

MDPI

Article

Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies

Enas E. Eltamany ^{1,†}, Usama Ramadan Abdelmohsen ^{2,3,†}, Dina M. Hal ¹, Amany K. Ibrahim ¹, Hashim A. Hassanean ¹, Reda F.A. Abdelhameed ¹, Tarek A Temraz ⁴, Dina Hajjar ⁵, Arwa A. Makki ⁵, Omnia Magdy Hendawy ^{6,7}, Asmaa M. AboulMagd ⁸, Khayrya A. Youssif ⁹, Gerhard Bringmann ^{10,*}, Safwat A. Ahmed ^{1,*}

- ¹ Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University 41522 Ismailia, Egypt; enastamany@gmail.com (E.E.E.); dina_hal@pharm.suez.edu.eg (D.M.H.); am_kamal66@yahoo.com (A.K.I.); amahdali@gmail.com (H.A.H.); omarreda_70@yahoo.com (R.F.A.A.)
- ² Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia, Egypt; usama.ramadan@mu.edu.eg
- ³ Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia, Egypt
- ⁴ Department of Marine Science, Faculty of Science, Suez Canal University 41522 Ismailia, Egypt; ttemraz@science.suez.edu.eg
- ⁵ Department of Biochemistry, Collage of Science, University of Jeddah 80203 Jeddah, Saudi Arabia; dhajjar@uj.edu.sa (D.H.); amaki@uj.edu.sa (A.A.M.)
- ⁶ Department of Chemistry of Pharmacology, Faculty of Pharmacy, Jouf University, 2014, Saudi Arabia; omhendawy@ju.edu
- 7 Department of clinical Pharmacology, Faculty of Medicine, Beni Suef University, 62513 Beni-Suef, Egypt
- ⁸ Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, 62513 Beni Suef, Egypt; asmaa.aboulmaged@nub.edu.eg
- ⁹ Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information 12585 Cairo, Egypt; khayrya.youssif@gmail.com
- ¹⁰ Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- * Correspondence: bringman@chemie.uni-wuerzburg.de (G.B.); safwat_aa@yahoo.com (S.A.A.); +49-931-318 5323 (G.B.); +20-010-92638387 (S.A.A.); +49-931-318 4755 (G.B.); +20-064-3230741 (S.A.A.)
- † These authors contributed equally to this work.

Figure S1: HRMS of Compound 1 (M+Na) ⁺ .	4
Figure S2: ¹ H-NMR spectrum of compound 1 in (C ₅ D ₅ N, 400 MHz).	5
Figure S3: Partial expansion of the ¹ H-NMR spectrum of compound 1 in (C ₅ D ₅ N, 400 MHz).	6
Figure S4: Partial expansion of the ¹ H-NMR spectrum of compound 1 in (C ₅ D ₅ N, 400 MHz).	7
Figure S5: Partial expansion of the ¹ H-NMR spectrum of compound 1 in (C ₅ D ₅ N, 400 MHz).	8
Figure S6: ¹³ C-NMR spectrum of compound 1 in (C5D5N, 100 MHz).	9
Figure S7: Partial expansion of the ¹³ C-NMR spectrum of compound 1 in (C ₅ D ₅ N, 100 MHz).	10
Figure S8: Partial expansion of the ¹³ C-NMR spectrum of compound 1 in (C ₅ D ₅ N, 100 MHz).	11
Figure S9: Partial expansion of the ¹³ C-NMR spectrum of compound 1 in (C ₅ D ₅ N, 100 MHz).	12
Figure S10: IR spectrum of compound 1	13
Figure S11: HRMS of α-hydroxy fatty acid methyl ester resulted from hydrolysis of compound 1	14
Figure S12: GC-MS analysis of fatty acids methyl ester carried out after oxidation of α -hydroxy fatty acid methy	<u>yl</u>
<u>ester (Compound 1)</u>	15
Figure S13: ¹ H-NMR spectrum of compound 2 in (C ₅ D ₅ N, 400 MHz).	16
Figure S14: ¹³ C-NMR spectrum of compound 2 in (C ₅ D ₅ N, 100 MHz).	17
Figure S15: ¹ H -NMR spectrum of Compound 3 in (C ₅ D ₅ N, 400 MHz).	18
Figure S16: ¹³ C-NMR spectrum of Compound 3 (C ₅ D ₅ N, 100 MHz).	19
Figure S17: HRMS of Compound 4 (M+H) ⁺	20
Figure S18: IR Compound 4 (M+H) ⁺	21

rigure 519; ⁻ n-NVIR spectrum of compound 4 m (CDCl3, 400 Mmz)	Figure S19: ¹ H-NMR s	pectrum of compound 4 in	(CDCl ₃ , 400 MHz))
---	----------------------------------	--------------------------	-------------------------------	---

Figure S20: Partial expansions of the ¹ H-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	23
Figure S21: Partial expansions of the ¹ H-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	24
FigureS 22: Partial expansions of the ¹ H-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	25
Figure S23: ¹³ C-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	
Figure S24: Partial expansion ¹³ C-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	27
Figure S25: Partial expansion ¹³ C-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz).	
Figure S26: Partial expansion ¹³ C-NMR spectrum of compound 4 in (CDCl ₃ , 400 MHz)	
Figure S27: MS spectrum for 10-Heptadecenoic acid (z)- methyl ester	
Figure S28: MS spectrum for 9-Octadecenoic acid (z)-methyl ester	
Figure S29: ¹ H -NMR spectrum of Compound 5 in (CDCl ₃ , 400 MHz).	
Figure S30: ¹³ C-NMR spectrum of Compound 5 (CDCl ₃ , 100 MHz).	
Figure S31: DEPT spectrum of Compound 5 in (CDCl ₃ , 100 MHz).	

Figure S1: HRMS of Compound 1 (M+Na)⁺.

Figure S2: ¹H-NMR spectrum of compound 1 in (C₅D₅N, 400 MHz).

Figure S3: Partial expansion of the ¹H-NMR spectrum of compound 1 in (C₅D₅N, 400 MHz).

Figure S4: Partial expansion of the ¹H-NMR spectrum of compound 1 in (C₅D₅N, 400 MHz).

Figure S5: Partial expansion of the ¹H-NMR spectrum of compound 1 in (C₅D₅N, 400 MHz).

Figure S6: ¹³C-NMR spectrum of compound 1 in (C₅D₅N, 100 MHz).

Figure S7: Partial expansion of the ¹³C-NMR spectrum of compound 1 in (C₅D₅N, 100 MHz).

Figure S8: Partial expansion of the ¹³C-NMR spectrum of compound 1 in (C₅D₅N, 100 MHz).

Figure S9: Partial expansion of the ¹³C-NMR spectrum of compound 1 in (C₅D₅N, 100 MHz).

:\FT-IR Measurments\ATR\REDA.0

Figure S10: IR spectrum of compound 1.

URM2_ESI_Positive

Figure S11: HRMS of α -hydroxy fatty acid methyl ester resulted from hydrolysis of compound 1

Figure S12: GC-MS analysis of fatty acids methyl ester carried out after oxidation of α-hydroxy fatty acid methyl ester (Compound 1)

Figure S13: ¹H-NMR spectrum of compound 2 in (C₅D₅N, 400 MHz).

Figure S14: ¹³C-NMR spectrum of compound 2 in (C₅D₅N, 100 MHz).

Figure S15: ¹H -NMR spectrum of Compound 3 in (C₅D₅N, 400 MHz).

Figure S16: ¹³C-NMR spectrum of Compound 3 (C₅D₅N, 100 MHz).

Base peak plot, MS1, m/z: 0.0000 - 1200.4752

Figure S17: HRMS of Compound 4 (M+H)⁺

E:\FT-IR Measurments\ATR\OIL.0

07/03/2021 11:20:08

Figure 16

MDPI

Figure S19: ¹H-NMR spectrum of compound 4 in (CDCl₃, 400 MHz).

Figure S20: Partial expansions of the ¹H-NMR spectrum of compound 4 in (CDCl₃, 400 MHz)

Figure S21: Partial expansions of the ¹H-NMR spectrum of compound 4 in (CDCl₃, 400 MHz)

Figure S22: Partial expansions of the ¹H-NMR spectrum of compound 4 in (CDCl₃, 400 MHz)

MDPI

Figure S23: ¹³C-NMR spectrum of compound 4 in (CDCl₃, 400 MHz).

Figure S24: Partial expansion ¹³C-NMR spectrum of compound 4 in (CDCl₃, 400 MHz).

Figure S25: Partial expansion ¹³C-NMR spectrum of compound 4 in (CDCl₃, 400 MHz).

Figure S26: Partial expansion ¹³C-NMR spectrum of compound 4 in (CDCl₃, 400 MHz).

Figure S27: MS spectrum for 10-Heptadecenoic acid (z)- methyl ester.

Figure S28: MS spectrum for 9-Octadecenoic acid (z)-methyl ester

Figure S29: ¹H -NMR spectrum of Compound 5 in (CDCl₃, 400 MHz).

Figure S30: ¹³C-NMR spectrum of Compound 5 (CDCl₃, 100 MHz).

Figure S31: DEPT spectrum of Compound 5 in (CDCl₃, 100 MHz).