A tryptophan 'gate' in the CRISPR-Cas3 nuclease controls ssDNA entry into the nuclease site, that when removed results in nuclease hyperactivity.

Liu He¹, Zoe Jelić Matošević³, Damjan Mitić², Dora Markulin², Tom Killelea¹, Marija Matković⁴, Branimir Bertoša³, Ivana Ivančić-Baće^{2*} and Edward L. Bolt^{1*}

- ¹ School of Life Sciences, University of Nottingham, United Kingdom.
- ² Department of Biology, Faculty of Science, University of Zagreb, Croatia.
- ³ Department of Chemistry, Faculty of Science, University of Zagreb, Croatia.
- ^{4.} Institute Ruđer Bošković, Zagreb, Croatia.
- * Correspondence: ed.bolt@nottingham.ac.uk or iibace@biol.pmf.hr

Contents of Supporting Information:

- 1. Supplementary materials. Strains and plasmids used in this study.
- 2. Figure S1. Fork DNA substrate.
- 3. Figure S2. CD monitoring of wild type Cas3 thermal denaturation.
- 4. Figure S3. EMSAs showing wild-type Cas3 and Cas3^{W406A} DNA-protein complexes.
- 5. Figure S4. CD monitoring of Cas3^{W406A} thermal denaturation.
- 6. Figure S5. Quantification of the distance between the centre of phenyl rings of Trp-230 and Trp-406 and the most prominent hydrophobic interactions made by Trp-406 during the molecular dynamics (MD) simulations.
- 7. Figure S6. Sequence alignment of *E. coli* Cas3 with the templates provided by SwissModel server.
- 8. Figure S7. Root mean square deviations (RMSD) of the protein backbone $C\alpha$ atoms during the MD simulations.
- 9. Table S1. List of strains used in this study.
- 10. Table S2. List of oligonucleotides used in this study.
- **11. Table S2.** Summary of molecular dynamics simulations conducted for different systems of *E. coli* Cas3 protein.
- 12. Supplementary references.

Supplementary materials

Strains and plasmids

The *E. coli* K-12 strains used in this study are described in the **Table S1**. Plasmids used were: pKOV (Link et al. 1997), pAH4 (*cas3* cloned into Bad-HisA using XhoI and EcoRI), pIIB39 (mutagenized pAH4 in W406A residue) using primers listed in Table 2 (oligos), pEB526 (Cas3 cloned in pUC19) (1). Plasmid pCas3 is described in (2).

Figure S1. Fork DNA substrate. DNA oligos MW12 and MW14 were annealed to form a DNA fork substrate with 25 base pairs double-stranded region and extended two single-stranded 25 nt arms. A Cy5 fluorescent dye oligonucleotide labelling was incorporated at 5'-end of MW12 that has a maximal absorbance at 646 nm.

Figure S2. CD monitoring of wild type Cas3 thermal denaturation. (i). Replica1. CD monitoring of Cas3 thermal denaturation. Changes at 222 nm in temperature range 30-55 °C presented as mean residue ellipticity (MRE) *vs* Temperature ([Q]₂₂₂*vs*T): • experimental data — Boltzmann fit of experimental data; Boltzmann sigmoid value x0=34.68 °C; IΔMRE_{exp}I=IMRE₃₀-MRE₅₅I=1056.56

degcm²dmol⁻¹, 19.2 % \downarrow . (ii). Replica2. CD monitoring of Cas3 thermal denaturation. Changes at 222 nm in temperature range 20-55 °C presented as mean residue ellipticity (MRE) *vs* Temperature ([Q]₂₂₂*vs*T): • experimental data — Boltzmann fit of experimental data; Boltzmann sigmoid value x0=35.27 °C; I Δ MREexpl=IMRE₂₀-MRE₅₅I= 1552.74 degcm²dmol⁻¹, 20.2 % \downarrow . (iii). Replica3. CD monitoring of Cas3 thermal denaturation. Changes at 222 nm in temperature range 30-55 °C presented as mean residue ellipticity (MRE) *vs* Temperature ([Q]₂₂₂*vs*T): • experimental data — Boltzmann fit of experimental data; Boltzmann sigmoid value x0=34.29 °C; I Δ MREexpl=IMRE₃₀-MRE₅₅I= 771.81 degcm²dmol⁻¹, 10.1 % \downarrow .

Figure S3. EMSAs showing wild-type Cas3 and Cas3^{W406A} **DNA-protein complexes.** EMSAs show that wild-type Cas3 and Cas3^{W406A} form stable DNA-protein complex (panels i and ii), but other mutant proteins do not (panels iii, iv and v). Increasing concentrations of Cas3 and mutant proteins (0, 0.4 0.8, 1.6 and 3.3 μ M) were incubated with DNA fork (20 nM). Stable DNA-protein complex is indicated.

Figure S4. CD monitoring of Cas3^{W406A} **thermal denaturation.** Changes at 222 nm in temperature range 30-55 °C presented as mean residue ellipticity (MRE) vs Temperature ([Q]₂₂₂vsT): • experimental data — Boltzmann fit of experimental data; Boltzmann sigmoid value x0=37.20 °C; I Δ MREexpI=IMRE₃₀-MRE₅₅I=1730.4 degcm²dmol⁻¹, 14.0 % \downarrow .

Figure S5. The distances between the centre of phenyl rings of Trp-230 and Trp-406 and the most prominent interactions that Trp-406 forms with the aliphatic part of sidechains of residues Val-415, Gln-426 and Arg-440 when entering a hydrophobic pocket at higher temperatures. The data shown

is from simulations of wild-type Cas3 protein complex with Mg²⁺ and ATP at 28 °C, 30 °C, 37 °C, and 44 °C. **A.** The distance between the sidechains of residues Trp-230 and Trp-406. **B.** The distance between the sidechains of residues Trp-406 and Val-415. **C.** The distance between the sidechain of Trp-406 and the aliphatic part of Gln-426 sidechain. **D.** The distance between the sidechain of Trp-406 and the aliphatic part of Arg-440 sidechain. **E.** The radius of gyration for the sidechains of Trp-406 and Val415 and the aliphatic part of Gln-425 and Arg-440 sidechains.

Α.	Model/1-888	1	ME <mark>P</mark> FKY <mark>ICHYWGK</mark> SSKSLTK <mark>G</mark> NDIHLLIYHCLDVAAVADCWWDQSVV LQNTF	52
	4Q2C/1-914	1	D <mark>PWIFWAKWG</mark> S <mark>G P</mark> DL <mark>GWHPLLCHMLDVAAV</mark> TLQMWRRVL <mark>P</mark> AAWKARI	47
	Model/1-888	53	C R N E M L S K Q R V K A W L L F F I A L H D I G K F D I R F Q Y K S A E S W L - K L N P A T P S L N G P S	105
	4Q2C/1-914	48	S G V L G V G Q E D A E R W L A F F A G G H D I G K A S P A F Q L Q L R P E Q G R E L V A R R L R D A G L P	101
	Model/1-888	106	T QMC R <mark>K F N H G</mark> A A <mark>G L</mark> YWF N Q D S L S E Q S L <mark>G</mark> D F F S F F D A A <mark>P H P</mark> Y E <mark>S</mark> WF PWV E A V T G H	159
	4Q2C/1-914	102	- L F N A <mark>R A P H G</mark> T I S A N V L E T V L A D V F G L S <mark>G</mark> R <mark>S</mark> A R WV A F A V G G H	142
	Model/1-888	160	HGFILHSQDQDKSRWEMPASLASYAAQDKQAREEWISVLEALFLTPAGLSINDI	213
	4Q2C/1-914	143	HGFVPSYDEVRRDL-D-QQAVGWGMWDAAREVLLCRLADALGLPGSSRPTVE	192
	Model/1-888	214	<mark>P P</mark> D C S S L L A <mark>G F C S L A DWL G S</mark> WT T T N T F L F N E D A <mark>P</mark> S D I NA L R T <mark>Y F Q</mark> D R Q Q D A S	265
	4Q2C/1-914	193	S T <mark>P</mark> D A F M L A G L V S V A DW I G S N E E Y F <mark>P Y</mark> A A Q S A L Q V <mark>P</mark> Q L D A E A Y L E R A M R Q A E	244
	Model/1-888	266	RVLELSGLVSNK RCYE <mark>G</mark> VHALLDNGY <mark>Q</mark> PRQLQVLVDALP VAPGLTVIEA	314
	4Q2C/1-914	245	RAMASLGWVGW <mark>RP</mark> ASGSMRLTELFPYIRQPTTVQAAAEELAGEVKS <mark>P</mark> SITIIEA	298
	Model/1-888	315	P T G S G K T E T A L A YAWK L I D Q Q I A D S V I F A L P T Q A T A N AML T R ME A S A S H L F S S -	367
	4Q2C/1-914	299	P M G E G K T E A AML L A D T F S T A H G M S G C Y F A L P T MA T S N Q M F G R V T D Y L R H R Y P E D	352
	Model/1-888	368	- PNLILAHGNSRFNHLFQSIKSRAITEQGQEEAWVQCCQWLSQ	409
	4Q2C/1-914	353	VVVVNLVHGHSDLSALLQELRQKGEEIFQLQGVYDEALGDEQLGAVVAGQWFTR	406
	Model/1-888	410	S N <mark>KK</mark> VFLGQIGVC <mark>TIDQ</mark> VLISVLPVKHRFI <mark>R</mark> GLGIGRSVLIVDEVHAYDTYMNG	463
	4Q2C/1-914	407	- GKRALLPPYGVGTVDQALLAVLQVKHVFVRLFALSTKTVIVDEVHAYDVYMTT	459
	Model/1-888	464	L L E A Y L K A Q A D Y G G S Y I L L <mark>S A T L P</mark> MK Q <mark>K</mark> Q K L L D T Y G L H T D <mark>P</mark> V E NNS A Y P L	513
	4Q2C/1-914	460	L L H R L L E W L G A L S V <mark>P V V V L S A T L P</mark> S A R <mark>R</mark> R E L V K A Y A R G A G WQ A E R D L <mark>P P</mark> A G Y P R	513
	Model/1-888	514	I NWR <mark>G</mark> V NGA Q R F D L L A H P E Q L P P R F S I Q P E P I C L A DML P D L TML E RMI A A A N A G	567
	4Q2C/1-914	514	I T Y A A A E D V R G I H F A P - S E A S R R K V A L RW V S A P E H E A L G Q L L A E A L S Q G	561
	Model/1-888	568	AQVCLICNLVDVAQVCYQRLKELNNTQVDIDLFHARFTLNDRREKENRV	616
	4Q2C/1-914	562	GCAAIICNTVPRAQALYSALREVFPGLAEDGMPELDLLHARYPYEEREVREART	615
	Model/1-888	617	I S N F <mark>G K N G K R</mark> N V <mark>G</mark> R I L V A <mark>T Q</mark> V V <mark>E Q S</mark> L D V D F DWL I T Q H C P A D L L F <mark>Q R</mark> L G R L H R H H	670
	4Q2C/1-914	616	L <mark>G</mark> R F S <mark>R N G R R P H</mark> R A I L V A T Q V I E Q S L D L D F D L M V T D L A P V D L V L Q R M G R L H R H P	669
	Model/1-888	671	RK <mark>Y R P</mark> AGFE I PVATILL PDGEG <mark>YG</mark> - RHEH I YS NV RVMWRTQQH I EEL N	717
	4Q2C/1-914	670	VHD <mark>PLRP</mark> ERLRS <mark>PELWVV</mark> SPQVMGDV <mark>P</mark> IFDRGSASVYDEH - TLLRSWLALRDR -	721
	Model/1-888	718	GA S L F F P D A Y R QWL D S I Y D D A E MD E P EWV G N G MD K F E S A E C E K R F K A R	765
	4Q2C/1-914	722	- D T L Q L P E D I E E L V E Q V Y S D G R V P Q G A S E E L R S L W E R T F K A Q Q K V L R E D S L Q A K	774
	Model/1-888	766	K V L QWA E E Y S L <mark>QD</mark> ND E T I L A V <mark>T R</mark> D <mark>G E MS</mark> L P L L P Y V Q T S S G K	806
	4Q2C/1-914	775	Y R <mark>Y</mark> I K <mark>G P G</mark> Y N S I W <mark>G I V</mark> T A S V E <mark>E D</mark> A P E L H <mark>P</mark> A L QA L T R L A <mark>E P S V</mark> S A V C L V A <mark>G S G G P</mark>	828
	Model/1-888	807	QLLDGQVY EDLSHEQQ <mark>YEALALNRVNVP</mark> FT - WKRSFSEV VD - EDGLLWLE	854
	4Q2C/1-914	829	CLPDGTPVDLDT <mark>PP</mark> DAAMAERLLRRSVAITDARVLD <mark>P</mark> LLDVPVPKGWERSSLLR	882
	Model/1-888	855	<mark>G</mark> KQNLD <mark>GWVWQG</mark> NSIVITYTGDEGMTRVIPAN <mark>P</mark> K	888
	4Q2C/1-914	883	GYR <mark>P</mark> LVFD <mark>ASG-RAMVGRWIVRIDPELGI</mark> VVES	914

в.	Model/1-888 4QQW/1-929	1 1	ME <mark>P</mark> FK <mark>Y</mark> I <mark>PL</mark> D	C H <mark>YWG K</mark> L R FWA <mark>K</mark>	S S K S L E R <mark>G</mark>	T K <mark>G</mark> N D - L R <mark>G</mark> K	HLLI T <mark>YP</mark> LV	YHCLD CHSLD		CWWD <mark>Q</mark> SV /LWN <mark>E</mark> YL	V <mark>L</mark> QN T S <mark>PGL</mark> RD T	FC 53 IA 48
	Model/1-888 4QQW/1-929	54 49	RNEMLSK SSMETDE	QRVKAV EHA <mark>GH</mark> C	VLLFFI CIAFWA	A L HD I <mark>G L HD</mark> I	GKFDI GKLTR	R F Q Y K S E F Q Q Q	S A E S W L H	K <mark>LNP</mark> AT <mark>P</mark> A <mark>YP</mark>	S L N <mark>G P</mark> S T <mark>G</mark> E E -	QM 108 L S 95
	Model/1-888 4QQW/1-929	109 96	C R K F N <mark>H G</mark> G E Q R S <mark>H</mark> A	A A <mark>G</mark> L YV A A T <mark>G</mark> KV	VF NQD S VL <mark>P</mark> F A L	L S E Q S - <mark>P</mark> S L <mark>G</mark>	LGDFF YP	S F F D A /	A <mark>P</mark> HPYES N- <mark>GG</mark> LN	SWF <mark>PWVE</mark> /T <mark>GLVAQ</mark>	AVT <mark>GHHG</mark> ML <mark>GGHHG</mark>	F I 163 T F 139
	Model/1-888 4QQW/1-929	164 140	<mark>L H</mark> S QDQD <mark>H P</mark> H <mark>P</mark> S F Q	K S <mark>R</mark> WEN S - <mark>R</mark> N P L	I <mark>P</mark> ASLA - AEF <mark>G</mark>	S Y A <mark>A</mark> Q F S S <mark>P</mark> H	QDKQA <mark>R</mark> IWEKQ <mark>R</mark>	E E <mark>W I</mark> S HA L L H	V E A L F I V F D A T C	TPAGLS RPTPP-	I ND I <mark>P P</mark> D - DML D <mark>G P</mark>	CS 218 TA 190
	Model/1-888 4QQW/1-929	219 191	<mark>S</mark> LLA <mark>G</mark> FC SVVC <mark>G</mark> LV	S L A <mark>D</mark> WL I L A <mark>D</mark> WL	<mark>G</mark> SWTT V <mark>S</mark> QED	T N T F L F L L	F N E D A E R L T S	<mark>P</mark> SI L <mark>P</mark> AD <mark>G</mark>	DINAL <mark>R</mark> SASALR	TYFQDRQ HF <mark>E</mark> TSL	QD <mark>A</mark> S R <mark>V L</mark> R R <mark>I P</mark> S L L	EL 270 DA 243
	Model/1-888 4QQW/1-929	271 244	S <mark>GL</mark> VSNK A <mark>GL</mark> R <mark>P</mark> IT	R <mark>CY</mark> E <mark>G</mark> V V <mark>PP</mark> ATF	HALLD TES <mark>F</mark> P	N <mark>G</mark> YQ <mark>P</mark> HLSK <mark>P</mark>	RQLQV N <mark>GLQ</mark> A	L V D A L S L A K H	PCLCT	A <mark>PGLTVI</mark> SPGLVLI	E <mark>A P</mark> T <mark>G</mark> S <mark>G</mark> T <mark>A P</mark> M <mark>G</mark> E G	KT 321 KT 298
	Model/1-888 4QQW/1-929	322 299	E T A L A Y A E A A Y H V A	WK <mark>L</mark> IDO DL <mark>LG</mark> KA	QQIADS T <mark>G</mark> R <mark>PG</mark>	V I F A L R F L A L	PTQAT PTMAT	A NAML A DQMH	RMEAS RLKEY	SHLFS- RYRVEN	<mark>SP</mark> TDL <mark>P</mark> R <mark>S</mark> S	NL 370 TL 353
	Model/1-888 4QQW/1-929	371 354	ILA <mark>HG</mark> NS ALL <mark>H</mark> SMA	R <mark>F N H</mark> L F W L N P D Y	QSIKS A <mark>P</mark> ADL	RAI PGVSK	- T E Q <mark>G</mark> V L S N L	Q E E A W G H R D P	QCCQWI	SQSN <mark>KK</mark> M <mark>G</mark> -R <mark>KR</mark>	V F L <mark>G</mark> Q I <mark>G</mark> G L L A <mark>PW</mark> A	VC 422 VG 407
	Model/1-888 4QQW/1-929	423 408	TIDQVLI TIDQALM	SVL <mark>P</mark> VK AVLRAK	HRFIR HNALR	<mark>g l g l g</mark> l <mark>f g l</mark> a	R S V L I G K V V V	V <mark>DE</mark> VH/ V <mark>DE</mark> AH/	A Y D T YMI A V D P YMO	N <mark>GLLEAV</mark> QVLLEQL	L <mark>K A</mark> Q A D V L <mark>R</mark> WL <mark>G</mark> T L	<mark>GG</mark> 477 DV 462
	Model/1-888 4QQW/1-929	478 463	SVILL <mark>S</mark> A PVVLL <mark>S</mark> A	<mark>T L P</mark> MK (<mark>T L HH</mark> S I	QK QK L L A N S L V	D T <mark>Y G</mark> L K A <mark>Y</mark> L E	HTD <mark>G</mark> AR <mark>G</mark> R	RWN R S	- <mark>P</mark> - <mark>V</mark> E N I E <mark>P</mark> QPV S I	N S A <mark>Y P</mark> L I E V S <mark>Y P G</mark> W	NWR <mark>GV</mark> N <mark>G</mark> LHVDARI	AQ 523 GK 517
	Model/1-888 4QQW/1-929	524 518	R F V T R S S D V	DLLA <mark>H</mark> F DPLPIA	P E Q <mark>L P P</mark> T T <mark>P</mark> R K	R F S I Q P L E V R	PEPIC LVDVP	LADM- VKEGA	P - DL T NR S T V	ILERMIA AKELT <mark>P</mark>	AANA <mark>G</mark> AQ LVKQ <mark>GG</mark> C	VC 571 AA 572
	Model/1-888 4QQW/1-929	572 573	LICNLVD IICTTVA	VAQVC EAQGV	Q R L K <mark>E</mark> D L L S Q	L NN WFATL	TQ <mark>V</mark> GEDAP		HA <mark>RF</mark> TLI IS <mark>RFP</mark> NI	ND <mark>R</mark> REKE RQ <mark>R</mark> TEIT	N R <mark>V I</mark> S N F A T <mark>I V</mark> D L F	GK 622 GK 627
	Model/1-888 4QQW/1-929	623 628	N <mark>G</mark> K E <mark>G</mark> A Q S <mark>G</mark> R	<mark>R</mark> - NVGF <mark>RP</mark> TR <mark>G</mark> A	R I L VA <mark>T</mark> V L VA <mark>T</mark>		S L D V D L D L D	F <mark>D</mark> WL I V <mark>D</mark> LMI	QHC PAI DLAPV	DLLF <mark>QR</mark> L SLLL <mark>QR</mark> A	<mark>G R L H R H</mark> H G <mark>R CW R H</mark> E	RK 672 HL 682
	Model/1-888 4QQW/1-929	673 683	Y <mark>RP</mark> A GIIN <mark>R</mark> PQ	<mark>g f</mark> e i <mark>p</mark> v Wakq <mark>p</mark> e	ATILL LVVLT	PDGEG PEQNG	DADRA	- <mark>YG</mark> PWF <mark>P</mark> R :	R H E H I Y S SWT S V Y I	SNVR <mark>VM</mark> W PL-ALLQ	<mark>R T</mark> Q Q <mark>H I</mark> E <mark>R T</mark> Y T L L R	EL 716 RR 736
	Model/1-888 4QQW/1-929	717 737	NGASLFF NGAPVQI	PDAYR PEDVQ	WLDSI LVDDV	YDDAE YDDDS	MDE <mark>PE</mark> L-AED	WV <mark>G</mark> N <mark>G</mark> LE-AD	M <mark>DK</mark> FES/ MERMG-I	ECEK <mark>R</mark> F ELAQ <mark>RG</mark>	KA <mark>R</mark> KVL - LA <mark>R</mark> NAV I	768 <mark>P</mark> D 788
	Model/1-888 4QQW/1-929	769 789	PDDAEDN	A E E <mark>Y S</mark> L L N <mark>G L T</mark> E	Q - DND F S F DV	E T I L A D E HV L	VTRDG ATRFG	EM <mark>SLP</mark> A <mark>GSV</mark> R	L L <mark>P Y</mark> V Q ⁻ / L C Y Y V I	T <mark>S</mark> S <mark>G</mark> KQL D <mark>T</mark> A <mark>G</mark> NRW	L <mark>D G Q V</mark> Y E L <mark>D P E C</mark> T V	D - 816 E F 843
	Model/1-888 4QQW/1-929	817 844	P E Q <mark>G</mark> T <mark>G</mark> R	L S H E E <mark>G</mark> R F T N	E Q Q <mark>Y</mark> E A 1A D <mark>C</mark> R D	LALNR LVART	VNV <mark>P</mark> F I <mark>P</mark> VRM	T - <mark>W</mark> K R S I <mark>G PW</mark> A S (6 F <mark>S E</mark> QL T E DNI	VV - DED I <mark>PP</mark> EAWR	<mark>G</mark> L L W E S F Y L R D	852 LV 898
	Model/1-888 4QQW/1-929	853 899	- <mark>L E GK</mark> QN L <mark>I P</mark> Q <mark>R</mark> V T	L <mark>DGW</mark> D <mark>EGA</mark> VL	VWQGN PTETG	S I V I T G R EWL	YT <mark>G</mark> DE LD <mark>P</mark> CK	GMTRV GLI	I <mark>P</mark> AN <mark>P</mark> K			888 929

Figure S6. Sequence alignment of *E. coli* **Cas3 with the templates provided by SwissModel server. A.** Sequence alignment of *E. coli* Cas3 and *T. terrenum* Cas3 (PDB ID: 4Q2C). **B.** Sequence alignment of *E. coli* Cas3 and *T. fusca* Cas3 (PDB ID: 4QQW).

Figure S7. Root mean square deviations (RMSD) of the protein backbone Cα atoms. A. RMSD for simulation of wild-type protein in complex with Mg²⁺ and ATP at 301 K. **B.** RMSD for simulation of wild-type protein in complex with Mg²⁺ and ATP at 303 K. **C.** RMSD for simulation of wild-type protein in complex with Mg²⁺ and ATP at 310 K. **D.** RMSD for simulation of wild-type protein in complex with Mg²⁺ and ATP at 310 K. **D.** RMSD for simulation of wild-type protein in complex with Mg²⁺ and DNA at 303 K. **F.** RMSD for simulation of wild-type protein in complex with Mg²⁺ and DNA at 303 K. **F.** RMSD for simulation of W230A mutant in complex with Mg²⁺ and DNA at 303 K. **H.** RMSD for simulation of W230A mutant in complex with Mg²⁺ and DNA at 310 K. **I.** RMSD for simulation of W406A mutant in complex with Mg²⁺ and DNA at 303 K. **J.** RMSD for simulations of W406A mutant in complex with Mg²⁺ and DNA at 303 K. **J.** RMSD for simulations of W406A mutant in complex with Mg²⁺ and DNA at 303 K. **J.** RMSD for simulations of W406A mutant in complex with Mg²⁺ and DNA at 303 K. **J.** RMSD for simulations of W406A mutant in complex with Mg²⁺ and DNA at 303 K. **J.** RMSD for simulations of W406A mutant in complex with Mg²⁺ and DNA at 303 K.

Table S1. List of *E. coli* K-12 strains used in this study.

Bacterial strain	Relevant genotype	Source or reference		
	F⁻rrnB ∆lacZ4748 (::rrnB-3) hsdR514	(3)		
BW25113	Δ (araBAD)567 Δ (rhaBAD)568 rph-1 λ^2			
	Bacterial strains related to BW25113			
BW39121	+ ∆hns::kan	(4)		
IIB1040	+ λc + λT3 $\Delta cas1::kan \Delta hns::cat$	(5)		
IIB1043	+λc + λT3 <i>Δcas1</i> ::FRT	(5)		
IIB1309	+λc + λT3 $\Delta cas1$::FRT Δhns ::kan	P1. BW39121 x IIB1043		
IIB1342	+λc + λT3 $\Delta cas1$::FRT Δhns ::kan cas3W406A	Gene replacement of <i>cas3</i> with allele <i>cas3^{W406A}</i> using pKOV – see main methods		

Oligonucleotide Name	Sequence from 5' to 3'					
Primers for amplyfing ygcB from genomic DNA						
ygcB_Forward	ATCGCTCGAGATAGAACCTTTTAAATATA					
ygcB_Reverse	ATCGGCATGCTCGAATTCTTATTTGGGATTTGCAGGGA					
Primers for DNA substrate prepar	ration					
Cas3HD_Forward	GCCGCTCGAGGAACCTTTTAAATATATATGCCATT					
W42A_Reverse	GCAACAGCAGCAACATCA					
Primers for site-direct mutagenesis						
W149A_Forward	TTATGAGTCCgcgTTTCCATGGGTAGAGGC					
W149A_Reverse	GGATGAGGAGCGGCATCA					
W152A_Forward	CTGGTTTCCAgctGTAGAGGCCG					
W152A_Reverse	GACTCATAAGGATGAGGAG					
W230A_Forward	GCTTGCTGACgctTTAGGCTCCTGG					
W230A_Reverse	GAGCAAAAACCTGCTAAC					
W406A_Forward	GTGTTGTCAGgctTTGTCACAAAGCAATAAGAAAG					
W406A_Reverse	TGAACCCACGCTTCTTCT					
Primers for allele replacement						
FP-cas	TAAAAAAACAGGGAGGCTATTAGAATTAACCATGGGGGGGTTC					
RP-vector	ATCACTGAGATCATGTTGTAGCGCCCTTATTTGGGATTTGCAGGGATG					
FP-promoter	CTATTGCTGGTTTANTCGGTACCCCAAGACATGTGTATATCACTG					
RP-promoter	GAACCCCCCATGGTTAATTCTAATAGCCTCCCTGTTTTTTAG					
pKOV-F	GCAAATTCGACCCGGTCGTC					
pKOV-R	GTTCCTGACCGATAACATCACAGA					
Upcas3	CGATATTTATGAGCAGCATC					
Downcas3	GATGTACATTGTGCACCTTC					
Sequencing primer						
Cas3700	GGTTAGGCTCCTGGACTACAAC					
Oligos for construct DNA fork substrate						
MW12	CY5-GTCGGATCCTCTAGACAGCTCCATGATCACTGGCACTGGTAGAATTCGGC					
MW14	CAACGTCATAGACGATTACATTGCTACATGGAGCTGTCTAGAGGATCCGA					
CRISPR RNA targeting sequence	AGGCCCGCACCGATCGCCCTTCCCAACAGTTG					

Table S2. List of oligonucleotides used in this study.

Table S3. Summary of molecular dynamics simulations conducted for different systems of *E. coli* Cas3 protein.

	wild	-type	W230A	W406A		
	Mg²⁺, ATP	Mg²⁺, DNA	Mg²⁺, DNA	Mg²⁺, DNA		
Temperature / K	Time / ns					
301	110	Х	Х	Х		
303	300	120	120	120		
310	300	120	120	120		
317	110	Х	Х	Х		

Supplementary References

- Ivancic-Bace, I., Radovcic, M., Bockor, L., Howard, J.L. and Bolt, E.L. (2013) Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises RNaseHI. *RNA Biol*, **10**, 770-778.
- Mulepati, S. and Bailey, S. (2011) Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem, 286, 31896-31903.
- 3. Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proc Natl Acad Sci U S A*, **97**, 6640-6645.
- Pougach, K., Semenova, E., Bogdanova, E., Datsenko, K.A., Djordjevic, M., Wanner, B.L. and Severinov, K. (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. *Mol Microbiol*, **77**, 1367-1379.
- 5. Majsec, K., Bolt, E.L. and Ivancic-Bace, I. (2016) Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS. *BMC Microbiol*, **16**, 28.