Supplementary Materials

The picornavirus precursor 3CD has different conformational dynamics compared to 3C^{pro} and 3D^{pol} in functionally-relevant regions

Dennis S. Winston and David D. Boehr*

The Pennsylvania State University, University Park, PA, USA, 16802

*Corresponding Author: ddb12@psu.edu

Supplementary Methods

Validation of rotational correlation time τc by TRACT

1D [¹⁵N-¹H]-TRACT experiments were performed as previously described [1] at 850 MHz at 298 K, with delay periods for determining R α of 10, 40, 80, 20, 60, 100, 50, 70, and 10 ms and delay periods for determining R β of 0.02, 6, 2.8,8.4, 0.4, 1.6, 0.8, 10, 4.4, 0.2, 7.4, 2, 3.6, 5.2, 1.2, 20, 1.5, and 0.02 ms. For each delay, the resulting 1D spectra were integrated from 8-10 ppm. The resulting curves of integral versus delay period were fit for single exponential decay rates by nonlinear least squares with uncertainty determined by residual bootstrapping (Figure S5). Equations 1 and 2 were used to calculate τ c [1]:

$$R_{\beta}-R_{\alpha} = 1/6 \;(\mu_0/4\pi) \;(\hbar\gamma_N^2\gamma_H B_0\Delta\delta_N)/(r_{NH^2}) \;(3\cos^2\theta - 1)(4J(0) + 3J(\omega_N)) \quad (1)$$

$$J(w) = 2/5 \;\tau_c/(1+w^2\tau_c^2) \tag{2}$$

where R α and R β are the decay rates for the α and β spin states, μ_0 is the vacuum permittivity constant, γ_N and γ_H are the gyromagnetic ratios for ¹⁵N and ¹H respectively, B₀ is the strength of the external magnetic field, $\Delta\delta_N$ is the difference between the two principal components of the axially symmetric ¹⁵N chemical shift tensor, r_{NH} is the ¹H-¹⁵N internuclear distance (1.02 x 10⁻¹⁰ m, θ is the angle between the ¹⁵N chemical shift tensor and the N-H bond vector (17°), and ω_N is the Larmor frequency for ¹⁵N. To account for the difference in viscosity between the D₂O-based buffer required for the relaxation violated coherence transfer experiment and the H₂O-based buffer required for the TRACT experiment, the value of τ_c was scaled by 1.45 to account for the increased viscosity of D₂O. This scaling factor was determined by measuring the viscosity of 20% glycerol in D₂O v/v at 20 °C using a Cannon-Fenske viscometer. Then a pulsed field gradient experiment (ledbpgppr2s from Bruker library) with 1000 µs gradient duration at 400 MHz on a Bruker Avance NEO spectrometer was used to determine the temperature dependence of the diffusion coefficient of phenylalanine in the NMR buffer used for the Ile δ 1-[¹³C,¹H] samples at 22 °C, 23.5 °C, and 25 °C in a 3 mm NMR tube. The gradient strength was increased in a squared manner from 5% to 95% in 16 steps with 8 scans each. The diffusion coefficient was extrapolated to 20 °C by linear fit and the Stokes-Einstein equation was used to determine the viscosity at 25 °C [2].

The of τ_c determined by TRACT for 3C was 28.7 ± 1.6 ns. The value of τ_c needed so that the highest order parameter is equal to 1 is 24.8 ns, and the value calculated by HydroNMR was 25.1 ns. The value of τ_c from TRACT is within 15%, and the differences in order parameters identified in the main text are large enough for our analysis to hold even with a τ_c for 3C of 28.7 ns and τ_c determined by setting the highest order parameter to equal 1 for 3C*D.

Figure S1. Multiple quantum ¹H-¹³C CPMG relaxation dispersion plots for d1-methyl Ile groups in the 3C protein.

Figure S2. ¹H CEST profiles for d1-methyl Ile groups in the 3C protein.

Figure S3. ¹³C CEST profiles for d1-methyl Ile groups in the 3C protein.

Figure S4. Nonlinear fits for the intramethyl ¹H-¹H cross-correlated relaxation (eta), including the correction for dipolar interactions with external protons (delta) for d1-methyl Ile groups in the 3C protein. Units for eta and delta are s⁻¹.

00 600 v_{cpmg}(s⁻¹) $v_{cpmg}(s^{-1})$ Figure S6. Multiple quantum ¹H-¹³C CPMG relaxation dispersion plots for d1-methyl Ile groups in the 3C domain of the 3CD protein (i.e. 3C*D). Only curves with measurable Rex values are shown; other curves are relatively flat or overly noisy preventing estimation of $R_{\mbox{\tiny ex}}$ values.

Figure S7. ¹H CEST profiles for d1-methyl Ile groups in the 3C domain of the 3CD protein (i.e. 3C*D).

Figure S8. Nonlinear fits for the intramethyl ¹H-¹H cross-correlated relaxation (eta), including the correction for dipolar interactions with external protons (delta) for d1-methyl Ile groups in the 3CD protein. Units for eta and delta are s⁻¹. 3C*D and 3CD* indicate Ile residues in the 3C and 3D domains, respectively, such that the 3CD* numbering follows the 3D numbering convention.

Figure S9. Multiple quantum ${}^{1}H{}^{-13}C$ CPMG relaxation dispersion plots for d1-methyl Ile groups in 3D protein. Only curves with measurable R_{ex} values are shown; other curves are relatively flat or overly noisy preventing estimation of R_{ex} values.

Figure S10. ¹H CEST profiles for d1-methyl Ile groups in the 3D protein.

Figure S11. Nonlinear fits for the intramethyl ¹H-¹H cross-correlated relaxation (eta), including the correction for dipolar interactions with external protons (delta) for d1-methyl Ile groups in the 3D protein. Units for eta and delta are s^{-1} .

Figure S12. Multiple quantum ${}^{1}H_{-}{}^{13}C$ CPMG relaxation dispersion plots for d1-methyl Ile groups in the 3D domain of the 3CD protein (i.e. 3CD^{*}). Only curves with measurable R_{ex} values are shown; other curves are relatively flat or overly noisy preventing estimation of R_{ex} values.

Figure S13. ¹H CEST profiles for d1-methyl Ile groups in the 3D domain of the 3CD protein (i.e. 3CD*).

References

- 1. Lee, D.; Hilty, C.; Wider, G.; Wüthrich, K. Effective Rotational Correlation Times of Proteins from NMR Relaxation Interference. *J. Magn. Reson.*, **2006**, *178*, 72–76.
- 2. Li, W.; Kagan, G.; Hopson, R.; Williard, P.G. Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY). J. Chem. Educ., **2011**, *88*, 1331–1335