

Supplementary Fig. S1. Transplastomic and wild type plants exposed to CPTA (2-(4-chlorophenylthio) triethylamine) treatment. Transplastomic (2-week old) lines L2, L10, and L15 and wild type were exposed to different concentrations of CPTA (0, 0.5 and 1 mM) for 8 days. A, After 0 days. B, After 4 days. C, After 8 days. CPTA tolerance is enhanced in transplastomic lines where line L2 remained green after eight days of 1 mM CPTA treatment, lines L10 and L15 showed a slight leaf variegation and reduced growth, and the wild type showed chlorosis and stunt growth. Three biological replicates were used per line and condition. wt: wild type, L2: pJM36-2, L10: pJM37-10, L15: pJM37-15, scale bar: 10 cm.

Supplementary Fig. S2. Relative expression of key genes comprising PSI, PSII and cyt $b_6 f$ complex. Stable accumulation of key PSI, PSII and cyt $b_6 f$ complex genes in *DcLCYB1* transplastomic lines (A and B) and *NtLCYB* RNAi lines (C and D) measured by qRT-PCR. A, C, Expression analysis of photosystem I and cyt $b_6 f$ complex subunits. B, D, Expression analysis of photosystem II subunits. Columns and bars represent the means and the ±SEM (three biological and three technical replicates). Non-paired two-tailed student t-test was performed to compare transgenic lines with the wild type. *: p < 0.005, **: p < 0.001, ***: p < 0.0001. PSI: photosystem I, PSII: photosystem II, Cyt $b_6 f$: cytochrome $b_6 f$ complex, wt: wild type.

Supplementary Fig. S3. T0 RNAi lines growing in MS media and on soil. A, RNAi lines growing on MS media showing different degrees of variegation. B, *NtLCYB* RNAi lines (variegated/wild type-like phenotype) grown on soil showing different degrees of variegation. C, *NtLCYB* RNAi lines (white/pale leaf phenotype) after 3 and 1 week growing on MS media and soil, respectively. wt: wild type.

Supplementary Fig. S4. 16-week-old transplastomic and RNAi tobacco plants. A, T1 transplastomic *DcLCYB1* plants. B, T1 *NtLCYB* RNAi plants. C, capsules of RNAi lines. D, Stems of RNAi lines. wt: wild type, scale bar: 10 cm.

Supplementary Fig. S5. Quantification of physiological parameters of *DcLCYB1* **transplastomic and** *NtLCYB* **RNAi lines**. Plant height, leaf area, leaf number and internode space were analyzed at different time points during plant development of transplastomic (A-D) and RNAi lines (E-H). A, E, plant height. B, F, leaf area. C, G, leaf number. D, H, internodal space was measured in two consecutive leaves (4th and 5th).

All the physiological measurements were performed as described in Moreno et al., 2020. In transplastomic lines, no significant changes were observed with the exception of an increase in leaf number for line L2 at day 12 and 16, whereas in RNAi lines all investigated parameters were significantly reduced during the entire development. Non-paired two-tailed Student's t-test was perform to compare transgenic lines with the wild type. wt: wild type.

Supplementary Fig. S6. T3 RNAi plants at different stages of their life cycle. A, B, 8- and 9-week old wild type and T3 RNAi plants, RNAi lines exhibit different variegation strength. C, 16-week old wild type and T3 RNAi plants. At 16 weeks growth of R2 and R3 are similar to wt while R1 is still shorter. wt: wild type, scale bar: 10 cm.

Supplementary Fig. S7. ABA and GA metabolism in transplastomic *DcLCYB1* lines. A-C, Contents of ABA catabolites (phaseic acid, neophaseic acid and ABA-glucose ester) expressed in percentage relative to the wild type (set to 100%) and measured by UPLC-ESI(-/+)-MS/MS, as described in the Materials and

Methods section. D-M, Contents of GA precursors and catabolites (GA₈, GA₉, GA₁₃, GA₁₉, GA₂₀, GA₂₉, GA₃₄, GA₄₄, GA₅₁and GA₅₃) expressed in percentage relative to the wild type (set to 100%) and measured by UHPLC-(-ESI)-MS/MS. Columns and bars represent the means and the ±SEM of 5 biological replicates and three technical replicates. Unpaired Student's t-test was performed to compare transgenic lines with the wild type. *: p < 0.005, **: p < 0.0005, ABA: abscisic acid, GA: Gibberellins, wt: wild type.

Supplementary Fig. S8. ABA and GA metabolism in *NtLCYB* **RNAi lines**. A-C, Contents of ABA catabolites (phaseic acid, neophaseic acid and ABA-glucose ester) expressed in percentage relative to the wild type (set to 100%) and measured by UPLC-ESI(-/+)-MS/MS, as described in the Materials and Methods section. D-M, Contents of GA precursors and catabolites (GA₈, GA₉, GA₁₃, GA₁₉, GA₂₀, GA₂₉,

GA₃₄, GA₄₄, GA₅₁and GA₅₃) expressed in percentage relative to the wild type (set to 100%) and measured by UHPLC-(-ESI)-MS/MS. Columns and bars represent the means and the ±SEM of the 5 biological replicates and three technical replicates. Unpaired Student's t-test was performed to compare transgenic lines with the wild type. *: p < 0.05, **: p < 0.005, ***: p < 0.0005. ABA: abscisic acid, GA: Gibberellins, wt: wild type.

Supplementary Fig. S9. Hormone and inhibitor treatments in transplastomic *DcLCYB1* and *NtLCYB* RNAi lines. A, Phenotypes of *DcLCYB1* transplastomic lines. B, Phenotypes of *NtLCYB* RNAi lines. Tobacco seedlings were grown on agar media (1 % sucrose) for 10 days and subsequently transferred to liquid MS-media (1 % sucrose) supplemented with hormones and inhibitors. Phenotypes of 17-day old wild type, transplastomic and RNAi lines treated with H₂O (mock), GA3 (1 μ M), GA4 (1 μ M), ABA (2 μ M), GA3/ABA (3 μ M/2 μ M), GA4/ABA (3 μ M/2 μ M), and paclobutrazol (PBZ, 1 μ M) for seven days. Phenotypes were recorded after seven days of treatment. Scale bar: 10 cm.

Supplementary Fig. S10. Apocarotenoid quantification in transplastomic *DcLCYB1* and *NtLCYB* **RNAi lines.** (A, B) Non-hydroxylated and hydroxylated apocarotenoid species were quantified in the 4th leaf from 5-week-old tobacco leaves of wild type and transgenic lines using an UHPLC-MS system. Columns and bars represent the means \pm SEM (n = 6). Unpaired Student's t-test was performed to compare transgenic lines with the wild type. *: p < 0.05, **: p < 0.01; ***: p < 0.005.

Supplementary Fig. S11. Light microscopy images of leaf cross sections of transplastomic and RNAi lines. A-C, in transplastomic lines no differences in the arrangement of cell layers was observed. D, F, G, in the green tissue of R1 and both green and yellow tissue of R3 no changes in cellular organization were observed. E, in contrast, in the yellow tissue of R1 leaf cross sections smaller palisade cells with reduced side-by-side orientations occur. Representative images of leaves from transplastomic and RNAi lines (n=4).

Sections were stained with 0.05% Toluidine blue. BV: bundle vessels, LE: lower epidermis, PC: palisade cell, SC: spongy mesophyll cell, ST: stoma, T: trichome, UE: upper epidermis, wt: wild type. Scale bar: 100 µm.

Supplementary Fig. S12. Transmission electron microscopy (TEM) images of tobacco cells from the *NtLCYB* **RNAi line R1 and R3**. A, B, wild-type chloroplasts. C, D, Chloroplasts in the green tissue of R1 cells chloroplast resembled similar shape and position to those in the wild type. E, F, Yellow tissue cells of R1 leaves have very few chloroplasts. Those remaining chloroplasts are observed more internally away from the cell contour or unstructured inside the envelope membranes. G -J, chloroplasts from line R3 in the green part of the leaves are similar to those of the wild type but with increased numbers and altered structure of starch granules. K-N, in the yellow parts of R3 leaves there are wild type-like chloroplasts that are detached

from the cell wall, whereas other cells have mainly wild type-like chloroplasts. EM: envelope membranes, GT: grana thylakoids, PG: plastoglobules, S: stroma, SG: starch granule, ST: stroma thylakoids, wt: wild type. Scale bar: A and B: 2000 nm; C-F: 5000 nm. G, H, K and L: 1000 nm; I: 5000 nm; J, M and N 10000 nm.

Fig. S13. Light response curves of photosynthetic parameters in transplastomic (A-D) and RNAi lines (**E-H**). A, E, Light response curves of linear electron transport were corrected for leaf absorptance. B, F, Light response curves of photoprotective non-photochemical quenching (qN). C, G, Light response curves of the redox state of the PSII acceptor side (qL). D, H, Light response curves of the donor-side limitation of PSI (Y(ND)).

Fig. S14. Schematic model representing changes in gene expression of photosystem I, II and the cyt $b_{d}f$ complex subunits in transplastomic and RNAi lines. A, changes in gene expression of transplastomic lines. B, changes in gene expression of RNAi lines. The model shows the increase (red) and decrease (blue) in gene expression of the photosystem I, II and the cyt $b_{d}f$ complex subunits. Changes are marked if transcript accumulation was significantly changed in at least one line. Transcripts that are in one line up and in another

down are simultaneously marked in blue and red. Unchanged gene expression (black) and genes that were not measured (grey) are shown. PS: photosystem, Cyt b_0f : cytochrome b_0f complex.

Supplementary Tables

Oligo name	Oligo sequence (5' to 3')	Reference	
DcLCYB F	TTGACCTTCCTTTGTATGACCCGTC	Moreno et al., 2016	
DcLCYB R	TCCTGCCTCAGAAACTTGTTGTGC	Moreno et al., 2016	
NtPSY1 F	GGAACCAAGCTAATGACCCCAGAGAGA	Moreno et al., 2016	
NtPSY1 R	GGCCGCCCACTGAAAATATCTTCC	Moreno et al., 2016	
NtPSY2 F	TCAGAGATGTTGGAGAAGATGC	Moreno et al., 2016	
NtPSY2 R	GCTTCAATCTCGTCCAATATCTTG	Moreno et al., 2016	
NtLCYB F	CCGTGTTAAATTCCACCACGCCAA	Moreno et al., 2016	
NtLCYB R	GAAGCCAGTTGCATCAAGCACCAC	Moreno et al., 2016	
NtGGPPS F	GTATTGGGTTGTTGTTGTTTCAAGTTGTGGAG	Moreno et al., 2016	
NtGGPPS R	GCAATCAATGGAGCTGCTTTGTCTGGATC	Moreno et al., 2016	
NtDXS1 F	GCCTTAGATGGACTTCTTGATGGCAAGT	Moreno et al., 2016	
NtDXS1 R	TGTTAAACACTGTTGCTGCAATGTGAGAT	Moreno et al., 2016	
NtDXS2 F	AGAGCATAACAAAGCAAATTGGACCTC	Moreno et al., 2016	
NtDXS2 R	CTCCTCAAAAAGAGTTGAACAAGAAGCAC	Moreno et al., 2016	
NtCHL F	ATCAAATATGGGTGCTTCTTCTTGGAGG	Moreno et al., 2016	
NtCHL R	ATTATGTCAGGTGTAAGGGTGCCGAACA	Moreno et al., 2016	
NtCPS F	ACACTAAAGCTGACATGGATACCAAAGG	Moreno et al., 2016	
NtCPS R	CATAAGTGCAAAGGCAGTAGAAGATGGA	Moreno et al., 2016	
NtKS F	TACTTACTACCGTGGTTGATGACTTCTTG	Moreno et al., 2016	
NtKS R	CTTCATCTCCAATCTCACAAATAGTGCTT	Moreno et al., 2016	
NtGA20ox1 F	TGTAGCACGAGAACTTCC	Moreno et al., 2016	
NtGA20ox1 R	ACGGCATGCTTCACCAACA	Moreno et al., 2016	
NtGA3ox1 F	CTTTACCAAAAACAGCCGACCCACG	Moreno et al., 2016	
NtGA3ox1 R	CACCAATGGCTTTAGGAAAAACAGGACG	Moreno et al., 2016	
NtNCED F	CTTTACCAAAAACAGCCGACCCACG	Moreno et al., 2016	
NtNCED R	CACCAATGGCTTTAGGAAAAACAGGACG	Moreno et al., 2016	
NtVDE F	ACTGAAAGAGTGCAGGTTAGAG	Kromdijk et al., 2016	
NtVDE R	TCCGTTTCGTCAGGTCTATTG	Kromdijk et al., 2016	
NtZEP F	CATGCCCGGATATCCTACAAA	Kromdijk et al., 2016	
NtZEP R	CGGTATCTTCTGCCTTCGTTAT	Kromdijk et al., 2016	
PSAA F	ATTCGTTCGCCGGAACCAGAAG	Armarego-Marriott et al., 2019	
PSAA R	GCATGTAGGTTCCAGATCCAAGTG	Armarego-Marriott et al., 2019	
PSAC F	GGATGTACTCAATGTGTCCGAGC	Armarego-Marriott et al., 2019	
PSAC R	GGACAGGCGGATTCACATCTCT	Armarego-Marriott et al., 2019	
PSAD1 F	GCGAGGAAAGAGCAGTGTTTAGC	Albus et al., 2012	
PSAD1 R	CTTGACGGCCAGCGTTCACC	Albus et al., 2012	
PSAF F	GATGGATTGCCACATTTGATAGTGAG	Hojka et al., 2014	
PSAF R	ATCCAACCAGCAATGTACAAGAAGAG	Hojka et al., 2014	
PSBA F	CAATTTTAGAGAGACGCGAAAGCG	Armarego-Marriott et al., 2019	
PSBA R	GTAGGGATCATCAAAACACCAAACC	Armarego-Marriott et al., 2019	

Table S1. Primers used for qPCR experiments.

PSBD F	TGGTGCAAATACATTCCGTGCT Armarego-Marriott et al., 2019		
PSBD R	AGCGGTGACCATTGAATAAGTTTCT	Armarego-Marriott et al., 2019	
PSBO1 F	AAACAGCTAGTGGCAAGCGGC Albus et al., 2012		
PSBO1 R	CAATGCAACAGCGTTGTCATAGCC Albus et al., 2012		
PSBO2 F	TCAAACAGCTCGTGGCATCTGG	Albus et al., 2012	
PSBO2 R	CCCTTCCCTTTGGGTCAAGGAATG	Albus et al., 2012	
PSBP1 F	ACAACGGGGATGGATTCAAGCTGC	Moreno et al., 2020	
PSBP1 R	TGACCAGGGTACTCTACTTCCTTGT	Moreno et al., 2020	
PSBP2 F	ACAACGGAGATGGATTCAAGTTGC	Moreno et al., 2020	
PSBP2 R	ACCAGGGAACTCAACTTCTTTGC	Moreno et al., 2020	
PSBS F	TGGCACAACTGGGAATTGCTTTC	Kromdijk et al., 2016	
PSBS R	TGCCAAAGCTCCTTTCCCTGTG	Kromdijk et al., 2016	
PSB27 F	CGGGCCTCATTCCGTGACATTTAC	Moreno et al., 2020	
PSB27 R	CGGCCCAAAGCTAACATAATGGC	Moreno et al., 2020	
PSB28 F	GGGGATATCACTGGATTCTACATG	Moreno et al., 2020	
PSB28 R	AACCTGTCCCATTCTCGTGGAG	Moreno et al., 2020	
PSB29 F	CAAGAAATCCTACCGATATGATCCC Moreno et al., 2020		
PSB29 R	GCTTTGAAGATGGCATCACGATCC Moreno et al., 2020		
PSBW1 F	CAGCAATGGCTCTTGTTGATGAG Moreno et al., 2020		
PSBW1 R	GTTGCTGAGACCAAAGGGAAGG Moreno et al., 2020		
PSBW2 F	GCAGCTATGGCTTTAGTGGATGAA Moreno et al., 2020		
PSBW2 R	GATTATTGCTCAAACCAAATGGAAGC Moreno et al., 2020		
PETA F	CCATTTTTGCACAGCAGGGTTATG Armarego-Marriott et al.,		
PETA R	ACCTGTTTCAGTTGCATATCATAAGG	Armarego-Marriott et al., 2019	
PETC F	ATTTGCCCCTGCCATGGATCTC	Albus et al., 2012	
PETC R	TGGGACAAACACCACCTTCCCA	Albus et al., 2012	
PETM F	TGTCTTCAACCTGCAGTGTTGC Hojka et al., 2014		
PETM R	CAATCCGGAGGAGGACAAAAC Hojka et al., 2014		
PETN F	AGTAAGTCTTGCTTGGGCTGCT Armarego-Marriott et al., 2019		
PETN R	CCCACACTACGAGTGAAAGGGAA	Armarego-Marriott et al., 2019	
CHLD F	AAGCTTCTGATGCACCCAGACC	Albus et al., 2012	
CHLD R	AGCCACCTCGAGAATCTCATCC	AGCCACCTCGAGAATCTCATCC Albus et al., 2012	
GUN4 F	CAAGCTGACGAGGAAACTCGGC Albus et al., 2012		
GUN4 R	CTTCAGAGAAGAAAACATAGCCTCG Albus et al., 2012		
CHLM F	GAAGGACTTGGAGAGTTTGGATGG Albus et al., 2012		
CHLM R	CAGCCAATGACGCAAGATGAGC Albus et al., 2012		
CHL27 F	AGCACAGCCTCAGTTCCTCAATG Albus et al., 2012		
CHL27 R	AAGGCAGAAGAAGCGAGACCAC Albus et al., 2012		
PORC F	GGTCGTACGTGATCCAAGCCTTTC	Albus et al., 2012	
PORC R	AACGAGGAGGAGGTGTTGTTCC Albus et al., 2012		
DVR F	GGTAAGTACAGTCCCTTATGCAATTC	GTACAGTCCCTTATGCAATTC Albus et al., 2012	
DVR R	GGGCTTTCAATAGTAGAGGCAGC	Albus et al., 2012	
CAO F	GCTAAAGGATGGACTGTCCCAAGC	Moreno et al., 2020	
CAO R	TCCTTGAAGACCAGATGCAGGAG Moreno et al., 2020		

LHCA1 F	TAGCCATTGCTTTTGTAGAGCACC	Albus et al., 2012
LHCA1 R	GAGTAGCCCAATGGGTCAAAAGC	Albus et al., 2012
LHCA6 F	GGAGATCAAGAATGGTCGACTCGC	Albus et al., 2012
LHCA6 R	TGTCCAGGATCAGCAAGATGTGAC	Albus et al., 2012
LHCB2 F	GTTAAATTCGGTGAGGCAGTTTGG	Albus et al., 2012
LHCB2 R	AGGTAGTCAAGACCGCCTTCTG	Albus et al., 2012
LHCB3 F	TGGTTCAAAGCAGGAGCTCAAATC	Albus et al., 2012
LHCB3 R	GCATGCACAAGGTTAGGGTTGC	Albus et al., 2012
LHCB6 F	TGCACCTTTCTCTTTTGGCTCACT	Albus et al., 2012
LHCB6 R	CCTTTTGCTCTCAACCCACCCC	Albus et al., 2012
CHLH F	CCTCAGGAAAGACGGGAAGAAG	Albus et al., 2012
CHLH R	AGCCTCACAGTCTCAGACAACG	Albus et al., 2012
CHLI F	GTCCGTGACAAATTGAGGAGCGG	Albus et al., 2012
CHLI R	TGCCACACACCCTGTCCTCAG	Albus et al., 2012
PORAB F	CTCCTTTTCCCTCCATTCCAGAAG	Albus et al., 2012
PORAB R	AGGCTTGGATCACTTACAACCTG	Albus et al., 2012
CHLG F	GCTCAAACAGAATGGATGGATTGG	Albus et al., 2012
CHLG R	CCATAGCTCTGTCTCCTTCAATGC	Albus et al., 2012
ACT F	CCTCAGGTCCTTTTCCAACCA	Moreno et al., 2018
ACT R	GGATTCCGGCAGCTTCCATT	Moreno et al., 2018

* All the primers used in this study were previously published. Therefore, all of them were already tested with at least 3 different reference genes. For this reason, in this study we choose *ACTIN* as a reference gene.

Line	Spec ^R / Strep ^R	Spec ^R / Strep ^S	Obtained transplastomic lines	Analyzed lines by RFLP
pJM36/LCYB1	2	20	1 ^a	1
pJM37/LCYB1	23	18	23	6

Table S2. In vitro regeneration process for the generation of DcLCYB1 transplastomic tobacco plants.

*Spec: spectinomycin; Strep: streptomycin; R: resistant; S: sensitive. ^a: one transplastomic pJM36/*LCYB1* line dyed during the in vitro regeneration process.

Table S3. End-point measurement of plant height and flower number of 16-week old *NtLCYB* RNAi lines (n=3).

Line	plant height [cm]	flower number
R1	110.1 ± 5.3*	73 ± 22*
R2	127 ± 9.5	116 ± 5
R3	120.3 ± 7.6	175±11**
wild type	122.9 ± 5.3	143±18

Non-paired two-tailed Student's t-tests were performed to compare transgenic lines with the wild type: *: p<0.05; **: p<0.01.

Line	Number of chloroplasts per 1000 µm ²
L2	$22 \pm 0.004*$
L15	$29 \pm 0.006^{***}$
R1	8 ± 0.004 ***
R3	13 ± 0.004***
wild type	19 ± 0.004

Table S4. Chloroplast number per area in transplastomic *DcLCYB1* and *NtLCYB* RNAi lines (n=20 cells).

Non-paired two-tailed Student's t-tests were performed to compare transgenic lines with the wild type: *: p < 0.05, ***: p < 0.0001.