitive to only 1.571

inputs.72

B. Aggregation of prime implicant influence. The per-node and per-edge measures of redundancy given by eqs 1 and 3 in main73

paper, aggregate the redundancy of PI/schemata that redescribe each entry of a LUT for the entire function or per input,74

respectively. The idea is to tally the redundancy of inputs of an automaton as conveyed by every PI/schema (as a possible75

intervention strategy). In the analysis pursued here, the aggregation is computed via the average operator (avg). This is the76

same as assuming that any PI/schema is a viable intervention possibility to change the state of automaton x. In (3) it was77

shown that the aggregation for input redundancy is bound by using minimum and maximum operators. The lower (upper)78

bound, obtained by substituting min (max) for avg in eq. 1, assumes that the schema that bests redescribes a given LUT entry79

is the one with least (most) number of wildcards.80

Because we have no reason to prioritize a PI/schema over another one that redescribes the same LUT entry, we use the81

average operator, thus assuming that all PI are equally likely and important—as shown above, it is important to consider82

the influence of all PI as possible interventions. Moreover, averaging over all possible schemata, allows the additive per-edge83

separation of redundancy necessary for the effective graph (eqs. 3-4), whereby kr(xi) = SUMjrji and ke(xi) = SUMjeji, as well84

as the clear relationship with activity and sensitivity (see proof below). One could consider a general case where a probability or85

weighting of each PI is considered, e.g. assigning greater importance to essential PI, but at this point no advantage to pursuing86

such a route was identified. The CANA package (4) defaults to calculating input redundancy and effective connectivity using87

the average operator, but has the available functionality to use their lower or upper bounds as well.88

C. Activity and sensitivity via prime implicants. Here we show that the activity of input xj to automaton xi can be defined89

in terms of the schema redescription (the set of all PI) of xi by eq. 5 in main text with the max operator in place of the90

average operator (as used for edge effectiveness in eq. 3 in main text). To see this, let us review the definition of activity (5):91

aj(xi) = P (xt+1
i |xtj), which is the probability that automaton xi flips its state at t+ 1 when its input xj flips its state at t,92

given a uniform distribution of input states at t. To compute the activity from the LUT of xi we consider that for every entry93

fα in the LUT Fi, if flipping the state of input xj (flipping the jth bit) leads xi to change its state output, then that entry will94

add 1/|Fi| = 1/2k to the activity. Summing over all LUT entries we have (5):95

aj(xi) = 1
2k
∑
fα∈Fi

∂fα
∂xj

[1]96

where ∂fα/∂xj = 1 if flipping the jth bit of fα changes xi, and 0 otherwise.97

Theorem 1.98

aj(xi) = 1
|Fi|

∑
fα∈Fi

∂fα
∂xj

= 1
|Fi|

∑
fα∈Fi

(
1− max

υ:fα∈Υiυ

(
j � #

)
υ

)
= 1− 1

|Fi|
∑
fα∈Fi

max
υ:fα∈Υiυ

(
j � #

)
υ

[2]99

where (j � #)υ is a logical condition that is 1 / True if input xj is a wildcard in schema f ′υ, and 0 / False otherwise.100
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Proof. To prove the equality of equation 2, we have to show that:101

∂fα
∂xj

= 1− max
υ:fα∈Υiυ

(
j � #

)
υ

[3]102

which can rephrased as an existence statement:103

∂fα
∂xj

= 0 ⇐⇒ ∃υ : fα ∈ Υi
υ ∧
(
j � #

)
υ
, fα ∈ Fi. [4]104

In other words, LUT entry fα ∈ Fi contributes 0 to aji if and only if it is redescribed by at least one schema f ′υ with a wildcard105

in its xj position. Rephrased in terms of the PI, we have that LUT entry fα ∈ Fi contributes 0 to aji if and only if it is106

covered by at least one PI with no literals for the xj logical variable.107

Proving this statement, requires us to prove 3 simple lemmas.108

Lemma 1: If LUT entry fα ∈ Fi is redescribed by at least one schema/PI f ′υ with a wildcard in its xj position, it will109

contribute 0 to activity (∂fα/∂xj = 0).110

The proof of the lemma follows from the definition of partial derivative of an automaton (eq. 7 in main text). Assume111

that schema/PI f ′υ redescribes fα ∈ Fi and has a wildcard in its xj position. Then the state of xj does not influence the112

configuration of literals (other inputs) f ′υ specifies and cannot contribute to changing the state of xi.113

Lemma 2, the converse proposition of Lemma 1: if LUT entry fα ∈ Fi contributes 0 to the activity of input xj to automaton114

xi (∂fα/∂xj = 0), then there must exist at least one schema/PI of xi, f ′υ ∈ F ′i , which redescribes fα and has a wildcard in its115

xj position, that is, fα ∈ Υi
υ.116

For an LUT entry fα = s1...sj ...sk to have ∂fα/∂xj = 0, then we must have (s1...0...sk → s) ∧ (s1...1...sk → s), which117

is equivalent to (s1...#...sk → s), where s is any truth value (or literal for the input variables). Though the implicant118

(s1...#...sk → s) might not be a PI itself, Lemma 3 below says there must be a schema/PI with a wildcard in position xj .119

Lemma 3: if LUT entry fα ∈ Fi can be covered by an implicant with a wildcard in its xj position, then there must be at120

least one schema/PI having a wildcard in its xj position.121

This is straightforward considering the definition of prime implicant. Merging this implicant with other implicants to create122

a prime implicant will only add new wildcards without removing any existing wildcard. If the implicant cannot be covered by123

any prime implicant, then it is itself a prime implicant.124

Combining all three lemmas, we prove our theorem.125

The reader can notice that lemma 3 is contingent on using all possible PI. If only essential PIs were used, lemma 3 will not126

hold true as the example LUT in A shows.127

2. Systems Biology Models128

A. Cell Collective Data set. All experimentally-validated biochemical regulation and signalling BN models were retrieved from129

the Cell Collective (6) as of Aug 5th 2020 or were retrieved from literature and implemented in CANA(4). Table S1 shows the130

complete list of BN, including their respective Cell Collective and PubMed identifiers.131

Note that two of the BN studied here contain a Boolean automata that is a full contradiction. That is, the Boolean automata132

is constant and does not depend on any of its inputs, despite having 4 or 8 specified inputs in its logical transition function.133

The presence of such logic irregularities further emphasizes the need for the effective connectivity methods presented here.134

B. Existence of Fully Redundant Interactions. We found that 17 of the Cell Collective models (22%) contained at least one135

fully redundant edge, with 87 fully redundant edges in total. One possible explanation for the prevalence of fully redundant136

edges in gene regulatory or protein-interaction networks is that these models are often inferred from experimental data via137

information-theoretic measures, e.g. mutual information or transfer entropy (69), that can fail to discriminate between dyadic138

and polyadic relationships (70), and can thus miss the true multivariate dependency structure. But perhaps the main reasons139

are: 1) an incomplete record of experimental observation, 2) integration of experimental studies conducted by many different140

teams in different scenarios, and 3) modeling decisions about conflicting or weak evidence. This is especially problematic when141

the number of possible input combinations (k) is large and experimentally testing all possible control conditions becomes142

unfeasible. Thus, fully redundant edges may be included because they refer to interactions that were not fully observed.143

Moreover, interactions observed in a given experimental setup may be subsequently rendered redundant when considering144

additional experimental controls or different thresholds for interaction significance; the reverse is also possible, whereby a145

redundant interaction is subsequently considered necessary with additional experimental evidence or change in criterion for146

strength of interaction.147

This can be appreciated using the example in Figure 1 in main text. Let us imagine that it is assembled by integrating148

distinct interaction inference studies. Suppose that it describes how genes x1, x2, and x3 regulate the expression of gene149

x4. Imagine that one interaction study does not include the effect of x3, revealing a rather strong interaction relationship:150

x4 = x1 ∧ x2. A separate study, on the other hand, does not control for the effect of x1, observing not as clear an interaction151

effect of x2 and x3 on x4. The study may reveal unequivocally that x2 = 0 ⇒ x4 = 0 (per LUT entries f1, f2, f5 and f6 in152

Figure 1 in main text). But because x1 is not controlled in the study, correlational inference (e.g. via information-thererical153

measures (69)) is more uncertain as to how the expression of x2 and x3 affect the expression of x4. It could be that x1 was154
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Table S1. The 78 Boolean network models used in the analysis. Network names appear ipsis litteris for BN obtained from the Cell Collective.

Network Cell col. ID PMID Ref

1 Thaliana flower development - 15486106 (7, 8)
2 budding yeast cell cycle - 15037758 (9)
3 ER+ breast cancer signal transduction - 29623959 (10)

4 Signal Transduction in Fibroblasts 1557 18250321 (11)
5 Signaling in Macrophage Activation 1582 18433497 (12)
6 Mammalian Cell Cycle 1607 19118495 (13)
7 FA BRCA pathway 1778 22267503 (14)
8 HGF Signaling in Keratinocytes 1969 22962472 (15)
9 Cortical Area Development 2035 20862356 (16)
10 Death Receptor Signaling 2084 20221256 (17)
11 Yeast Apoptosis 2135 23233838 (18)
12 Cardiac development 2136 23056457 (19)
13 Guard Cell Abscisic Acid Signaling 2161 16968132 (20)
14 T Cell Receptor Signaling 2171 17722974 (21)
15 Cholesterol Regulatory Pathway 2172 19025648 (22)
16 T-LGL Survival Network 2008 2176 18852469 (23)
17 Neurotransmitter Signaling Pathway 2202 17010384 (24)
18 IL-1 Signaling 2214 21968890 (25)
19 Differentiation of T lymphocytes 2215 23743337 (26)
20 EGFR & ErbB Signaling 2309 19662154 (27)
21 IL-6 Signalling 2314 21968890 (25)
22 Apoptosis Network 2329 19422837 (28)
23 Body Segmentation in Drosophila 2013 (We uploaded this) 2341 23520449 (3)
24 B cell differentiation 2394 26751566 (29)
25 Mammalian Cell Cycle 2006 2396 16873462 (30)
26 Budding Yeast Cell Cycle 2404 23049686 (31)
27 T-LGL Survival Network 2011 2407 22102804 (32)
28 Budding Yeast Cell Cycle 2009 2423 19185585 (33)
29 Wg Pathway of Drosophila Signalling Pathways 2663 23868318 (34)
30 VEGF Pathway of Drosophila Signaling Pathway 2667 23868318 (34)
31 Toll Pathway of Drosophila Signaling Pathway 2668 23868318 (34)
32 Processing of Spz Network from the Drosophila Signaling Pathway 2669 23868318 (34)
33 Cell Cycle Transcription by Coupled CDK and Network Oscillators 2681 18463633 (35)
34 T-Cell Signaling 2006 2691 16464248 (36)
35 BT474 Breast Cell Line Long-term ErbB Network 2697 24970389 (37)
36 HCC1954 Breast Cell Line Long-term ErbB Network 2698 24970389 (37)
37 BT474 Breast Cell Line Short-term ErbB Network 2699 24970389 (37)
38 HCC1954 Breast Cell Line Short-term ErbB Network 2700 24970389 (37)
39 SKBR3 Breast Cell Line Short-term ErbB Network 2701 24970389 (37)
40 SKBR3 Breast Cell Line Long-term ErbB Network 2703 24970389 (37)
41 HIV-1 interactions with T Cell Signalling Pathway 2738 25431332 (38)
42 T cell differentiation 2901 16542429 (39)
43 Influenza A Virus Replication Cycle 3481 23081726 (40)
44 TOL Regulatory Network 3491 23171249 (41)

Continues on the next page

(unknowingly) more frequently expressed when testing condition x2 = x3 = 1 (matching f8 more often than f4), but was more155

frequently inhibited when testing condition x2 = 1 ∧ x3 = 0 (matching f3 more often than f7). This would lead the study156

to conclude that the most likely interaction is represented by x4 = x2 ∧ x3, though with an observed weak effect due to how157

frequently x1 was expressed or not in the study for each condition. The weak effect would likely be reported and attributed to158

unknown causes of the expression of gene x4—since x1 was not controlled in this second hypothetical study.159

When systems biologists synthesize both studies into a network model, such as that of in Figure 1 in main text, decisions160

must be made. They may consider that the correct relationship is x4 = (x1 ∧ x2) ∨ (x2 ∧ x3)—This would result in the same161

LUT as Figure 1 in main text, except f4 ≡ 011 : 1. But because the reported effect of the second experiment (second term) is162

much weaker than the observed effect in the first experiment (first term), the modelers may opt to characterize the synthesis of163

both experiments as x4 = (x1 ∧ x2)∨ (x1 ∧ x2 ∧ x3), assuming that the observed unknown factor in the second experiment is x1164

which was tested in the first experiment—because they have no evidence of any other genes being involved in the expression165

of x4. This decision would lead to the example in Figure 1 in main text, which by associativity and absorption is simply166

x4 = x1 ∧ x2, rendering x3 a redundant input.167

A scenario that leads to a similar result is imagining a experimental study that does control for all three input genes, but168
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Table S1 - Continued from previous page

Network Cell col. ID PMID Ref

45 Bordetella bronchiseptica 3492 22253585 (42)
46 Trichostrongylus retortaeformis 3493 22253585 (42)
47 HH Pathway of Drosophila Signaling Pathways 3506 23868318 (34)
48 B bronchiseptica and T retortaeformis coinfection 3509 22253585 (42)
49 FGF pathway of Drosophila Signalling Pathways 3510 23868318 (34)
50 Glucose Repression Signaling 2009 3511 19144179 (43)
51 Oxidative Stress Pathway 3512 23134720 (44)
52 CD4 T cell signaling 3521 25538703 (45)
53 Colitis-associated colon cancer 4601 26446703 (46)
54 Septation Initiation Network 4705 26244885 (47)
55 Predicting Variabilities in Cardiac Gene 4706 26207376 (48)
56 PC12 Cell Differentiation 4775 27148350 (49)
57 Human Gonadal Sex Determination 4779 26573569 (50)
58 IGVH mutations in chronic lymphocytic leukemia. 4783 26088082 (51)
59 Fanconi anemia and checkpoint recovery 4790 26385365 (52)
60 Arabidopsis thaliana Cell Cycle 4837 26340681 (53)
61 Bortezomib Responses in U266 Human Myeloma Cells 4850 26163548 (54)
62 Stomatal Opening Model 4932 27542373 (55)
63 Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia 4942 27594840 (56)
64 CD4+ T Cell Differentiation and Plasticity 5025 26090929 (26)
65 Lac Operon 5128 21563979 (57)
66 Metabolic Interactions in the Gut Microbiome 5731 26102287 (58)
67 Tumour Cell Invasion and Migration 5884 26528548 (59)
68 CD4+ T cell Differentiation 6678 22871178 (6)
69 Regulation of the L-arabinose operon of Escherichia coli. 6885 28639170 (60)
70 Aurora Kinase A in Neuroblastoma 7916 26616283 (61)
71 Iron acquisition and oxidative stress response in aspergillus fumigatus. 7926 25908096 (62)
72 MAPK Cancer Cell Fate Network 7984 24250280 (63)
73 Treatment of Castration-Resistant Prostate Cancer 8048 28361666 (64)
74 Lymphopoiesis Regulatory Network 8080 26408858 (65)
75 Lymphoid and myeloid cell specification and transdifferentiation 8186 28584084 (66)
76 T-LGL Survival Network 2011 Reduced Network 8227 22102804 (32)
77 Senescence Associated Secretory Phenotype 11863 29206223 (67)
78 Signaling Pathway for Butanol Production in Clostridium beijerinckii NRRL B-598 36604 30718562 (68)

where we observe very strong effects for some conditions and not others. For instance, imagine condition x1 = 0∧x2 = 1∧x3 = 1169

leads to uncertain results about the expression of x4; say, x4 is expressed in only 60% of the experiments for that condition. In170

contrast, all other conditions lead to very certain observations of expression or inhibition of x4. With this information, modelers,171

who have to decide on a acceptable threshold for evidence, may chose the relationship as x4 = (x1 ∧ x2) ∨ (x1 ∧ x2 ∧ x3) (LUT172

in Figure 1 in main text with f4 ≡ 011 : 0) rather than x4 = (x1 ∧ x2) ∨ (x2 ∧ x3) (LUT with f4 ≡ 011 : 1).173

Notice that in network inference, modelers often consider each node’s LUT condition independently, as they can result from174

different experimental evidence. This means that the resulting LUTs are not necessarily further checked for logical redundancy175

or even incoherence (tautologies and contradictions). For instance, the Thaliana model (Figure 4, main text) contains three fully176

redundant edges, which ultimately result from “subjective decisions given alternatives with equivalent results” (7) regarding the177

expression of the LFY (Leafy) and TFL1 (Terminal Flower 1 ) proteins. Certainly, our methodology to quantify redundancy in178

automata networks can also serve as an additional logical check on these models to avoid and understand the existence of179

completely redundant interactions derived from incomplete experimental evidence or modeling decisions.180

3. Effectiveness Gini181

Given a vector of n values [x1, x2, . . . , xn], the Gini coefficient is defined as:182

G =
∑

i,j
|xi − xj |

2n2x̄
[5]183

where x̄ is the mean of the values. Note that, due to finite-size effects, the maximal Gini coefficient for automata of degree184

k = 6 is only 0.833, found when the vector is [0, 0, 0, 0, 0, 1]. As the number of samples increases, the maximal Gini coefficient185

approaches 1.186

4. The effective graph and the spread of perturbations187

Here we consider bit-flip perturbations to individual variables, defined as altering the logical state of the variable. In principle,188

the same framework can be used to study more elaborate classes of dynamic perturbations, including multi-variable bit flips or189
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A B

Fig. S1. The effective graph captures the spread of perturbations. A In theMIG model, perturbations from automata x1 spread equally to all connected variables at t
steps away in the interaction graph of an example BN. B In theMEG model, the effective graph of a BN constrains the spread of perturbations.

pinning perturbations. Changes to the system structure by changing variable transition functions through the addition or190

removal of an input are not considered.191

The impact of a perturbation on an automaton in a BN is quantified by the Boolean analogue of the partial derivative (71):192

∂
(i)
t xj(xα) = |xtj(xα)− xtj(x¬iα )| , [6]193

where xtj(xα) denotes the state (truth value) of automaton node xj at time t when the BN is initiated with configuration194

x0 = xα at time t = 0, and x¬iα denotes configuration xα with the state (truth value) of automaton xi negated. In other words,195

the partial derivative yields 1 if flipping the state of xi in initial configuration x0 leads to xj flipping its state at time t, and 0196

otherwise. The total impact on automaton xj of perturbations to automaton xi after t steps is found by averaging over all197

initial configurations:198

ιij(t) = 2−N
2N∑
α=1

∂
(i)
t xj(xα). [7]199

For large BNs, the exact calculation of ιij(t) becomes computationally infeasible and is approximated by averaging over a200

random sample of initial network configurations.201

The interaction graph defines the light-cone of perturbation spreading, but it cannot differentiate the potential impact202

to nodes within the cone. Specifically, since signals between two nodes cannot travel faster than the minimum number of203

edges (thus, time steps t) between them, the interaction graph provides an upper bound on the number of variables potentially204

affected by a perturbation after t time steps. We capture this upper bound in modelMIG. The modelMIG partitions the205

nodes into two groups: all nodes connected via a path of at most t edges starting from node xj are equally impacted by a206

perturbation to node xj , where t is the number of time steps since the perturbation, and all other nodes are not impacted by207

the perturbation. For simplicity, this model considers only the minimum path length from the perturbed node xj , and does not208

account for loops or multiple paths.209

The effective graph has at least two advantages for capturing the spread of perturbations: 1) it more accurately defines210

the light-cone of perturbation spreading since it removes interactions that are fully redundant, and 2) it provide edge weights211

that can differentiate the potential impact to nodes within the cone. The second modelMEG thus ranks the node variables212

within the perturbation light-code based on the weights along the most effective path from xj to the variable. Specifically, the213

propensity for a perturbation to be transmitted along a path inMEG is given by the maximum product of edge strengths,214

constrained by the perturbation light-cone such that the number of edges in the path is less than the number of elapsed time215

steps. The maximum product path is calculated by finding the minimum additive path of negative log edge effectiveness.216

Implementations of both models for perturbation spreading provided in the CANA python package(4).217

For the random BN experiment we generate 100 sample networks with N = 100 nodes, and in which all nodes have an218

in-degree of 3, and average bias ρ̄ = 0.4 (SI, S3). The network topology is randomized using a configuration model such that219

multi-edges are not allowed (each multi-edge is randomly swapped with another edge until no multi-edges remain). Self-loops220

are allowed. For each of the 100 randomly constructed networks, we sample 10 nodes at random to perturb. For each of the221

focus nodes, the dynamical impact on all other nodes is approximated using trajectories starting from 104 random initial222

configurations.223

5. The effective graph improves structure-based control224

The discovery of control strategies in BN models is a central problem in systems biology and biomedicine because predictions225

about controllability can help focus experimental interventions on genes, proteins and even medications more likely to result in226

the desired phenotype or medical outcome. Accurate control predictions would facilitate, for example, the design of advanced227

disease therapeutics(72, 73) or intervention strategies to reprogram cells(74), e.g. to revert a mutant cell to a wild-type state.228
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It is well known that when the set of automata nodes X of a BN is large, enumeration of all configurations x ∈ X of its STG229

becomes difficult, making the controllability of BN an NP-hard problem (75). Therefore, control methodologies which leverage230

the interaction graph or otherwise simplify the dynamics are highly desirable since they can greatly simplify the complexity of231

BN control(3, 73).232

Two recent methodologies aim to determine the controllability of complex dynamical systems based solely from the graph of233

interactions between variables: structural controllability (SC)(76), and feedback-vertex set control (FVC)(73, 77). By using234

only the structural graph to predict minimum sets of variables that are needed to control a network (a.k.a. driver nodes), both235

of these methods make predictions about the entire ensemble of dynamical systems that fit the same interaction graph—rather236

than a specific multivariate dynamical system, such as a BN(78).237

A B

Fig. S2. Fully redundant edges in the effective graph and structural control. Two examples of BN in which canalization alters the predictions of structure-based control
methods. (A), A small BN with a fully canalized interaction between nodes x4 and x2 (dashed red). The predictions of SC and FVC on the structural graph suggest two nodes
(x1 and one of x2, x3, or x4) are required to control the network dynamics, while the same methods applied to the effective graph accurately identify that only node x1 is
required to fully control the network. (B), A small BN with a fully canalized interaction between nodes x5 and x6 (red). The predictions of SC, MDS and FVC on the structural
graph suggest only node x5 is required to control the network dynamics, while the same methods applied to the effective graph accurately identify that both nodes x5 and x6
are required to fully control the network.

Here, we demonstrate that the effective graph is a more accurate representation of interactions between variables with238

important consequences for structural approximations of control, such as SC and FVC. Specifically, the redundancy of some239

logical functions means that the effective structure of interactions is reduced: fully-canalized edges of the structural graph play240

no role in determining the transitions between configurations. The presence of such canalization can both decrease or increase241

the estimated driver variable sets using structure-based control methods.242

We illustrate how canalization can reduce the number of predicted driver variables using the BN shown in Fig. S2A. Both243

SC and FVC would predict that interventions on two nodes are required to control the system dynamics (x1 and one of x2, x3,244

or x4.). However, the interaction between nodes x4 and x2 is fully canalized (red edge), meaning that it should be disregarded245

by the structure-based methods. Applying both SC and FVC to the effective graph correctly reveals that only node x1 is246

required to control the system.247

On the other hand, canalization can also increase the number of predicted driver variables as illustrated by the BN shown in248

Fig. S2B. In this case, both SC and FVC would predict that interventions on node x5 are sufficient to control the system249

dynamics. The effective graph reveals that the interaction between nodes x5 and x6 is full canalized (red edge); using the250

effective graph, SC and FVC correctly predict that both nodes x5 and x6 are required to control the system.251

6. Effective graph and control252

Similar insights about the control patterns from individual driver variables can be seen when comparing the minimum driver253

variable set for pinning controllability predicted by FVC (73, 77), with the real one obtained by full enumeration of all possible254

node sets in the STG (78). Recall that pinning controllability specifies a system can be controlled from any initial configuration255

to any of its attractors via “pinning” the driver variables to their state(s) in the target attractor (77). For the Arabidopsis256

thaliana BN model, in addition to the input nodes, FVC predicts the network to be pinning controllable with interventions257

to the 6 additional variables DFV C = {WUS,AP3, AG, TFL1, LFY, PI} However, enumeration of the STG (78) reveals258

that there are actually 3 equivalent minimum driver variable sets required for pinning control, each with only 5 additional259

variables: Dpin = {WUS,AP3, AG} ∪ {{AP1, LFY } ∨ {TFL1, EMF1} ∨ {TFL1, LFY }}. The effective graph reveals why260

FVC overestimates this minimum set, and why a multiplicity of sets are equally effective in pinning control. First, note that all261

of the self-loops to PI, AP3, and AG have negligible edge effectiveness, and thus do not does not need to be controlled because262

its self-loop is negligible and edges with stronger effectiveness exist from LFY , AP3 and AG that can control it (see Fig. 4C).263

The effective graph reveals that some loops are removed entirely with fully redundant edges (i.e. TFL1 ←→ AP2 and264

AP1 ←→ LFY ), or almost removed with very low effectiveness edges (e.g. the PI and AG self-loops), which help explain265

the differences between the FVC-predicted and real pinning control driver sets. Several interesting observations derive by266

looking at the effective graph and comparing DFV C with DPin. Recall that FVC theory requires that all loops, including267
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variable self-loops, need to be controlled by at least one variable that interrupts the loop. The fully redundant edge between268

AP2 and TFL1 removes the loop between these variables which means that TFL1 is not always necessary to control the269

network and AP1 with LFY can control TFL1 and AP2. Similarly, in the real pinning control driver set, EMF1 can take the270

place of LFY , which is not allowed by the FVC prediction. The effective graph shows that this happens because the fully271

redundant edge between AP1 and LFY removes the loop between these variables, and so LFY is not always needed to control272

the network—since all the loops with effective edges (eij > 0) in which LFY participates can be interrupted by pining TFL1273

and EMF1.274

These observations demonstrate that while FVC predicts the necessary driver set to control the entire ensemble of BN that275

fit the same interaction graph (Fig. 4A), the effective graph of a specific BN can reduce the size of the necessary driver set276

and help identify alternative control strategies and most important variables to control, as is the case of the effective graph277

of the TBN model (Fig. 4B). These features make the effective graph useful to analyze control propagation in BN systems278

biology models, by providing more specific understanding of the effective pathways to control dynamics. This suggests that279

applying FVC to the effective graph can lead to more accurate (pinning) control predictions. The development of such a280

method is beyond the scope of this article, but we can at least demonstrate that in the case of the TBN model the effective281

graph with a threshold of eij >= 0.2 (Fig. S4) best explains the real pinning control driver set. If we apply FVC to this graph282

the result is DPin −AG. That is, it only misses the AG variable, which is needed for pinning control. A closer inspection of283

the full effective graph (Fig. 4B) reveals that AG participates in three low-effectiveness loops∗ that are not interrupted by284

other variables in DPin. In contrast, PI which is not needed for real control (not in DPin though in DFV C), participates in a285

single low-effectiveness loop (its own self-loop) that is not interrupted by other variables in DPin. This strongly suggests that286

the number of low-effectiveness loops may be cumulative and needs to be accounted for, a hypothesis we will address in future287

work.288

Similarly, in the real pinning control driver set, EMF1 can take the place of LFY , which is not allowed by the FVC289

prediction. The effective graph shows that this happens because the fully redundant edge between AP1 and LFY removes the290

loop between these variables, and so LFY is not always needed to control the network—since all the loops with effective edges291

(eij > 0) in which LFY participates can be interrupted by pining TFL1 and EMF1.292

In summary, we need to control LFY because it can control every other node, but we need to control WUS only for its own293

sake. This type of information is very useful for considering intervention strategies in Biology. If WUS’s final state is not of294

high importance, we can control most of the network by intervening only on LFY: its impact/power on the rest of the network295

is much higher.296

7. Effective graph reveals dynamically-decoupled modules297

The analysis of perturbation spread in complex dynamical systems can reveal dynamical modules that constrain this spread298

(79). Such modules are often related to well-known pathways with important roles in biochemical regulation and signalling.299

As shown for the ER+ breast cancer and TBN models, by thresholding the effective graph and eliminating edges with small300

effectiveness, we reveal subgraphs with greater dynamical influence, as well as those that are more or less decoupled from the301

rest of the network. One way to characterize such dynamical modularity is to compute the strongly and weakly connected302

components of the effective graph for various effectiveness thresholds, and compare them to the interaction graph; Tables S2 &303

S3 in SI show such an analyses for the four networks studied in detail above. Strongly connected components reveal modules304

where every node can in principle perturb every other node in same module, and weakly connected components those where305

some of the (driver) nodes can perturb all nodes in module. The size of such components can also reveal how fractured the306

dynamics of a network is.307

As shown in Fig. S23A, B, the 78 biochemical BN models from the Cell Collective vary in how dynamically-decoupled308

modules arise as we change the effectiveness threshold. For example, the TBN model (green) splits into several weakly connected309

components at a relatively low effectiveness value (eij = 0.1), but the largest component contains most of the network for a310

wide range of effectiveness values, at least 80% for eij ≤ 0.5—which demonstrates the existence of the single primary dynamical311

module driven by the LFY protein described above. In contrast, the ER+ Breast Cancer model (orange) fractures into many312

small components at eij ≈ 0.4, with the largest weakly connected component comprising less than 20% of the network—which313

is coherent with the patchwork composition of several dynamically distinct modules discussed above.314

Overall, analysis of the 78 network models in the Cell Collective reveals that for edge effectiveness eij ≤ 0.2 or even eij ≤ 0.4,315

the majority of networks remain connected in a single or largest weakly connected component comprised of most nodes. As316

shown in Fig. S24, for eij ≤ 0.2, about 90% of the networks have a largest weakly connected component comprised of at least317

80% of the network. For eij ≥ 0.4, on the other hand, most networks quickly lose a substantial largest weakly connected318

component, and for eij ≥ 0.65, no networks have a largest weakly connected component comprised of even 70% of the network.319

That is, most networks break into many small components when eij ∈ [0.4, 0, 6]. In this sense, connectivity, signal transmission,320

and dynamical control in these networks tends to be robust to removal of edges with eij ≤ 0.2 even up to eij ≤ 0.4. This321

suggests eij ∈ [0.2, 0, 4] is an optimum range for effectiveness, whereby redundant edges are removed but effective edges remain322

to reliably send signals through mostly connected networks.323

∗
AG←→ WUS, andAG←→ AP1,AG←→ AG.
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Fig. S3. Edge effectiveness of Boolean automata in biochemical regulation and random ensembles of varying degree. Top) Edge effectiveness of the 240 incoming
edges (interactions) to 40 automata with varying degree in Cell Collective models (green) compared to a bias-matched sample of random Boolean automata (pink). Bottom)
The Gini coefficient of the effectiveness of the incoming edges to the 40 automata with varying degree (green) in the Cell Collective models compared to the bias-matched
ensemble of random Boolean automata (blue).

Arabidopsis thaliana
IG EG EG 0.2 EG 0.4

nodes 15
self-loops 5 (33%)

input nodes 3 (20%) 3 (20%) 3 (20%) 4 (27%)

weakly conn. comp. 1 (15, 100%) 1 (15, 100%) 3 (13, 87%) 4 (12, 80%)

‘ strongly conn. comp. 5 (10, 67%) 6 (9, 60%) 8 (7, 47%) 10 (6, 40%)

Saccharomyces cerevisiae (yeast)
IG EG EG 0.2 EG 0.4

nodes 12
self-loops 8 (67%)

input nodes 1 (8%) 1 (8%) 1 (8%) 1 (8%)

weakly conn. comp. 1 (12, 100%) 1 (12, 100%) 1 (12, 100%) 1 (12, 100%)

strongly conn. comp. 3 (10, 83%) 3 (10, 83%) 3 (10, 83%) 3 (10, 83%)

Leukemia
IG EG EG 0.2 EG 0.4

nodes 60
self-loops 11 (18%)

input nodes 6 (10%) 6 (10%) 6 (10%) 10 (17%)
weakly conn. comp. 1 (60, 100%) 1 (60, 100%) 1 (60, 100%) 2 (58, 97%)

strongly conn. comp. 12 (48, 80%) 12 (48, 80%) 27 (29, 48%) 47 (9, 15%)

Breast Cancer
IG EG EG 0.2 EG 0.4

nodes 80
self-loops 23 (29%)

input nodes 18 (23%) 18 (23%) 21 (26%) 29 (36%)
weakly conn. comp. 1 (80, 100%) 1 (80, 100%) 3 (78, 98%) 12 (52, 65%)

strongly conn. comp. 45 (24, 30%) 45 (24, 30%) 52 (17, 21%) 70 (3, 4%)

Table S2. Structural characteristics of four biochemical regulation networks. Number (and proportion) of nodes that are self-loops and inputs.
Number of weakly and strongly connected components that exist for each graph; for each case, also shown in brackets is the number of
nodes in largest component, followed by the proportion of network in largest component.
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Thaliana
{size: number of comp.} IG EG EG 0.2 EG 0.4

weakly conn. comp. {15: 1} {15: 1} {13: 1, 1: 2} {12: 1, 1: 3}
strongly conn. comp. {10: 1, 2: 1, 1: 3} {9: 1, 2: 1, 1: 4} {7: 1, 2: 1, 1: 6} {6: 1, 1: 9}

Saccharomyces cerevisiae (yeast)
IG EG EG 0.2 EG 0.4

weakly conn. comp. {12: 1} {12: 1} {12: 1} {12: 1}
strongly conn. comp. {10: 1, 1: 2} {10: 1, 1: 2} {10: 1, 1: 2} {10: 1, 1: 2}

Leukemia
IG EG EG 0.2 EG 0.4

weakly conn. comp. {60: 1} {60: 1} {60: 1} {58: 1, 2: 1}
strongly conn. comp. {48: 1, 2: 1, 1: 10} {48: 1, 2: 1, 1: 10} {29: 1, 4: 1, 2: 2, 1: 23} {9: 1, 4: 1, 2: 2, 1: 43}

Breast Cancer
IG EG EG 0.2 EG 0.4

weakly conn. comp. {80: 1} {80: 1} {78: 1, 1: 2} {52: 1, 13: 1, 4: 1, 3: 1, 1: 8}
strongly conn. comp. {24: 1, 8: 1, 2: 5, 1: 38} {24: 1, 8: 1, 2: 5, 1: 38} {17: 1, 8: 1, 2: 5, 1: 45} {3: 1, 2: 8, 1: 61}

Table S3. Size and Number of structural components of four biochemical regulation models. For each type, components are listed in
decreasing order of size (number of nodes), with the number of components of that size shown after each ‘:’.
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Fig. S4. The effective graph in the Arabidopsis thaliana BN model. The effective graph for the BN model of the Arabidopsis thaliana, in which edge thickness denotes its
effectiveness, thresholded to eji > 0.2; node color intensity denotes the node effective out-degree; green nodes denote variables with no effective out-degree.
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xi k kr ke k∗
r k∗

e kout koute koute /kout

AG 9 6.9 2.1 0.77 0.23 5 1.9 0.38
AP3 7 4.7 2.3 0.68 0.32 2 0.8 0.4
PI 6 3.8 2.2 0.64 0.36 2 0.47 0.24

AP1 4 2.4 1.6 0.59 0.41 6 1.4 0.23
LFY 4 2.8 1.2 0.69 0.31 7 4.8 0.69
TFL1 4 2.8 1.2 0.69 0.31 5 2.8 0.57
WUS 3 1.4 1.6 0.48 0.52 2 0.91 0.46
FUL 2 0.75 1.2 0.38 0.62 1 0 0
UFO 1 0 1 0 1 2 1.6 0.79
FT 1 0 1 0 1 1 0.24 0.24

EMF1 1 0 1 0 1 3 2 0.68
AP2 1 0 1 0 1 2 0.43 0.22
SEP 1 0 1 0 1 4 0.9 0.22
LUG 0 0 1 0 0 1 0.1 0.1
CLF 0 0 1 0 0 1 0.1 0.1

Table S4. Canalization measures for variables in the Arabidopsis thaliana model. k, kr , and ke denote in-degree, input redundancy and
effective connectivity, respectively; k∗r and k∗e denote versions of kr , and ke normalized by k; kout and koute denote out-degree and effective
out-degree, respectively. Nodes with k = 1 have no redundancy (kr = 0, ke = 1), and input nodes have no incoming edges.
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Fig. S5. The interaction graph in the Saccharomyces cerevisiae (yeast) BN model. The interaction graph for the BN model of Saccharomyces cerevisiae.
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Fig. S6. The effective graph in the Saccharomyces cerevisiae (yeast) BN model. The effective graph for the BN model of Saccharomyces cerevisiae, in which edge
thickness denotes its effectiveness, eji. Notice the fully redundant self-loop (dashed red) edge on the Swi5 transcription factor node.
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Table S5. Canalization Measures for Variables in the Saccharomyces cerevisiae (yeast) model. k, kr , and ke denote in-degree, input redun-
dancy and effective connectivity, respectively; k∗r and k∗e denote versions of kr , and ke normalized by k; kout and koute denote out-degree
and effective out-degree, respectively. Nodes with k = 1 have no redundancy (kr = 0, ke = 1), and input nodes have no incoming edges.

xi k kr ke k∗
r k∗

e kout koute koute /kout

Sic1 6 2.7 3.3 0.44 0.56 3 1.7 0.56
Clb1,2 6 2.7 3.3 0.44 0.56 8 4.8 0.6
Cdh1 5 2.6 2.4 0.53 0.47 2 1 0.52
Clb5,6 4 1.7 2.3 0.42 0.58 5 2.8 0.56
Swi5 4 2 2 0.5 0.5 2 0.56 0.28
SBF 3 1 2 0.33 0.67 2 1.7 0.83
MBF 3 1 2 0.33 0.67 2 1.2 0.62

Mcm1/SFF 2 0.75 1.2 0.38 0.62 3 1.8 0.62
Cdc20/14 2 0.75 1.2 0.38 0.62 5 2.8 0.57

CellSize 1 0 1 0 1 2 2 1
Cln3 1 0 1 0 1 2 1.3 0.67

Cln1,2 1 0 1 0 1 2 1 0.52
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Fig. S7. The interaction graph in the Leukemia BN model. The interaction graph for the BN model of leukemia.
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Fig. S8. The effective graph in the Leukemia BN model. The effective graph for the BN model of leukemia, in which edge thickness denotes its effectiveness, eji.

Alexander J. Gates, Rion Brattig Correia, Xuan Wang, and Luis M. Rocha 21 of 40



CTLA4 TCR

FYN

LCK

PDGFR

PLCG1

PI3K

SPHK1

Cytoskeleton
signaling

ZAP70GRB2

RASGAP

MEK

ERK

IL2RBT

CREB

FasL

NFKB

NFAT

TPL2

MCL1

RANTES

IL2

IL2RAT

TNF

FasT

FLIP

A20

IAP

IFNGT

IL2RB IL2RA

SOCSJAK

STAT3TBET P27

Proliferation

GZMB

IFNG P2

BID

BclxL

TRADD

Fas

sFas

DISC

CeramideS1P

Caspase Apoptosis

GPCR

SMAD

PDGF

IL15

Stimuli1

Stimuli2

CD45

TAX

Fig. S9. The effective graph (thresholded to 0.2 in the Leukemia BN model. The effective graph for the BN model of leukemia, in which edge thickness denotes its
effectiveness, thresholded to eji > 0.2.
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Table S6. Canalization measures for variables in the Leukemia model. k, kr , and ke denote in-degree, input redundancy and effective
connectivity, respectively; k∗r and k∗e denote versions of kr , and ke normalized by k; kout and koute denote out-degree and effective out-
degree, respectively. Nodes with k = 1 have no redundancy (kr = 0, ke = 1), and input nodes have no incoming edges.

xi k kr ke k∗
r k∗

e kout koute koute /kout

IFNG 6 4.6 1.4 0.76 0.24 5 1.7 0.34
JAK 6 4.4 1.6 0.74 0.26 3 2 0.68
GAP 5 3.4 1.6 0.68 0.32 2 0.98 0.49

Caspase 5 3.2 1.8 0.65 0.35 2 0.86 0.43
DISC 5 3.2 1.8 0.64 0.36 3 1.9 0.64
NFKB 5 3.4 1.6 0.68 0.32 11 6.5 0.59
BclxL 5 3.6 1.4 0.72 0.28 1 0.52 0.52
BID 4 2.5 1.5 0.62 0.38 3 1.3 0.43
FLIP 4 2.3 1.7 0.58 0.42 2 0.29 0.15
LCK 4 2.3 1.7 0.58 0.42 1 0.62 0.62

MCL1 4 2.8 1.2 0.7 0.3 1 0.52 0.52
FasL 4 2.8 1.2 0.7 0.3 1 0.42 0.42
IL2 4 2.4 1.6 0.59 0.41 7 2.7 0.39

IFNGT 3 1.8 1.2 0.58 0.42 1 0.39 0.39
IL2RB 3 1.4 1.6 0.48 0.52 5 1.9 0.38

Fas 3 1.7 1.3 0.58 0.42 2 0.94 0.47
IL2RA 3 1.7 1.3 0.58 0.42 2 0.51 0.26
IL2RAT 3 1.4 1.6 0.48 0.52 1 0.42 0.42
TRADD 3 1.7 1.3 0.58 0.42 2 0.29 0.15

P2 3 1.4 1.6 0.48 0.52 2 0.76 0.38
TPL2 3 1.4 1.6 0.48 0.52 1 0.57 0.57
GZMB 3 1.4 1.6 0.48 0.52 3 0.74 0.25
RAS 3 1.4 1.6 0.48 0.52 3 2 0.66

SOCS 3 1.7 1.2 0.58 0.42 1 0.6 0.6
GRB2 2 0.75 1.2 0.38 0.62 2 1 0.5
FYN 2 0.75 1.2 0.38 0.62 2 1.6 0.81

PDGFR 2 0.75 1.2 0.38 0.62 4 2.4 0.6
Apoptosis 2 0.75 1.2 0.38 0.62 1 0.62 0.62

IAP 2 0.75 1.2 0.38 0.62 3 0.88 0.29
Ceramide 2 0.75 1.2 0.38 0.62 2 1.1 0.53

TBET 2 0.75 1.2 0.38 0.62 5 3.4 0.68
TCR 2 0.75 1.2 0.38 0.62 3 1.9 0.62

PLCG1 2 0.75 1.2 0.38 0.62 1 0.38 0.38
ZAP70 2 0.75 1.2 0.38 0.62 2 1.1 0.57

Proliferation 2 0.75 1.2 0.38 0.62 0 0 -
S1P 2 0.75 1.2 0.38 0.62 3 2.2 0.75
ERK 2 0.75 1.2 0.38 0.62 3 1.5 0.52

CREB 2 0.75 1.2 0.38 0.62 2 0.61 0.31
IL2RBT 2 0.75 1.2 0.38 0.62 1 0.81 0.81

PI3K 2 0.75 1.2 0.38 0.62 5 2.9 0.57

Stimuli 1 0 1 0 1 3 1.7 0.57
Stimuli2 1 0 1 0 1 2 1.8 0.91
GPCR 1 0 1 0 1 1 1 1
IL15 1 0 1 0 1 5 2.3 0.47

CD45 1 0 1 0 1 3 2.3 0.77
SMAD 1 0 1 0 1 1 0.39 0.39
SPHK1 1 0 1 0 1 1 0.62 0.62
PDGF 1 0 1 0 1 2 1.6 0.81
CTLA4 1 0 1 0 1 1 0.62 0.62

A20 1 0 1 0 1 1 0.42 0.42
sFas 1 0 1 0 1 1 0.42 0.42
FasT 1 0 1 0 1 3 2.2 0.73
TNF 1 0 1 0 1 2 0.79 0.4
P27 1 0 1 0 1 1 0.62 0.62

STAT3 1 0 1 0 1 8 3.4 0.43
RANTES 1 0 1 0 1 1 0.095 0.095

NFAT 1 0 1 0 1 3 0.95 0.32
MEK 1 0 1 0 1 1 0.62 0.62

Cytoskeleton_signaling 1 0 1 0 1 0 0 -
TAX 1 0 1 0 1 2 1.8 0.91
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Fig. S10. The interaction graph in the ER+ breast cancer BN model. The goal of this model is to find interventions—especially single-node interventions—that synergize with
the PI3K inhibitor Alpelisib, with particular interest on six other drugs used in cancer treatment: Fulvestrant, Palbociclib, Everolimus, Neratinib, Trametinib,
and Ipatersertib (all drug nodes in Purple). Specifically, the goal is to study how well these drugs control cancer cells to apoptosis or proliferation, which in this model are
specific variables (10). This is done by running Monte-Carlo simulations of the BN while setting Alpelisib to ON, in addition to setting baseline nodes to the cancerous state
(Figs. S15-6), followed by setting the interventions to be tested to the appropriate state, for example, another Drug set to ON. See details in (10).
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Fig. S11. The effective graph in the ER+ breast cancer BN model. Edge thickness denotes its effectiveness, eji.
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Fig. S12. The effective graph (thresholded to 0.2) in the ER+ breast cancer BN model. The effective graph for the BN model of ER+ breast cancer, in which edge
thickness denotes its effectiveness, thresholded to eji > 0.2.
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Fig. S13. The effective graph (thresholded to 0.4) in the ER+ breast cancer BN model. The effective graph for the BN model of ER+ breast cancer, in which edge
thickness denotes its effectiveness, thresholded to eji > 0.4.
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Table S7. Canalization measures for variables in the Breast Cancer model. k, kr , and ke denote in-degree, input redundancy and effective
connectivity, respectively; k∗r and k∗e denote versions of kr , and ke normalized by k; kout and koute denote out-degree and effective out-degree,
respectively. Nodes with k = 1 have no redundancy (kr = 0, ke = 1), and input nodes have no incoming edges.

xi k kr ke k∗
r k∗

e kout koute koute /kout

PI3K 9 7.4 1.6 0.82 0.18 2 0.66 0.33
MAPK 7 4.9 2.1 0.7 0.3 2 0.88 0.44

MAPK_2 6 4 2 0.67 0.33 6 2.8 0.47
ER_transcription_2 6 4.9 1.1 0.82 0.18 3 2 0.65

RAS 6 4.9 1.1 0.82 0.18 4 1.1 0.28
HER2_3_2 6 4.5 1.5 0.76 0.24 6 2.5 0.41

pRb_2 5 3.2 1.8 0.64 0.36 4 1.1 0.27
AKT 5 2.9 2.1 0.57 0.43 6 3 0.5

HER2_3 5 3.2 1.8 0.65 0.35 4 0.81 0.2
pRb 5 3.9 1.1 0.78 0.22 3 1.2 0.38

Apoptosis_3 5 3.4 1.6 0.68 0.32 1 0.95 0.95
IGF1R_2 5 3.4 1.6 0.68 0.32 3 0.77 0.26
Apoptosis 5 3 2 0.61 0.39 1 0.49 0.49

E2F_3 5 3.4 1.6 0.68 0.32 8 4 0.5
Apoptosis_2 5 3.2 1.8 0.65 0.35 1 0.85 0.85

ER_transcription 4 2.3 1.7 0.58 0.42 2 0.8 0.4
PIP3 4 2.3 1.7 0.58 0.42 6 2.3 0.38

IGF1R 4 2.5 1.5 0.62 0.38 3 0.71 0.24
FOXO3 4 2.8 1.2 0.7 0.3 9 4.2 0.46
RAS_2 4 2.3 1.7 0.58 0.42 5 1 0.2
ESR1 4 2.3 1.7 0.58 0.42 2 0.54 0.27

Proliferation 4 2.8 1.2 0.7 0.3 0 0 -
cycD_CDK46 4 2.3 1.7 0.58 0.42 3 0.79 0.26

BAD 4 2.8 1.2 0.7 0.3 3 0.92 0.31
ESR1_2 4 2.8 1.2 0.7 0.3 3 1.1 0.38
pRb_3 4 2.8 1.2 0.7 0.3 3 1.3 0.44

BIM 3 1.4 1.6 0.48 0.52 3 0.92 0.31
mTORC1 3 1.4 1.6 0.48 0.52 2 2 1

TSC 3 1.8 1.2 0.58 0.42 1 0.38 0.38
cycE_CDK2_T 3 1.8 1.2 0.58 0.42 1 0.62 0.62

p21_p27 3 1.4 1.6 0.48 0.52 1 0.62 0.62
p21_p27_T 3 1.4 1.6 0.48 0.52 1 0.81 0.81

E2F 3 1.8 1.2 0.58 0.42 4 1.5 0.39
mTORC2_pm 3 1.4 1.6 0.48 0.52 1 0.43 0.43

RAS_3 3 1.7 1.3 0.58 0.42 5 1.8 0.35
E2F_2 3 1.4 1.6 0.48 0.52 6 2.4 0.4

cycD_CDK46_2 3 1.7 1.3 0.58 0.42 4 1.5 0.39
SGK1 3 1.7 1.3 0.58 0.42 2 0.71 0.36

Proliferation_2 3 1.8 1.2 0.58 0.42 0 0 -
Proliferation_3 3 1.4 1.6 0.48 0.52 0 0 -

PIP3_2 3 1.7 1.3 0.58 0.42 6 3 0.49
PI3K_2 3 1.7 1.3 0.58 0.42 3 1 0.34
HER3 3 1.8 1.2 0.58 0.42 3 0.89 0.3

cyclinD_2 2 0.75 1.2 0.38 0.62 3 1.3 0.43
Translation 2 0.75 1.2 0.38 0.62 5 2.7 0.54

MYC 2 0.75 1.2 0.38 0.62 3 1.6 0.54
MYC_2 2 0.75 1.2 0.38 0.62 3 1.6 0.54
cyclinD 2 0.75 1.2 0.38 0.62 2 0.86 0.43
BCL2 2 0.75 1.2 0.38 0.62 3 0.6 0.2

Proliferation_4 2 0.75 1.2 0.38 0.62 0 0 -
PRAS40 2 0.75 1.2 0.38 0.62 1 0.38 0.38
mTORC2 2 0.75 1.2 0.38 0.62 2 1 0.52

cycE_CDK2 2 0.75 1.2 0.38 0.62 3 0.67 0.22
PDK1_pm 2 0.75 1.2 0.38 0.62 1 0.43 0.43
HER3_2 2 0.75 1.2 0.38 0.62 3 0.81 0.27

Continues on the next page
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Table S7 - Continued from previous page

xi k kr ke k∗
r k∗

e kout koute koute /kout

S6K 1 0 1 0 1 2 1.1 0.54
Fulvestrant 1 0 1 0 1 3 1.8 0.6

Alpelisib 1 0 1 0 1 3 1.9 0.64
Everolimus 1 0 1 0 1 4 3.2 0.81
Trametinib 1 0 1 0 1 3 1.5 0.49
Ipatasertib 1 0 1 0 1 2 1.3 0.65
Palbociclib 1 0 1 0 1 2 2 1
Neratinib 1 0 1 0 1 3 1.6 0.54

HER2 1 0 1 0 1 5 2 0.41
HER3_T 1 0 1 0 1 2 1.4 0.71

PDK1 1 0 1 0 1 2 1.4 0.71
PIM 1 0 1 0 1 5 2.6 0.52

SGK1_T 1 0 1 0 1 2 1.4 0.71
ER 1 0 1 0 1 5 2.2 0.45

CDK46 1 0 1 0 1 2 0.93 0.46
PTEN 1 0 1 0 1 3 1.9 0.64

KMT2D 1 0 1 0 1 1 0.18 0.18
FOXO3_Ub 1 0 1 0 1 1 0.3 0.3

BIM_T 1 0 1 0 1 2 1.8 0.91
BCL2_T 1 0 1 0 1 2 1.6 0.81
PBX1 1 0 1 0 1 2 1.2 0.59

FOXA1 1 0 1 0 1 1 0.18 0.18
MCL1 1 0 1 0 1 3 0.6 0.2
EIF4F 1 0 1 0 1 1 0.62 0.62

IGF1R_T 1 0 1 0 1 3 1.9 0.62
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Fig. S14. The spread of perturbations in the ER+ breast cancer BN model. For each of the drug variable nodes, the predictive power of the path-length approximation
using the interaction graph (blue), and the effective graph (red); measured by the Spearman’s rank correlation (vertical axis) to the total impact of respective variable, after 20
steps (horizontal axis).
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Fig. S15. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline. The baseline is defined by
K = {ER = ON, HER2 = OFF, HER3_T = OFF, IGF1R_T = ON, PBX1 = ON, PTEN = OFF, SGK1_T = OFF, PIM1 = OFF, PDK1_T = OFF,
mTORC2 = OFF, BIM_T = OFF, and BCL2_T = OFF }. Variables in K (those initially pinned) are shown with a blue border and bold text; variables whose state
becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue color, while unresolved edges
are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can see that the ER + /Her2−
cancer cell state baseline alone resolves a substantial portion of the possible dynamics in comparison to the non-conditioned effective graph (Fig. S10). Strikingly, Neratinib
becomes redundant under this baseline initial condition, along with much of the HER pathway. Thus, Neratinib has no effect on this model under ER + /Her2− cancer
cell state. Indeed, Neratinib is one of the drugs that were shown not to synergize with Alpelisib in (10); the others are Ipasertib and Trametinib. We can see that
these three drugs only contribute to the same pathways that Alpelisib already acts on and become redundant when Alpelisib is present (see Fig. S16, as well as Figs. S19,
S20, S22).
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Fig. S16. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=ON. K is
comprised of baseline nodes (see S15 caption) +{Alpelisib = ON}. Variables in K (those initially pinned) are shown with a blue border and bold text; variables whose state
becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue color, while unresolved edges
are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can see that Alpelisib with the
ER + /Her2− cancer cell state baseline resolves a majority of the possible dynamics in comparison to the non-conditioned effective graph (Fig. S10); unresolved dynamics
is circumscribed almost entirely to ER and proliferation pathways. Interestingly, Ipasertib, Neratinib, and Trametinib become redundant under this initial condition:
they have no effect on model dynamics under Alpelisib+ ER + /Her2− cancer cell state. The effective graph, however, reveals that the dynamics of this network is very
robust to perturbation and hard to control because its subsystems are effectively decoupled. In particular, the baseline + Alpelisib=ON condition reveals that canalization works
by preventing propagation of signals and cross-regulation. Indeed, most of the (non-drug) variables that have an impact on cancer apoptosis or proliferation under this condition
(see Table 3 in (10)) have short paths to those target variables (at most 3 edges) in the effective graph. Exceptions in Table 3 in (10) are only a few nodes involved in the
estrogen receptor (ER) transcription and signaling pathway such as the MYC oncogene and KMT2D epigenetic transcription activator. Interestingly, the conditional
effective graph reveals that KMT2D becomes fixed under this condition, so any impact on proliferation can only occur by perturbing it out of its fixed state.
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Fig. S17. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Everolimus=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Everolimus = ON}. Variables in K (those initially pinned) are shown with a blue border and
bold text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Everolimus hardly resolves any additional dynamics to what Alpelisib with the ER + /Her2− cancer cell state baseline already do (Fig. S16); only a few
connections to AKT pathway.
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Fig. S18. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Fulvestrant=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Fulvestrant = ON}. Variables in K (those initially pinned) are shown with a blue border and
bold text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Fulvestrant resolves almost the remaining dynamics that was not yet resolved by Alpelisib with the ER + /Her2− cancer cell state baseline (Fig. S16. In
particular, every apoptosis and proliferation node gets resolved. This combination strategy is the most powerful, rendering all other drugs redundant, except for the influence
Everolimus has in AKT pathway, which does not propagate anyway.
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Fig. S19. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Ipatasertib=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Ipatasertib = ON}. Variables in K (those initially pinned) are shown with a blue border and
bold text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Ipatasertib does resolve any additional dynamics to what Alpelisib with the ER + /Her2− cancer cell state baseline already do (Fig. S16).
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Fig. S20. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Neratinib=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Neratinib = ON}. Variables in K (those initially pinned) are shown with a blue border and bold
text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Neratinib does resolve any additional dynamics to what Alpelisib with the ER + /Her2− cancer cell state baseline already do (Fig. S16).
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Fig. S21. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Palbociclib=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Palbociclib = ON}. Variables in K (those initially pinned) are shown with a blue border and bold
text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Palbociclib resolves the proliferation pathway in addition to the dynamics that Alpelisib with the ER + /Her2− cancer cell state baseline resolved on their
own (Fig. S16. In particular, every proliferation node gets resolved, which means that Palbociclib displays useful synergy with Alpelisib. However, unlike the case of
Fulvestrant, Palbociclib has no effect on apoptosis in this model for the ER + /Her2− cancer cell state baseline.
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Fig. S22. The conditional effective graph of the ER+ breast cancer BN model, conditioned on the ER+/Her2- cancer cell state baseline + Alpelisib=Trametinib=ON.
K is comprised of baseline nodes (see S15 caption) +{Alpelisib = ON, Trametinib = ON}. Variables in K (those initially pinned) are shown with a blue border and
bold text; variables whose state becomes fixed (become constants), are shown with a blue border only. Edges that transmit a constant input state are denoted by a dashed blue
color, while unresolved edges are denoted by black color with thickness proportional to their effectiveness, eji, with the fully redundant edges shown in dashed red. We can
see that Trametinib does resolve any additional dynamics to what Alpelisib with the ER + /Her2− cancer cell state baseline already do (Fig. S16).
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A B

Fig. S23. Weakly connected components of threshold effective graphs reveal dynamical modules. A Ratio of the number of weakly connected components to network
size. B Size of the largest weakly connected component, normalized by network size. In both graphs, the ER+ breast cancer (orange), leukemia (blue), and Arabidopsis
thaliana (blue) networks are highlighted.
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Fig. S24. Analysis of weakly connected components per edge effectiveness threshold for all Cell Collective models. Gray thin lines denote each network in dataset,
thick lines denote overall statistics per legend. Left. Ratio of number of weakly connected components to network size (left vertical axis) for a given edge effectiveness threshold
(horizontal axis); ratio is 1 when every node in network is a separate component, and very small when there is a single weakly connected component. Also shown are three
statistics for the proportion of networks with ratio≤ τ (right vertical axis); e.g. for τ = 0.2, black thick line denotes the proportion of networks whose ratio of number of weakly
connected components to network size is smaller than 0.2 at a given edge effectiveness threshold. We can see, for instance, that for an edge effectiveness of 0.2, more than
90% of the networks have a small number of weakly connected components, specifically, less than τ = 20% of the network size; for edge effectiveness larger than 0.4, on the
other hand, most networks quickly break into many components, and for edge effectiveness larger than 0.6, no networks have a ratio of number of components to network
size smaller than 20% (or even 30%, per dotted thick line) . Right. Size of largest weakly connected component relative to network size (left vertical axis) for a given edge
effectiveness threshold (horizontal axis); ratio is 1 when there is a single weakly connected component, and very small when every node is its separate component. Also shown
are three statistics for the proportion of networks with largest normalized component size≥ υ (right vertical axis); e.g. for υ = 0.8, black thick line denotes the proportion of
networks whose largest normalized component size is larger than 0.8 at a given edge effectiveness threshold. We can see, for instance, that for an edge effectiveness of 0.2,
about 90% of the networks have a largest weakly connected component comprised of at least υ = 80% of the network; for edge effectiveness larger than 0.4, on the other
hand, most networks quickly lose a substantial largest weakly connected component, and for edge effectiveness larger than 0.6, no networks have a largest weakly connected
component comprised of at least 80% of the network (or even 70%, per dotted thick line)
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