Overexpression of *AtBBD1*, Arabidopsis bifunctional nuclease, confers drought tolerance by enhancing the expression of regulatory genes in ABA-mediated drought stress signaling

A K M Mahmudul Huque ¹, Wonmi So ¹, Minsoo Noh ¹, Min Kyoung You ^{2,*} and Jeong Sheop Shin ^{1,*}

- ¹ Division of Life Sciences, Korea University, Seoul 02841, Korea; mahmudornob@korea.ac.kr
- (A.K.M.M.H.); thso1124@gmail.com (W.S.); redmoon89@korea.ac.kr (M.N.)
- ² Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
- * Correspondence: zinggy93@gmail.com (M.K.Y); jsshin@korea.ac.kr (J.S.S)

Experiments	Name	Sequence 5'→3'
Cloning of overexpression construct	BBD1_OX	F: TGC <u>TCTAGA</u> ATGAGGTCGCTTCAAGCACCG
		R: CGC <u>GGATCC</u> TCATGTGTATTTCCTTAATTTGCGTTTTGCC
Cloning of sGFP construct	BBD1-sGFP	F: TGC <u>TCTAGA</u> ATGAGATCGGTTCAAGCACCAGTTG
		R: CGC <u>GGATCC</u> TCATGTGTATTTCCTCAAGTTACGTTTGGCC
	BBD2-sGFP	F: TGC <u>TCTAGA</u> ATGAGGTCGCTTCAAGCACCG
		R: CGC <u>GGATCC</u> TCATGTGTATTTCCTTAATTTGCGTTTTGCC
Cloning of Promoter:GUS construct	Probbdi:GUS	F: CCC <u>AAGCTT</u> ACAAGTTCCAGACACGAGCACCG
		R: CGC <u>GGATCC</u> CTTCCTTCCAATCAAACAGAGTATTTTAGTGT
	Probbd2:GUS	F: CCCAAGCTTCACATTTAAATAGCTATATAATTCTCTATATAATTCTTA
		R: CGC <u>GGATCC</u> CTTCACTTTTTGATGCAGAACCCAGAAA
RT-PCR and qRT-PCR	BBD1	F: AAGACCGACCAAATGGTCAGGC
		R: CAAGTTACGTTTGGCCCGAAACTGAC
	BBD2	F: GGTATGAAGCCGCTGAGTG
		R: CTTCTGGCAAATGGCAATGGCTTC
	PP2AA3	F: CCAAACATCAAATTTAACGTGGCCAAAATG
		R: GTTCTCCACAACCGCTTGGT
	eIF4a1	F: GCTCTCCCGTGGTTTCAAGGACCAGATC
		R: GTCTGTGAGCCAATCAACCTTACGCCTG
	P5CS1	F: AGAGTCAATGGTGGCTCGCTTAGT
		R: ACACGGCCGATTGGATCTTCCATA
	PRODH	F: ATTTGGCAGTACAAAATGCT
		R: AGGACAATGCATCTGACATA
	ABA1	F: CGACGATTGTTGCGTTTCGG

Table S1. List of primers used in this study

	R: GCATGCATCTTCGAAACCTGAG	
NCED3	F: ACATGGAAATCGGAGTTACAGATAG	
	R: AGAAACAACAAACAAGAAACAGAGC	
RD29B	F: TACCTTCCGACCAGATAGCGG	
	R: CGAAAACCCCATAGTCCCAACG	
DAD10	F: CCAGCTCTAGCTCGGAGGA	
KAD18	R: GACTGATCATGATGACCTGGCAAC	
DD20	F: TGGTTTCCTATCTAAAGAAGCTGTG	
KD20	R: ATACAAATCCCCAAACTGAATAACA	
DD22	F: GCTGTTTCCACTGAGGTGGC	
RD22	R: ATGAGTCTCCGGGAGGAAGTG	
	F: AATGGGGAAGTCTTTTCCCGG	
M Y B44	R: CCGTTGCATCTCCGTCATGTAAC	
	F: GCTCTTCTTCCTCTTCGAGTGATG	
ERDIO	R: CCACTGTTTTCACATGATCTCCTTC	
DD2C4	F: GCGGCGTTGCTCTTAACAAAG	
PP2CA	R: GACGACGCTTGATTATTCCTCCTC	
CND70742	F: CATGCCTTTTGGTAGTGGGA	
CYP/0/A3	R: CGATTGACCATCTGTACTTAGTGG	
NA C010	F: AACTGTGGCTACCTGAAGAC	
NAC019	R: CCGAGTTATTAAACCCGTGA	
74710	F: AGGCTCTTACATCACCAAGATTAG	
ZAI10	R: TACACTTGTAGCTCAACTTCTCCA	
	F: GTGACCGACCCGATTGGAAG	
LEA4-5	R: CCCCGCCGGTTCCGTACCCG	
LTD2	F: GTGGGTTGGTGCCACCTTCA	
LIP3	R: TCACTTGATGTTGTTGCAGT	
MNCO	F: ACCACGTCGAAGCAGAGAGACAAA	
MYC2	R: TGTAAGCGATTGCGTCACCGAGTA	

* The bold underlined letters indicate restriction enzyme recognition sites. F, forward primer; R, reverse primer

Figure S1. Characterization of *AtBBD1* overexpression (OX), *atbbd1* and *atbbd1/atbbd2* mutant lines. (**A**) qRT-PCR analysis of *AtBBD1* expression in the WT, two independent *AtBBD1*-OXs, *atbbd1*, and *atbbd1/atbbd2* plants. Two-week-old Arabidopsis (Col-0) plants grown on 1/2 MS agar media were used for qRT-PCR assay. The relative gene expression was calculated and normalized to the reference gene *eIF4a1*. The normalized mRNA levels in wild-type plants were set to 1. Data represent the mean \pm standard error values of three independent experiments. (**B**) T-DNA map of *atbbd1* (SALK_067060).

Figure S2. Root phenotype of the WT, OX5-4, OX20-3, *atbbd1* and *atbbd1/atbbd2* plants in response to MeJA. (A) Primary root growth of the WT, OX5-4, OX20-3, *atbbd1* and *atbbd1/atbbd2* plants on 1/2 MS agar plates containing 20 μ M MeJA. Representative photographs were taken 7 days after plating. Scale bar = 10 mm. (B) Measurement of primary root lengths of five lines in (A). Bars represent the mean \pm SD of 12 seedlings of each genotype. The same letter "a" indicates that root lengths of five lines are not significantly different (ANOVA; P<0.05).

Figure S3. Expression pattern of *MYC2* in the WT, OX5-4, OX20-3, *atbbd1* and *atbbd1/atbbd2* lines under the drought stress conditions by qRT-PCR. Three-week-old soil-grown plants were watered with 20% PEG 6000 and qRT-PCR of *MYC2* expression was analyzed at designated time points. The relative gene expression was calculated and normalized to the reference gene *eIF4a1*. Data represent the mean \pm standard error of three independent experiments. One-way ANOVA with post-hoc Tukey test was used for the statistical comparison of all genotypes. Different letters indicate significant differences among genotypes at each time point (P < 0.05).

Figure S4. Transcriptome analysis of the WT, OX5-4, and *atbbd1* lines under the drought stress conditions. Threeweek-old soil-grown plants were watered with 20% PEG 6000 and then RNA-seq was analyzed with samples collected after 6 h of treatment. **(A)** Heatmap of RNA-seq expression z-scores computed for all genes that were differentially expressed (log₂ (foldchange) > 1) among all pairwise comparisons of the WT, OX5-4 and *atbbd1* plants under drought stress conditions with the WT grown under well-watered conditions. Each column in the heatmap is an individual sample. **(B)** Venn diagram of common and unique DEGs that were up-regulated in OX5-4 and downregulated in *atbbd1* compared to the WT under the drought stress conditions. **(C)** Venn diagram of common and unique DEGs that were down-regulated in OX5-4 and up-regulated in *atbbd1* compared to the WT under the drought stress conditions.

Figure S5. Gene ontology analysis of 388 differentially expressed genes that were up-regulated in OX5-4 and down-regulated in *atbbd1* compared to the WT under the drought stress conditions. The biological processes showing the FDR (false discovery rate) adjusted p-value ≥ 0.05 , calculated by the Benjamini's method, were used in this analysis.

Figure S6. Expression of genes related to ABA-independent signaling in response to drought stress. RPKM levels of *DREB2A, DREB2B* and *ERD1* were determined by RNA-seq in the WT, OX5-4 and *atbbd1* plants under drought stress condition. Samples were collected from three-week-old soil-grown plants after 6 h of stress from watering with 20% PEG 6000.