

Table 1. Effects of cellulose based adsorbents and commercial adsorbents on the levels of Benzo[a] pyrene (BaP, $\mu g/kg$) and adsorption efficiency (%, in parentheses) in sesame oil spiked with 12.93 $\mu g/kg$ BaP.

Adsorbents (%, w/w)	Cellulose based adsorbents				Commercial adsorbents		
	Tulip wood	Pine	Eulalia	Raiata pine	Active carbon	Acid clay	Aluminium silicate
	BaP (µg/kg)						
0	12.93ª	12.93ª	12.93ª	12.93ª	12.93ª	12.93ª	12.93ª
0.3	11.12 ^b (14.03)	10.61 ^b (17.95)	8.85 ^b (31.56)	9.91 ^b (23.42)	9.95 ^b (23.11)	12.29 ^b (4.95)	11.37 ^b (12.12)
0.6	10.77° (16.74)	9.65° (25.37)	8.26 ^c (36.16)	9.40° (27.33)	9.41° (27.27)	11.99° (7.31)	11.04 ^c (14.67)
1	10.39 ^d (19.65)	8.86 ^d (31.49)	7.14 ^d (44.76)	9.17 ^c (29.11)	8.29 ^d (35.90)	11.60 ^d (10.30)	10.64 ^d (17.74)
3	9.17 ^e (29.09)	8.15 ^e (37.00)	6.89 ^d (46.74)	8.55 ^d (33.87)	5.00 ^e (61.38)	11.19 ^e (13.47)	10.38 ^d (19.74)
5	8.41 ^f (35.02)	7.86 ^e (39.17)	6.81 ^d (47.32)	8.33 ^d (35.57)	4.19 ^e (67.59)	11.24 ^e (13.09)	9.96 ^d (22.97)

^{a-f} Values followed by different letters differ significantly (p < 0.05) as a function of the adsorbents concentration (%) at the same adsorbent by Duncan's test.

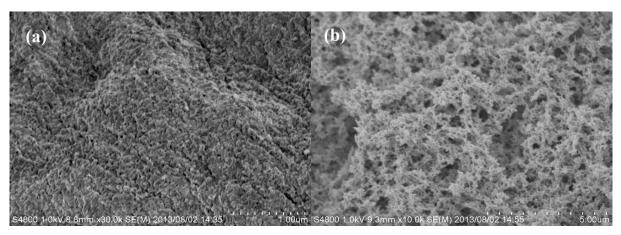


Figure 1. Scanning electron micrographs of the eulalia-based cellulosic aerogel; surface (a) and inside (b).