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Supplementary Methods 

Image preprocessing and extraction of volumes 

A well-established preprocessing pipeline for voxel-based morphometry (VBM) using 
diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) 
for optimal inter-individual image registration, the VBM8 toolbox for statistical 
parametric mapping 8 (SPM8) was applied to high-resolution T1-weighted images 
from individuals of all cohorts. For all analyses, gray matter (GM) 1.5×1.5×1.5 mm3 
maps with non-linear only (NLO) Jacobian modulation were created using the VBM8 
toolbox. More details of the pipeline are described elsewhere: 
https://www.fil.ion.ucl.ac.uk/spm/ and http://dbm.neuro.uni-jena.de/vbm/download/ 
For the extraction of the three spatially disjunct regional GM volumes, binarized 
versions of the joint result areas of the VBM-based meta-analysis of affective and 
non-affective disorders were used as extraction masks (see Figure 2 in the study by 
Goodkind et al.). 
 
For secondary follow-up analyses, GM maps with full Jacobian modulation (FJM, i.e., 
correcting for linear and non-linear spatial warping) were also generated. NLO-based 
volumes can be considered as intrinsically corrected for a linear factor closely 
representing head size (http://dbm.neuro.uni-jena.de/vbm/). For FJM-based volumes, 
total intracranial volume (TIV) was used as a covariate to correct for head size. Here, 
TIV was calculated as the sum of FJM-modulated GM, white matter, and 
cerebrospinal fluid, masked by a canonical intracranial volume mask in MNI space. 
The main GWAS was strictly performed on NLO-based measures. In secondary 
analyses, the FJM-based measures were used to probe the robustness of the GWAS 
results towards influences of different types of global volume correction: first, total 
GM, second, TIV, and, third, estimated head size. Here, the estimated head size 
corresponds to the linear stretching factor g used in NLO-based Jacobian 
modulation, which is calculated as g = vNLO / vFJM, where v is the regional volume. 
FJM-based volumes were also used to disentangle effects of age from effects of 
brain size; brain size is, unlike TIV, age-related and thus influences the NLO 
stretching factor g. 
 
 

  

https://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm/download/
http://dbm.neuro.uni-jena.de/vbm/
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Principal component analysis (PCA) 

Before conducting the PCA, we studied the correlations between the three regional, 
NLO-corrected GM volumes in a merged dataset of all five GWAS cohorts. We 
calculated Pearson (rraw) and partial Pearson (rraw-partial) correlations between the 
three raw, uncorrected volumes as well as Pearson (rres) and partial Pearson 
(rres-partial) correlations between the three residuals of the linear models (corrected for 
sex, age, age2, and handedness – see below):  
 
Comparison Uncorrected 

volumes 
Residualized 
volumes 

 rraw rraw-partial rres rres-partial 

Left vs. right anterior insular cortex (AIC) 0.65 0.54 0.45 0.41 

Left AIC vs. dorsal anterior cingulate cortex (dACC) 0.52 0.33 0.28 0.19 

Right AIC vs. dACC 0.46 0.19 0.25 0.14 

 
Eventually, we corrected the three GM volumes (left AIC, right AIC, dACC) for 
covariates (see the main Methods and Figure 1) in linear models. We scaled and 
centered the residuals from the linear models and combined them by PCA using the 
R function prcomp. 
 
The relative variance explained by the three principal components in the GWAS 
cohorts were as follows (including the sample size-weighted mean): 
 
Cohort Uncorrected 

volumes 
Residualized 

volumes  

 PC1 PC2 PC3 PC1 PC2 PC3 

1000BRAINS 0.58 0.25 0.17 0.53 0.27 0.20 

CONNECT100 0.63 0.22 0.16 0.46 0.32 0.22 

BiDirect 0.59 0.23 0.18 0.55 0.25 0.20 

SHIP-2 0.71 0.18 0.11 0.57 0.26 0.17 

SHIP-Trend 0.72 0.17 0.11 0.57 0.26 0.17 

Weighted mean 0.67 0.20 0.13 0.55 0.26 0.18 

 
The loadings of the first principal component (i.e., the component of the common 
substrate, CCS) in the different cohorts were as follows: 
  

Left AIC Right AIC dACC 

1000BRAINS 0.6281114 0.6002601 0.4951403 

CONNECT100 0.6879444 0.6149882 0.3853855 

BiDirect 0.6064360 0.6014543 0.5200847 

SHIP-2 0.6310510 0.6072448 0.4827302 

SHIP-Trend 0.6178612 0.6226124 0.4802098 

MPIP patients/controls 0.6174913 0.5980982 0.5108649 

BiDirect patients/controls 0.5991645 0.6266227 0.4983431 

FOR2107 patients/controls 0.6300093 0.6354365 0.4464401 

Genetic quality control (QC) and imputation 
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QC of genotype data was conducted for each dataset separately using PLINK 
v1.90b2m (or higher versions) and R (see Table S3).  
 
Sequence of genotype QC 

1. Removal of SNPs with call rates <98% or a minor allele frequency (MAF) <1% 

2. Removal of individuals with genotyping rates <98% 

3. Removal of sex mismatches 

4. Removal of genetic duplicates 

5. Removal of cryptic relatives with pi-hat≥12.5 

6. Removal of genetic outliers with a distance from the mean of >4 SD in the first 

eight multidimensional scaling (MDS) ancestry components 

7. Removal of individuals with a deviation of the autosomal or X-chromosomal 

heterozygosity from the mean >4 SD 

8. Autosomal variants only: Removal of non-autosomal variants 

9. X chromosome only: Removal of variants with significantly different MAFs  

 between males and females (using XWAS) 

10. Removal of SNPs with call rates <98% or a MAF <1% or Hardy-Weinberg 

Equilibrium (HWE) test p-values <1×10-6  

11. Removal of A/T and G/C SNPs 

12. Update of variant IDs and positions to the IDs and positions in the 1000 

Genomes Phase 1 reference panel 

13. Alignment of alleles to the reference panel 

14. Removal of duplicated variants and variants not present in the reference panel 

For the X chromosome, QC was conducted separately for males and females. 
Note that the 1000BRAINS CoreExome samples were imputed as part of a larger 
dataset to improve imputation quality; the relevant individuals were extracted from 
the dataset after imputation. 
 
Imputation of genotype data 

Genotypes were aligned to the 1000 Genomes Phase 1 reference panel using 
SHAPEIT v2 (r790 or higher) and PLINK v1.90b2m (or higher). Pre-phasing 
(haplotype estimation) was conducted for each chromosome separately using 
SHAPEIT. Imputation was performed using IMPUTE2 v2.3.1 (or higher) in 5 Mbp 
chunks with 500 kbp buffers, filtering out variants that are monomorphic in the EUR 
samples. Chunks with <51 genotyped variants or concordance rates <92 % were 
fused with neighboring chunks and re-imputed. Variants with a MAF <1% or an INFO 
metric <0.8 were removed after imputation.  
 

Calculation of MDS ancestry components 

For the population substructure analysis, pre-imputation genotype data were used, 
after the QC steps explained above had been applied. Additional variant filtering 
steps were: removal of variants with a MAF <0.05 or HWE p-value <10-3; removal of 
variants mapping to the extended MHC region (chromosome 6, 25-35 Mbp) or to a 
typical inversion site on chromosome 8 (7-13 Mbp); linkage disequilibrium (LD) 
pruning (command --indep-pairwise 200 100 0.2). Next, the pairwise 

identity-by-state (IBS) matrix of all individuals was calculated using the 
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command --genome on the filtered genotype data. Multidimensional scaling (MDS) 

analysis was performed on the IBS matrix using the eigendecomposition-based 
algorithm in PLINK v1.90b3.38 or higher. 
MDS ancestry components calculated for each cohort separately were used as 
covariates in analyses using genetic data. 
 

Estimation of the SNP heritability 

Genomic-relatedness-based restricted maximum-likelihood (GREML), as 
implemented in genome-wide complex trait analysis (GCTA), was used to estimate 
the SNP heritability h2

g. To this end, the imputed data from all cohorts were 
converted to best-guess genotypes (--hard-call-threshold 0.1) and merged 

in PLINK. In the merged dataset, only variants present in the HapMap r28 CEU 
release, with a call rate ≥0.98, and a MAF ≥0.01 were retained. The merged 
genotype data was LD-pruned using the PLINK command --indep-pairwise 

200 100 0.5. Subsequently, 137,283 variants were used for the calculation of the 

genetic relationship matrix in GCTA. The genotyping microarray type and eight MDS 
ancestry components were used as covariates in the analysis. GREML was 
conducted using the option --grm-adj 0, assuming that causal variants have a 

similar distribution of allele frequencies as the genotyped variants. 
 

GWAS 

GWAS of the NLO-based CCS was conducted in PLINK separately per cohort, with 
eight MDS components as covariates. For 1000BRAINS, the imputation batch was 
used as an additional covariate. Variants on the X chromosome (non-
pseudoautosomal region) were analyzed separately for males and females, followed 
by combination using the p-value-based SAMPLESIZE method in METAL to allow for 
different effect sizes per sex. A two-stage design was implemented, including 
discovery and replication, with SHIP-Trend used as an independent replication 
sample. Cohorts were combined in both stages by fixed-effects meta-analysis using 
METAL, and only variants present in all discovery cohorts were analyzed. LD of 
SNPs showing an association with p<5×10-8 in the discovery stage was analyzed 
using the CEU population in LDmatrix. The SNPs that showed the most robust 
support for an association and, where applicable, with an LD r2<0.5 with more 
strongly associated variants, were carried forward to the replication stage. 
Replication criterion was a one-sided p-value <0.05/n, where n=2 for the two variants 
analyzed in the replication cohort. The association statistics of genome-wide 
significant variants were confirmed in R v3.4.3. The residuals of the linear models of 
genome-wide significant variants were normally distributed in all cohorts (Shapiro-
Wilk test). 
In each cohort, at least two of the twelve SNPs associated with genome-wide 
significance were genotyped on microarrays; the remaining ten variants were 
imputed (imputation quality INFO ≥0.975). 
 

Orthonormalization of the age terms 

To avoid collinearities of the age terms in the regression models, we conducted 
Gram-Schmidt orthonormalization of age (first term) and age2 (second term) in R 
v.3.5.2, using the function QR of the package matlib. To confirm that no problematic 
collinearities existed in the final GWAS model (VIF < 5), we calculated variance 
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inflation factors of the expanded GWAS models using the function vif from the R 
package car. In the following tables, Age and Age2 represent these terms after Gram-
Schmidt orthonormalization: 
 
 

Variable 1000BRAINS CONNECT100 BiDirect SHIP-2 SHIP-Trend 

rs17076061 1.016 1.118 1.029 1.007 1.007 

AC1 1.014 1.090 1.008 1.002 1.004 

AC2 1.009 1.035 1.009 1.002 1.004 

AC3 1.004 1.028 1.005 1.003 1.002 

AC4 1.012 1.056 1.012 1.001 1.005 

AC5 1.022 1.026 1.005 1.001 1.011 

AC6 1.014 1.019 1.024 1.002 1.001 

AC7 1.003 1.034 1.010 1.006 1.003 

AC8 1.027 1.046 1.008 1.002 1.004 

Age 1.019 1.085 1.020 1.009 1.010 

Age2 1.028 1.050 1.013 1.009 1.012 

Sex 1.050 1.103 1.033 1.016 1.015 

Handedness 1.060 NA 1.040 NA NA 

Imputation 1.063 NA NA NA NA 

 
VIFs of the secondary genetic models containing interaction terms: 
 

Variable 1000BRAINS CONNECT100 BiDirect SHIP-2 SHIP-Trend 

rs17076061 1.909 2.824 2.006 1.850 1.793 

AC1 1.015 1.107 1.010 1.004 1.007 

AC2 1.010 1.041 1.009 1.002 1.009 

AC3 1.009 1.152 1.005 1.004 1.006 

AC4 1.019 1.069 1.021 1.003 1.006 

AC5 1.031 1.037 1.007 1.003 1.013 

AC6 1.021 1.044 1.026 1.009 1.001 

AC7 1.005 1.066 1.015 1.007 1.010 

AC8 1.036 1.066 1.008 1.002 1.005 

Age 2.161 2.543 2.330 2.218 2.169 

Age2 2.057 2.355 2.236 2.506 2.115 

Sex 1.056 1.138 1.033 1.021 1.015 

Handedness 1.064 NA 1.041 NA NA 
Imputation 1.067 NA NA NA NA 
rs17076061*age 2.172 2.603 2.398 2.221 2.199 

rs17076061*age2 2.944 4.259 3.187 3.352 2.957 

AC = MDS ancestry component; Imputation = imputation batch. 

Generation and analysis of polygenic scores 

For each polygenic score (PGS), the effect sizes of variants below a selected p-value 
threshold, both obtained from either previously published or the present GWAS 
(training data), were multiplied by the imputed SNP dosage in the test data and then 



Genetic factors influencing a neurobiological substrate for psychiatric disorders 
Supplementary Material 
 

 
 

8 

summed to produce a single PGS per threshold. A common set of variants imputed 
in all five cohorts was determined. The GWAS training summary statistics and this 
common set of variants were merged based on chromosome, position, and alleles of 
each variant. Summary statistics were then clumped in PLINK v1.90b6.4 or higher, 
based on best-guess genotype data (hard-call threshold 0.3) using the following 
parameters:  
--clump-kb 500 --clump-r2 0.1 --clump-p1 1 --clump-p2 1 

PGS were then calculated in R v.3.3 or higher based on imputed (dosage) data. Test 
statistics and alleles in the GWAS training data were flipped so that effect sizes were 
always positive. Thus, the PGS represent weighted, cumulative, additive risk. PGS 
were scaled to represent the relative risk load (minimum possible cumulative risk 
load = 0, maximum = 1). For each disorder, ten PGS with different p-value thresholds 
were calculated: <5×10-8, <1×10-7, <1×10-6, <1×10-5, <1×10-4, <0.001, <0.01, <0.05, 
<0.1, <0.2. 
PGS calculated from previously published GWAS were analyzed using linear 
regression models separately per cohort in R v3.4.3, using the regression formula 
CCS ~ PGS + covariates. CCS PGS were analyzed in the case/control cohorts using 
logistic regression with the model Diagnosis ~ PGS + covariates. Eight MDS ancestry 
components were used as covariates to control for population substructure, and in 
case of 1000BRAINS, imputation batches. Summary statistics from the cohorts were 
combined using fixed-effects meta-analysis. Report p-values have not been 
corrected for multiple testing. Significance thresholds were corrected for multiple 
testing using the Bonferroni method: per GWAS, PGS with ten different p-value 
thresholds were calculated, thus, α = 0.05/10 = 0.005. One-sided test statistics were 
calculated according to the hypothesis that the CCS is negatively correlated to the 
psychiatric disorder PGS (linear regression analyses of PGS for previous GWAS) or 
that the CCS PGS is lower in psychiatric patients (logistic regression analyses of the 
CCS PGS). 

 
Rank-rank hypergeometric overlap tests  

The rank-rank hypergeometric overlap (RRHO) test was used to compare whether 
the order of SNPs ranked by their association strength between studies was random. 
For this analysis, variants were LD-pruned in the EUR subset of the 1000 genomes 
phase 3 reference panel in PLINK using the command --indep-pairwise 200 5 

0.25. The RRHO step size s was adapted based on the SNP overlap between 

studies: <50,000 SNPs: s=1000, ≥50,000 and ≤150,000 SNPs: s=2000, >150,000 
SNPs: s=3000.  
 

Binomial sign tests  

Binomial sign test was conducted in R using the function binom.test to analyze 
whether SNPs associated with the CCS at either p<0.05 or p<1×10-5 showed the 
opposite direction of effects in psychiatric disorder GWAS more often than expected 
by chance. The opposite direction was used because the CCS should be smaller in 
patients with a psychiatric disorder. For this analysis, CCS GWAS meta-analysis 
summary statistics were LD-clumped in the EUR subset of the 1000 genomes phase 
3 reference panel (with MAF≥0.05) in PLINK using the following parameters: 
--clump-kb 500 --clump-r2 0.1 --clump-p1 1 --clump-p2 1.  

LD-independent sign tests were calculated using the lead variant per LD block. 
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Supplementary Tables 

Table S1: Demographic data of the samples used in the GWAS. 
The table lists samples after genotypic and phenotypic QC.  
Age: mean (SD). Sex: n (%). In 1000BRAINS, CONNECT100, and BiDirect, 
psychiatric diagnoses or symptoms were collected with self-report questionnaires. In 
SHIP-2 and SHIP-Trend, diagnoses were assessed using the M-CIDI interview.  
Dep.: the number of probands with (self-reported) depression or depressive 
symptomatology. Other: In 1000BRAINS, the number of probands with a self-
reported diagnosis of obsessive-compulsive disorder; in BiDirect, the number of 
probands with a self-reported diagnosis of anxiety or anorexia nervosa; in SHIP-2, 
the number of probands with a diagnosis of BD. NA: information not available. The 
observed frequency of psychiatric diagnoses corresponds to the prevalence in the 
general population and is thus expected in population-based cohorts. 
 

Cohort n Age Sex (female) Dep. (%) Other (%) 

1000BRAINS 539 67.7 (6.7) 248 (46.0 %) 19 (3.5) 1  (0.2) 
CONNECT100 93 47.4 (13.8) 49 (52.7 %) 4 (4.3) NA 

BiDirect 589 52.8 (8.1) 301 (51.1 %) 8 (13.6) 12 (2.0) 
SHIP-2 1050 55.8 (12.7) 542 (51.6 %) 137 (13.0) 4 (0.4) 
SHIP-Trend 865 50.5 (13.5) 477 (55.1 %) 144 (16.6) NA 

Total 3136 55.6 (12.9) 1617 (51.6 %) 312 (9.9) 17 (0.5) 

 
Table S2: Demographic data of the psychiatric patient/control samples. 
The table lists samples after genotypic and phenotypic QC. MDD: Major Depressive 
Disorder, BD: Bipolar Disorder, SCZ: Schizophrenia, SZA: Schizoaffective Disorder. 
Age: mean (SD). Sex: n (%).  
pAge: p-value of t-tests for differences in age between patients and controls;  
pSex: p-value of Χ2-tests for differences in sex between patients and controls.  
 

Cohort n Age pAge Sex (female) PSex 

BiDirect controls 311 53.1 (7.95)  149 (47.9 %)  
BiDirect MDD patients 582 49.4 (7.25) 4.2×10-11 338 (58.1 %) 4.6×10-03 
MPIP patients 197 49.6 (13.6)  114 (57.9 %)  
MPIP MDD patients 385 48.1 (13.7) 2.0×10-01 205 (53.2 %) 3.3×10-01 
FOR2107 all controls 867 34.0 (12.7)  550 (63.4 %)  
FOR2107 MDD controls 831 34.0 (12.5)  521 (62.7 %)  
FOR2107 MDD patients 769 36.7 (13.3) 3.3×10-05 505 (65.7 %) 2.4×10-01 
FOR2107 BD controls 831 34.0 (12.5)  521 (62.7 %)  
FOR2107 BD patients 127 41.4 (12.0) 1.5×10-09 69 (54.3 %) 8.8×10-02 
FOR2107 SCZ controls 828 34.0 (12.5)  519 (62.7 %)  
FOR2107 SCZ patients 72 37.2 (10.8) 1.7×10-02 30 (41.7 %) 7.2×10-04 
FOR2107 SZA controls 832 34.0 (12.5)  522 (62.7 %)  
FOR2107 SZA patients 43 38.8 (12.8) 2.1×10-02 23 (53.5 %) 2.9×10-01 

Total 3,353 42.0 (13.8)  1,983 (59.1 %)  
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Table S3: Summary of the genotype QC per dataset. 
For a detailed description of the QC steps, please see the section Sequence of 
genotype QC (page 5). Some individuals from the 1000BRAINS cohort were 
genotyped twice on different microarrays. Hence, the sum of the samples available 
before QC on the three 1000BRAINS microarrays appears higher in the table below 
than the total number of individuals in the combined cohort. In cases where 
individuals were genotyped on several microarrays, the sample with more variants 
after imputation was selected.  
 
Dataset / 
imputation 
batch 

Microarray Individuals 
before QC 

Individuals 
after QC 

Variants 
before 
QC 

Variants 
after QC 

Variants 
after 
imputation 

1000BRAINS / 
CONNECT100 
OmniExpress 

Illumina 
OmniExpress 

533 460 719,666 634,222 8,575,622 

1000BRAINS 
Omni1-Quad 

Illumina 
Omni1-Quad 

143 123 1,134,514 744,227 8,620,154 

1000BRAINS 
CoreExome 

Illumina 
CoreExome 

52 49 * 538,448 246,055 7,885,975 

1000BRAINS / 
CONNECT100 
all three 
microarrays 
combined after 
imputation 
(no duplicates) 

Combined 
(summary of 
the final 
dataset) 

714 632 merged 
after 
imputation 

merged 
after 
imputation 

7,570,797 

BiDirect 
GWAS 

Illumina 
PsychArray 

623 589 588,454 262,296 8,061,563 

SHIP-2 Affymetrix 
6.0 

1,142 1,050 900,475 524,983 8,222,555 

SHIP-Trend Illumina 
Omni 2.5 

896 865 2,450,000 1,466,103 8,921,041 

BiDirect MDD 
patient/control 

Illumina 
PsychArray 

2,129 893 * 588,454 283,900 8,599,860 

MPIP MDD 
patient/control 
610k 

Illumina 
Human610-
Quad 

225 225 716,385 534,384 merged 
before 
imputation 

MPIP MDD 
patient/control 
550k 

Illumina 550k 321 320 522,008 502,481 merged 
before 
imputation 

MPIP MDD 
patient/control 
OmniExpress 

Illumina 
OmniExpress 

135 123 716,503 595.204 merged 
before 
imputation 

MPIP MDD 
patient/control 
all three 
microarrays 
combined 
before 
imputation 

Combined 
(summary of 
the final 
dataset) 

668 582 274,863 274,863 8,470,491 

FOR2107 
patient/control 

Illumina 
PsychArray 

2,375 1886 * 596,861 284,694 8,565,139 

 
* Imputation was conducted as part of a larger sample and eligible individuals for this 
study were extracted after imputation.  
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Table S4: Median genomic inflation λ. 
The genomic inflation was in the expected range.  
For the meta-analyses, λ normalized for 1000 individuals (λ1000) is also provided.  
λ was calculated on the autosomal chromosomes 1-22. 
 

Analysis n λ λ1000 

1000BRAINS 539 1.0075  
CONNECT100 93 1.0051  
BiDirect 589 1.0005  
SHIP-2 1050 0.9977  
SHIP-Trend 865 0.9977  
Discovery 2271 1.0240 1.0106 
Discovery+Replication 3136 1.0283 1.0090 

 
Table S5: Full test statistics of genome-wide significant variants. 
BETA = effect size relative to allele 1, SE = standard error, P = p-value. R2 = 
variance explained by the full model (and not by the SNP alone).  
This table is provided in the separate Excel file. 
 
Table S6: Pairwise linkage disequilibrium (LD) of the 12 top-associated SNPs. 
Analyzed using the 1000 Genomes CEU population in LDmatrix 
(https://ldlink.nci.nih.gov/). This table is provided in the separate Excel file. 
 
Table S7: MAGMA pathway analysis. 
The table shows all nominally significant (P<0.05) Reactome pathways.  
P_CORR = p-value corrected for multiple testing using the Holm method.  
This table is provided in the separate Excel file. 
 
Table S8: MAGENTA pathway analysis. 
The table shows all nominally significant (either 
NOMINAL_GSEA_PVAL_95PERC_CUTOFF<0.05 or 
NOMINAL_GSEA_PVAL_75PERC_CUTOFF<0.05) Reactome pathways.  
This table is provided in the separate Excel file. 
 
Table S9: Lookup of rs17076061 in published GWAS. 
Lookup of the association coefficients from published summary statistics of the 
psychiatric disorder and aging-related GWAS, as referenced in the main text. For 
longevity, BETA = positive indicates that no effect size was provided in the GWAS 
summary statistics; allele T of the SNP is associated with longevity (not significant 
after correction for multiple testing). 
This table is provided in the separate Excel file. 
 
Table S10: Results from LD score regression. 
This table is provided in the separate Excel file. 
 
 
 
Table S11: Results from rank-rank hypergeometric overlap tests.  
Comparison of CCS-associated variants to variants associated in GWAS for either 
psychiatric disorders (first part) or aging-related traits (second part). 

https://ldlink.nci.nih.gov/
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N = number of variants. Relative overlap = n overlapping / n SNPs. The step size 
was adapted according to the n SNPs in common between two GWAS. Also see 
Supplementary Figs. S5 and S8. This table is provided in the separate Excel file. 
 
Table S12: Results from the binomial sign tests. 
CI = confidence intervals. This table is provided in the separate Excel file. 
 
Table S13: Test statistics for analyses of polygenic scores based on published 
GWAS. 
Summary statistics from linear regression analyses to test for an association of PGS 
with the CCS. The first part of the table shows associations with psychiatric disorder 
PGS, the second part with aging-related PGS. One-sided test statistics were 
calculated according to the hypothesis that the CCS is negatively correlated to the 
psychiatric disorder PGS, i.e., that individuals with a smaller CCS have higher 
genetic risk load for disorders. Also see Supplementary Fig. S7. bvFTD = behavioral 
frontotemporal dementia, PC = prefrontal cortex. 
This table is provided in the separate Excel file. 
 
Table S14: Test statistics for the analysis of the CCS GWAS PGS in the psychiatric 
patient/control cohorts. 
Summary statistics from logistic regression analyses to test for an association of 
CCS PGS with patient/control status. One-sided test statistics were calculated 
according to the hypothesis that the CCS PGS is lower in psychiatric patients. MDD: 
Major Depressive Disorder, BD: Bipolar Disorder, SZA: Schizoaffective Disorder, 
SCZ: Schizophrenia. This table is provided in the separate Excel file. 
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Table S15: Association results of psychiatric diagnoses with the CCS. 
This table shows summary statistics from linear regression analyses and is provided 
in the separate Excel file. 
The upper sub-table shows the analyses of MDD patient/control cohorts. The lower 
sub-table shows results for the transdiagnostic FOR2107 (FOR) cohort with the 
following diagnoses: MDD: Major Depressive Disorder, BD: Bipolar Disorder, SCZ: 
Schizophrenia, SZA: Schizoaffective Disorder, All: all available diagnoses. 
 
Explanation of the ‘trait’ column:  
CCS: Standard calculation of CCS, based on NLO volumes 

1. Extraction of volumes from SPM using non-linear only (NLO) modulation 
2. Correction of individual volumes for covariates (age, age2, sex, handedness) 

in linear regression models 
3. Calculation of PCA based on regression residuals 
4. CCS association analysis of the first principal component with ancestry 

components as covariates 
CCS (without residualization): Calculation of CCS based on native NLO volumes 

1. Extraction of volumes from SPM using NLO modulation 
2. Calculation of PCA based on the NLO volumes (not corrected for covariates 

by residualization) 
3. CCS association analysis of the first principal component with ancestry 

components and all other covariates (age, age2, sex, handedness) 
CCS (FJM): Standard calculation of CCS, based on FJM volumes 

1. Extraction of volumes from SPM using full Jacobian (FJM) modulation 
2. Correction of individual volumes for covariates (total intracranial volume (ICV), 

age, age2, sex, handedness) in linear regression models 
3. Calculation of PCA based on regression residuals 
4. CCS association analysis of the first principal component with ancestry 

components as covariates 
 
Explanation of the ‘Interaction term’ column:  
None: No interaction terms were included in the 

models 
Age*diagnosis+Age^2*diagnosis: age × diagnosis and age2 × diagnosis 

interaction terms were included in the 
regression models after PCA 

Explanation of the ‘Coefficients for’ column:  
Here, the term of the model is specified for which the regression coefficients are 
provided. 
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Table S16: Association results stratified by age group. 
The first sub-table shows test statistics for the association of MDD diagnosis with the 
CCS (MDD cohorts). The second sub-table shows test statistics for the association of 
any diagnosis with the CCS (all patient/control cohorts). The third sub-table shows 
test statistics for the association of SNP rs17076061 with the CCS (GWAS cohorts). 
Individuals were grouped by decade; neighboring groups were merged where <50 
individuals per decade. Analyses were conducted on a combined dataset of all 
cohorts, including a covariate indicating cohort. Q = Cochran’s Q from the meta-
analysis. This table is provided in the separate Excel file. 
 
Table S17: SNP-by-Age effects.  
Detailed effects of interactions and VBM modulation on regression coefficients in the 
association of rs17076061 (SNP) with the CCS. The ‘trait’ column is organized as 
explained for Table S15. Furthermore, ‘genotyping batch’ was included as a 
covariate for analyses of the 1000BRAINS cohort. 
This table shows summary statistics from linear regression analyses and is provided 
in the separate Excel file. 
 
Explanation of the ‘interaction term’ column:  
None: No interaction terms were included in the models 
age*SNP+age^2*SNP: age × SNP and age2 × SNP interaction terms were included 

in the regression models after PCA. SNP = rs17076061 
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Supplementary Figures 

 
Figure S1: Population substructure of the merged genotype data of all GWAS 
samples.  
Note that the MDS analysis on the merged dataset can differ from the MDS analyses 
of the individual cohorts (the ancestry components used as covariates in the GWAS). 
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Figure S2: Quantile-quantile plots of GWAS p-values. 
A: Quantile-quantile plot for the discovery stage GWAS. 

 
B: Quantile-quantile plot for the meta-analysis of discovery and replication cohorts. 
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Figure S3: Mirrored locus-specific Manhattan plot of the discovery and replication 
cohorts (Miami plot). 
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Figure S4: Manhattan plot of GWAS p-values on the meta-analysis of discovery and 
replication cohorts. 
Red line: genome-wide significance threshold. 
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Figure S5: Box-whisker plot of the CCS per genotype of variant rs17076061. 
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Figure S6: Rank-rank hypergeometric overlap maps. 
Comparison of CCS-associated and psychiatric disorder GWAS-associated variants. 
For further details see Table S11. Note that A shows the Cross-Disorder 2019 
GWAS. 
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Figure S7: Summary of GWAS-based PGS analyses. 
Results from linear regression analyses to test for the association of psychiatric 
disorder and aging-related GWAS PGS with the CCS. The plots show one-sided p-
values following the hypothesis that individuals with a small CCS have higher 
disorder or aging-related PGS. The PGS at different training GWAS p-value 
thresholds are shown on the x-axis, and the association strength (-log10 p) is shown 
on the y-axis. Orange dashed line: nominal significance threshold (α=0.05). See 
Table S13 for further details. 
 
A: Analysis of PGS based on the Cross-Disorder 2013 GWAS as training data. 

 
 
B: Analysis of PGS based on the Cross-Disorder 2019 GWAS as training data. 

 
C: Analysis of PGS based on the Bipolar Disorder GWAS as training data. 
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D: Analysis of PGS based on the MDD GWAS as training data. 
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E: Analysis of PGS based on the Schizophrenia GWAS as training data. 

 
 
F: Analysis of PGS based on the bvFTD GWAS as training data. 
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G: Analysis of PGS based on the epigenetic aging acceleration (EAA; all brain 
regions) GWAS as training data. 

 
 
H: Analysis of PGS based on the EAA (prefrontal cortex (PFCTX)) GWAS as training 
data. 
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I: Analysis of PGS based on the neuronal proportion (prefrontal cortex) GWAS as 
training data. 

 
 
J: Analysis of PGS based on the longevity 85 GWAS as training data. 
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K: Analysis of PGS based on the longevity 90 GWAS as training data. 
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Figure S8: Box-whisker plot of the CCS per diagnosis group in the FOR2107 cohort 
sorted by the median CCS. 
BD-II: Bipolar Disorder (BD) type 2, BD-I: BD type 1, BD NOS: not otherwise 
specified BD, SCZ: Schizophrenia, SZA: Schizoaffective Disorder. 
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Figure S9: Rank-rank hypergeometric overlap maps. 
Comparison of CCS-associated and bvFTD, EAA, and longevity GWAS-associated 
variants. For further details see Table S11. 
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