OMTM, Volume 21

Supplemental information

Targeted knockdown of the adenosine A_{2A}

receptor by lipid NPs rescues the chemotaxis

of head and neck cancer memory T cells

Hannah S. Newton, Ameet A. Chimote, Michael J. Arnold, Trisha M. Wise-Draper, and Laura Conforti

Figure S1. Adenosine does not inhibit chemotaxis in HD CD8⁺ memory T cells but does inhibit chemotaxis in HNSCC CD8⁺ memory T cells. (A and B) Trajectories of CD8⁺ memory T cells migrating along the CXCL10 gradient (green triangle) or CXCL10+adenosine (ADO) gradient (blue triangle) in (A) HD and (B) HNSCC samples. Trajectories are artificially set to start at the origin with the blue triangle representing the Y-COM. The same experiment was performed in CD8⁺ memory T cells isolated from two independent HDs and two independent HNSCC patients. Shown here are the trajectories of migrating cells from a representative single HD and representative single HNSCC patient. Trajectories of 10-15 cells were calculated for each condition for each experiment.

Figure S2. The effect of adenosine is the same on T cell chemotaxis towards CXCL10 and CXCL12. (A) Representative trajectories of T cells migrating along the CXCL10 gradient or CXCL10+adenosine (ADO) gradient in HD CD3⁺ T cells. Trajectories are artificially set to start at the origin with the blue triangle representing the Y-COM. (B) Representative trajectories of T cells migrating along the CXCL12 gradient or CXCL12+adenosine (ADO) gradient in HD CD3⁺ T cells. Trajectories are artificially set to start at the origin with the blue triangle representing the Y-COM. (B) Representative trajectories of T cells. Trajectories are artificially set to start at the origin with the blue triangle representing the Y-COM. (C) Chemotactic parameters for HD CD3⁺ T cells in migration media with CXCL10±ADO versus CXCL12±ADO. (n = 1 patient; 10-15 cells per condition).

Figure S3. Purity of T cell populations used in the study. (**A and B**) CD3⁺ and CD8⁺ T cell populations were enriched by negative selection from HD PBMCs using EasySep Human T cell and Human CD8⁺ T cell enrichment kits respectively (StemCell Technologies) as per the manufacturer's instructions. The purity of the enriched cell CD3⁺ (A) and CD8⁺ (B) T cell fractions were assessed by flow cytometry. (C) CD8⁺ memory T cell population was enriched using the EasySep Human Memory CD8⁺ T Cell Enrichment Kit (StemCell Technologies) as per the manufacturer's instructions. This kit enriches CD8⁺ memory T cells (CD8⁺CD45RA⁻CD45RO⁺) from human PBMCs by targeting non-memory CD8⁺ T cells for removal with antibodies recognizing specific cell surface markers. The CD8⁺ memory T cell content in the enriched fraction was evaluated by flow cytometry and was defined as cells that were CD8⁺CD45RO⁺CD45RA⁻. In panel (C), the CD4⁻ population from the enriched cells were defined as the CD8⁺ population. All experiments were performed in two independent donors and shown here are representative scatter plots showing the purity of the enriched CD3⁺, CD8⁺ and CD8⁺ memory T cells from one HD.