The gut microbiota metabolite urolithin A inhibits NF-KB activation

in LPS stimulated BMDMs

Khalid N. M. Abdelazeem^{1,2}, M. Zaher Kalo³, Sandra Beer-Hammer^{* 3} & Florian Lang¹

¹Department of Internal Medicine III, Eberhard Karls University of Tübingen, Tübingen, Germany

²Radiation Biology Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt,

³Department of Pharmacology, Experimental Therapy & Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, University of Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany

*Corresponding author:

Professor Sandra Beer-Hammer, Department of Pharmacology, Experimental Therapy & Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, University of Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany

Telefon +49 7071 29-74594, Telefax +49 7071 29-4942 E-Mail; <u>sandra.beer-hammer@uni-tuebingen.de</u>

Fig

3

Supplementary Figure Legends

Supplementary Figure 1 Effect of urolithin A or DMSO on superoxide production in murine BMDMs

Murine BMDMs were treated either by UA (25μ M or 50μ M) or DMSO for 48h. Both DMSO and UA did not record any observable changes. Nuclei were counterstained with DAPI (blue). Scale bar represents 50 μ m. Murine BMDMs treated with DMSO were used as negative control. Abbreviations: DMSO, dimethyl sulfoxide; UA, urolithin A.

Supplementary Figure 2 Influence of urolithin A or DMSO on DSBs in murine BMDMs after 48h

Murine BMDMs were treated either by UA (25 μ M or 50 μ M) or DMSO for 48h. Both UA and DMSO did not register any significant effect on DSBs after 48h. Nuclei were counterstained with DAPI (blue). Scale bar represents 50 μ m. BMDMs treated with DMSO were used as negative control. Abbreviations: DMSO, dimethyl sulfoxide; UA, urolithin A.

Supplementary Figure 3 Urolithin A reduces the inflammatory cytokine production and mRNA expression in LPS-stimulated murine BMDMs

Murine BMDMs were stimulated by 1µg/ml of LPS in the presence or absence of UA (25 µM or 50 µM). Subsequently, expression of the inflammatory cytokines IFN- γ (a), TGF β (b), IL-10 (c), IL-2 (d), and IL-4 (e) were measured in BMDMs by qRT-PCR (over GAPDH) and ELISA at depicted time points. The unstimulated and untreated BMDMs were used as control. BMDMs treated with DMSO were used as negative control. Arithmetic means ± SEM from seven independent experiments are depicted. Two way ANOVA was used and * (p < 0.05), ** (P 0.01), **** (p < 0.001), and **** (p < 0.0001) indicate statistically significant differences compared to respective control. Abbreviations: DMSO, dimethyl sulfoxide; UA, urolithin A; LPS, lipopolysaccharides; IL, Interleukin; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; IFN, interferon gamma; TGF, transforming growth factor.

Supplementary Figure 4 Sensitivity of TLR4 expressions to urolithin A (UA) in LPS-stimulated murine BMDMs

Murine BMDMs were stimulated by 1µg/ml of LPS in the presence or absence of UA (25 µM or 50 µM), then harvested and subjected to western blot after 72h. (a) Bar graph represents relative band intensities of TLR4 normalized to GAPDH. The unstimulated and untreated BMDMs were used as control. BMDMs treated with DMSO were used as negative control. (b) Representative image of TLR4 protein expression assessed by western blot analysis. Data are shown as means \pm SEM from four independent experiments. One way ANOVA was used and * (p < 0.05), ** (p < 0.001), and *** (p < 0.001) indicate statistically significant differences compared to untreated control. + (p < 0.05) indicate statistically significant differences compared to LPS. Abbreviations: DMSO, dimethyl sulfoxide; LPS, lipopolysaccharides; UA, urolithin A; TLR, Toll like receptor; GAPDH, glyceraldehyde-3- phosphate dehydrogenase.

Supplementary Figure 5 Effect of urolithin A on IκBα, ERK1/2, p38, SAPK/JNK, AKT and mTOR expression and phosphorylation in LPS-stimulated murine BMDMs

Murine BMDMs were stimulated by 1μ g/ml of LPS in the presence or absence of UA (25 μ M or 50 μ M) and harvested at 2h and 72h followed by western blot analysis. (a) Phosphorylation of IkBa, ERK1/2, and AKT were monitored by immunoblot using pIkBa (Ser32/36) monoclonal antibodies, phospho-p44/42 MAP kinase (Thr202/Tyr204) polyclonal antibodies, and pAKT (Ser473) monoclonal antibodies. Subsequently, blots were stripped and re-incubated with antibodies against total IkBa, ERK1/2 and AKT. (b) Phosphorylation of p38, SAPK/JNK, and mTOR were monitored by immunoblot using phospho-p38 MAP kinase (Thr180/Tyr182), and phospho-SAPK/JNK MAP kinase (Thr183/Tyr185) and phospho-mTOR (Ser2448) monoclonal antibodies, respectively at depicted time points. Subsequently, blots of the same membrane were stripped and re-incubated with antibody against total p38, SAPK/JNK and mTOR. GAPDH served as a loading control. The unstimulated and untreated BMDMs were used as control. BMDMs treated with DMSO were used as negative control. Abbreviations: DMSO, dimethyl sulfoxide; LPS, lipopolysaccharides; UA, urolithin A; GAPDH, glyceraldehyde-3- phosphate dehydrogenase.

Supplementary Figure 6 FACS phenotyping of BMDMs

Naive bone marrow cells were isolated and subsequently cultured for one week in DMEM complete media (M0) and then analyzed for macrophage markers. (a) FACS histogram displaying the harvested BMDMs (M0) which were defined as F4/80^{high}, CD11b^{high} and MHCII^{high}. (b) Arithmetic means \pm SEM (n = 5) of percentage of the positive gated populations of M0.

Supplementary Figure 7 FACS phenotyping of BMDMs after 72h of stimulation

Naive bone marrow cells were isolated and subsequently cultured for one week in DMEM complete media and then stimulated with 1µg/ml LPS in the presence or absence of UA (25 µM or 50 µM). (a) FACS histogram displaying the expression of macrophage marker after 72h of desired treatment using CD11b, F4/80 and MHCII. Arithmetic means \pm SEM (n = 5) of percentage of the positive gated populations of stimulated macrophages which were defined as CD11b^{high} (b), F4/80^{high} (c) and MHCII^{high} (d). * (p<0.05) and ** (P<0.001) indicates statistically significant difference compared to control. Abbreviations: DMSO, dimethyl sulfoxide; UA, urolithin A; RAD, radiation.

Supplementary Figure 8 Influence of urolithin A on the viability of LPS-stimulated murine BMDMs after 72h

Naive bone marrow cells were isolated and subsequently cultured for one week in DMEM complete media and then stimulated with 1µg/ml LPS in the presence or absence of UA (25 µM or 50 µM). (a) Dot plots of mature BMDMs which were treated as indicated. After 72h the cell viability was measured by Annexin-V /PI compared to untreated control cells. (b) Arithmetic means \pm SEM (n = 5) of BMDMs which were treated with different concentrations of UA for 72h. (c) Values show the percentage of live BMDMs Annexin-V⁻/PI⁻ after indicated treatments. Arithmetic means \pm SEM (n = 5). *** (P<0.001) and **** (P<0.0001) indicate statistically significant differences compared to control. Abbreviations: DMSO, dimethyl sulfoxide; UA, urolithin A; LPS, lipopolysaccharides.

SUPPLEMENTARY TABLES

Supplementary Table 1 The source of variation in intracellular calcium in LPS-stimulated or X-irradiated murine BMDMs

Source of variation	% of total variation	F(DFn, DFd)	P value
Interaction	7.747	F (13, 145) = 1.645	P = 0.0792
Group factor	33.64	F (13, 145) = 7.144	P < 0.0001
Time factor	4.312	F (1, 145) = 11.91	P = 0.0007

Supplementary Table 2 The source of variation in $\gamma H2AX$ phosphorylation in LPS-stimulated or X-irradiated murine BMDMs

Source of variation	% of total variation	F (DFn, DFd)	P value
Interaction	6.728	F (13, 318) = 2.730	P = 0.0011
Group factor	32.27	F (13, 318) = 13.09	P < 0.0001
Time factor	0.4730	F (1, 318) = 2.495	P = 0.1152

Supplementary Table 3 The source of variation in protein expression of TLR2 in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / TLR2	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	15.61	F (36, 507) = 5.298	P < 0.0001	****
Group factor	39.95	F (12, 507) = 40.67	P < 0.0001	****
Time factor	1.481	F (3, 507) = 6.032	P = 0.0005	***

Source of variation / pERK1/2 over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	42.83	F (36, 286) = 7.898	P < 0.0001	****
Group factor	13.38	F (12, 286) = 7.402	P < 0.0001	****
Time factor	0.5391	F (3, 286) = 1.193	P = 0.3126	ns
Source of variation / ERK1/2 over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	20.60	F (36, 386) = 4.361	P < 0.0001	****
Group factor	29.42	F (12, 386) = 18.68	P < 0.0001	****
Time factor	2.287	F (3, 386) = 5.808	P = 0.0007	***
Source of variation / pERK1/2 over ERK	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	31.32	F (36, 260) = 3.921	P < 0.0001	****
Group factor	9.705	F (12, 260) = 3.645	P < 0.0001	****
Time factor	1.286	F (3, 260) = 1.931	P = 0.1249	ns

Supplementary Table 4 The source of variation in protein expression and phosphorylation of ERK1/2 in LPS-stimulated or X-irradiated murine BMDMs

Supplementary Table 5 The source of variation in protein expression and phosphorylation of MAPK p38 in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / pp38 over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	19.15	F (36, 351) = 4.448	P < 0.0001	****
Group factor	26.46	F (12, 351) = 18.44	P < 0.0001	****
Time factor	12.37	F (3, 351) = 34.48	P < 0.0001	****
Source of variation / p38 over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	27.15	F (36, 247) = 5.127	P < 0.0001	****
Group factor	37.25	F (12, 247) = 21.10	P < 0.0001	****
Time factor	1.456	F (3, 247) = 3.299	P = 0.0211	*
Source of variation / phospho/p38 over p38	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	29.43	F (36, 247) = 5.008	P < 0.0001	****
Group factor	18.45	F (12, 247) = 9.419	P < 0.0001	****
Time factor	10.60	F (3, 247) = 21.65	P < 0.0001	****

Supplementary Table 6 The source of variation in protein ex	xpression and	phosphorylation of
MAPK SAPK/JNK in LPS-stimulated or X-irradiated murine B	BMDMs	

Source of variation / phospho-SAPK/JNK over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	15.06	F (36, 273) = 3.122	P < 0.0001	****
Group factor	45.48	F (12, 273) = 28.28	P < 0.0001	****
Time factor	0.4262	F (3, 273) = 1.060	P = 0.3665	ns
Source of variation / SAPK/JNK over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	6.266	F (36, 286) = 1.394	P = 0.0740	ns
Group factor	53.30	F (12, 286) = 35.57	P < 0.0001	****
Time factor	2.454	F (3, 286) = 6.551	P = 0.0003	***
Source of variation / pSAPK/JNK over SAPK/JNK	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	20.37	F (36, 208) = 1.877	P = 0.0034	**
Group factor	13.73	F (12, 208) = 3.795	P < 0.0001	****
Time factor	3.194	F (3, 208) = 3.531	P = 0.0158	*

Supplementary Table 7 The source of variation in protein expression of $I\kappa B\alpha$ expression and phosphorylation in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / pIĸBa over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	3.277	F (36, 208) = 0.7886	P = 0.8001	ns
Group factor	71.94	F (12, 208) = 51.93	P < 0.0001	****
Time factor	0.7713	F (3, 208) = 2.227	P = 0.0861	ns
Source of variation / ΙκΒα over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	19.38	F (36, 208) = 4.482	P < 0.0001	****
Group factor	46.84	F (12, 208) = 32.49	P < 0.0001	****
Time factor	8.799	F (3, 208) = 24.42	P < 0.0001	****
Source of variation / pΙκΒα over ΙκΒα	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	16.26	F (36, 208) = 2.714	P < 0.0001	****
Group factor	45.24	F (12, 208) = 22.65	P < 0.0001	****
Time factor	3.884	F (3, 208) = 7.780	P < 0.0001	****

Source of variation / pAKT over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	29.06	F (36, 299) = 5.809	P < 0.0001	****
Group factor	22.32	F (12, 299) = 13.39	P < 0.0001	****
Time factor	8.092	F (3, 299) = 19.41	P < 0.0001	****
Source of variation / AKT over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	15.74	F (36, 312) = 4.524	P < 0.0001	****
Group factor	46.02	F (12, 312) = 39.68	P < 0.0001	****
Time factor	8.075	F (3, 312) = 27.84	P < 0.0001	****
Source of variation / pAKT over AKT	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	25.51	F (36, 299) = 5.331	P < 0.0001	****
Group factor	15.43	F (12, 299) = 9.674	P < 0.0001	****
Time factor	19.95	F (3, 299) = 50.05	P < 0.0001	****

Supplementary Table 8 The source of variation in protein expression and phosphorylation of AKT in LPS-stimulated or X-irradiated murine BMDMs

Supplementary Table 9 The source of variation in protein expression and phosphorylation of mTOR in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / phospho-mTOR over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	15.42	F (36, 387) = 3.499	P < 0.0001	****
Group factor	30.73	F (12, 387) = 20.92	P < 0.0001	****
Time factor	6.764	F (3, 387) = 18.41	P < 0.0001	****
Source of variation / mTOR over GAPDH	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	13.69	F (36, 351) = 3.984	P < 0.0001	****
Group factor	50.05	F (12, 351) = 43.70	P < 0.0001	****
Time factor	3.277	F (3, 351) = 11.44	P < 0.0001	****
Source of variation / phospho-mTOR over mTOR	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	27.85	F (36, 351) = 7.738	P < 0.0001	****
Group factor	24.93	F (12, 351) = 20.78	P < 0.0001	****
Time factor	14.17	F (3, 351) = 47.24	P < 0.0001	****

Supplementary Table 10 The source of variation of pro-inflammatory cytokine mRNA expression in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / IL-1β	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	24.47	F (26, 166) = 49.58	P < 0.0001	****
Group factor	68.95	F (13, 166) = 279.4	P < 0.0001	****
Time factor	3.339	F (2, 166) = 87.96	P < 0.0001	****
Source of variation / IL-2	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	3.335	F (26, 192) = 0.8858	P = 0.6283	ns
Group factor	66.63	F (13, 192) = 35.40	P < 0.0001	****
Time factor	1.049	F (2, 192) = 3.624	P = 0.0285	*
Source of variation / IL-6	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	44.60	F (26, 252) = 51.81	P < 0.0001	****
Group factor	38.68	F (13, 252) = 89.86	P < 0.0001	****
Time factor	8.371	F (2, 252) = 126.4	P < 0.0001	****
Source of variation / IL-12	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	21.03	F (26, 230) = 4.485	P < 0.0001	****
Group factor	37.76	F (13, 230) = 16.11	P < 0.0001	****
Time factor	4.157	F (2, 230) = 11.53	P < 0.0001	****
Source of variation / TNF-a	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	36.46	F (26, 246) = 34.51	P < 0.0001	****
Group factor	46.95	F (13, 246) = 88.90	P < 0.0001	****
Time factor	6.413	F (2, 246) = 78.93	P < 0.0001	****

Supplementary Table 11 The source of variation in anti-inflammatory cytokine mRNA expression in LPS-stimulated or X-irradiated murine BMDMs

Source of variation / IL-4	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	23.18	F (26, 259) = 6.454	P < 0.0001	****
Group factor	30.00	F (13, 259) = 16.71	P < 0.0001	****
Time factor	11.90	F (2, 259) = 43.07	P < 0.0001	****
Source of variation / IL-10	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	23.35	F (26, 235) = 4.678	P < 0.0001	****
Group factor	24.39	F (13, 235) = 9.770	P < 0.0001	****
Time factor	6.672	F (2, 235) = 17.37	P < 0.0001	****
Source of variation / TGF-β	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	2.195	F (26, 248) = 0.4064	P = 0.9960	ns
Group factor	46.23	F (13, 248) = 17.12	P < 0.0001	****
Time factor	0.05814	F (2, 248) = 0.1399	P = 0.8695	ns
Source of variation / IFN-γ	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	3.315	F (26, 239) = 0.5017	P = 0.9808	ns
Group factor	33.54	F (13, 239) = 10.15	P < 0.0001	****
Time factor	0.05949	F (2, 239) = 0.1170	P = 0.8896	ns
Source of variation / NOS2	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	27.23	F (26, 243) = 103.5	P < 0.0001	****
Group factor	68.19	F (13, 243) = 518.4	P < 0.0001	****
Time factor	1.943	F (2, 243) = 95.99	P < 0.0001	****

Source of variation / IL-1β	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	10.39	F (12, 156) = 5.966	P < 0.0001	****
Group factor	66.12	F (12, 156) = 37.96	P < 0.0001	****
Time factor	0.8422	F (1, 156) = 5.802	P = 0.0172	*
Source of variation / IL-6	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	2.344	F (13, 168) = 1.764	P = 0.0525	ns
Group factor	80.47	F (13, 168) = 60.56	P < 0.0001	****
Time factor	0.01169	F (1, 168) = 0.1144	P = 0.7356	ns
Source of variation / IL-12	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	2.439	F (13, 166) = 0.5166	P = 0.9122	ns
Group factor	35.28	F (13, 166) = 7.472	P < 0.0001	****
Time factor	1.956	F (1, 166) = 5.386	P = 0.0215	*
Source of variation / TNF-a	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	16.29	F (13, 168) = 29.95	P < 0.0001	****
Group factor	73.38	F (13, 168) = 134.9	P < 0.0001	****
TT: C				

Supplementary Table 12 The source of variation of pro-inflammatory cytokines production in LPSstimulated or X-irradiated murine BMDMs

Supplementary Table 13 The source of variation of anti-inflammatory cytokines production in LPS-stimulated or X-irradiated BMDMs

Source of variation/ IL-4	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	7.409	F (13, 168) = 1.965	P = 0.0265	*
Group factor	33.41	F (13, 168) = 8.861	P < 0.0001	****
Time factor	10.46	F (1, 168) = 36.07	P < 0.0001	****
Source of variation/ IL-10	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	7.302	F (13, 168) = 3.094	P = 0.0004	***
Group factor	60.59	F (13, 168) = 25.68	P < 0.0001	****
Time factor	1.609	F (1, 168) = 8.866	P = 0.0033	**
Source of variation/ TGF-β	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	17.89	F (13, 168) = 3.691	P < 0.0001	****
Group factor	15.77	F (13, 168) = 3.253	P = 0.0002	***
Time factor	3.698	F (1, 168) = 9.917	P = 0.0019	**
Source of variation/ IFN-γ	% of total variation	F (DFn, DFd)	P value	P value summary
Interaction	4.273	F (13, 168) = 2.040	P = 0.0203	*
Group factor	27.07	F (13, 168) = 12.92	P < 0.0001	****
Time factor	41.59	F (1, 168) = 258.1	P < 0.0001	****

Supplementary western blots (whole bands)

In this project only **the first seven bands** were used and the other bands belong to another project.

- Prosieve ladder 300 kda (Lonza) was used (see image below).
- Usually the membrane was cut at 70 kda and the upper part was used for TLR4, mTOR, phospho-mTOR and the lower part for the other depicted proteins.
- The membrane was first incubated with antibodies against the phospho-protein, then stripped and controlled, blocked and incubated with the antibodies against the total protein.
- Either phospho- or total proteins were controlled to their corresponding GAPDH.

A

1- TLR4

2- ERK1/2

48h			
	ERK1/2		
		- 70 55	ERK1/2
		40	48h
	pERK1/2		
		55 40	pERK
		e write	48h
	GAPDH		
		- 70-	
		55 40	gapdh
			480
72h			
	ERK1/2		
		75 55 40	ERK1/2 72h
	pERK1/2		
		70 55 40	pERK
			72h
	GAPDH		
		55 40	gapdh 72h
			3

3- p38

2h		
	p38	20 55 2h
	GAPDH	gapdh 2h
	pp38	55 40 pp38 2h
	GAPDH	55 40 25 GAPDH 2h
24h	20	
	p <i>5</i> 8	55 40 24h
	GAPDH	gapdh 24h

	pp38	25 40 55 70 70 70 70 70 70 70 70 70 70
	GAPDH	40 55 70 24h
48h	n ²⁹	
	p38	p38 48h
	GAPDH	gapdh 48h
	pp38	40 55 48h
	GAPDH	40 55 70 70 gapdh 48h
72h		

p38	70 55 40	p38 72h
GAPDH	70 55 40	gapdh 72h
pp38	40 55 70	pp38 72h
GAPDH	で 後 40 55 70	gapdh 72h

4- SAPK/JNK

	GAPDH		
		25 40	gapdh 24h
48h			
	SAPK/JNK	40 55 70	SAPK/JNK 48h
	pSAPK/JNK	40 55	pSAPK/JNK 48h
	GAPDH	40 55 70	gapdh 48h
72h			
	SAPK/JNK	40 55 70	SAPK/JNK 72h
	pSAPK/JNK	40 55 70	pSAPK/JNK 72h
	GAPDH	40 55 70	gapdh 72h

5- IkBα

2h			
	IkBα		
		40 55 70	IkBa 2h
	GAPDH		
		40 55	gapdh 2h
	pIkBα	70 55 40	plkBa
	GAPDH	70 55 40 25	GAPDH 2h
24h			
	IkBα	55 40 25	IkBa 24h
	GAPDH	70 55 40	gapdh 24h
	pIkBα	40 55 70	plkBa 24h

	GAPDH	40 55 70	gapdh 24h
48h	IkBa		
	in Du	55 40 25 15	lkBa 48h
	GAPDH	- 70 - 55 - 40 - 40	gapdh 48h
	pIkBα	40 55 70	plkBa 48h
	GAPDH	40 * 55 * 50	gapdh 48h
72h			
	ΙκΒα	55 40 25	IkBa 72h
	GAPDH	70 55 40 4	gapdh 72h

pIkBα	で 神 ・ ・ ちち うつ	plkBa 72h
GAPDH	で 後 40 55 70	gapdh 72h

6- AKT

2h			
	AKT		AKT 2h
	GAPDH		
		* 40 55	gapdh 2h
	рАКТ		pAKT 2h
	GAPDH		
		40 55	gapdh 2h
24h			
	AKT	55	AKT 24h
	GAPDH		
		25 40	gapdh 24h
	pAKT		pAKT 24h

	GAPDH	70 55 40	gapdh 24h
48h	AKT		
		5	AKT 48h
	GAPDH	40 55 70	gapdh 48h
	pAKT	55	рАКТ 48h
	GAPDH	40 55	gapdh 48h
72h			
	AKI		AKT 72h
	GAPDH	40 55 70	gapdh 72h

pAKT		pAKT 72h	
GAPDH	70 55 40	gapdh 72h	

7- mTOR

2h			
	mTOR		mTOR 2h
	GAPDH	40 55	gapdh 2h
	pmTOR	0000000 000000000000000000000000000000	phospho-mTOR 2h
	GAPDH	70 55 40	gapdh 2h
24h			
	mTOR	300 170 170 100	mTOR 24h
	GAPDH	70 55 40	gapdh 24h
	pmTOR	**************************************	pmTOR 24h

27

	GAPDH	40 55 70	gapdh 24h
48h			
	mTOR	N 1000 N	mTOR 48h
	GAPDH	40 55 70	gapdh 48h
	pmTOR	7000 11400 11400 11400 11400 11400 11400	phospho-mTOR 48h
	GAPDH	40 55 70	gapdh 48h
72h			
	mTOR	100 140 140 250 300	mTOR 72h
	GAPDH	40 55 70	gapdh 72h

pmTOR	推書 700 考 1700 1700 1700	phospho-mTOR 72h
GAPDH	40 55 70	gapdh 72h

1. TLR4

TLR4	 72h
GAPDH	

B

2. ERK1/2

ERK1/2	 2h
GAPDH	
pERK1/2	
GAPDH	
EDV1/2	246
EKK1/2	 24n
GAPDH	
pERK1/2	
GAPDH	
ERK1/2	 48h
GAPDH	
pERK1/2	
GAPDH	
	701
EKK1/2	/2h
GAPDH	
pERK1/2	
GAPDH	

3.	b 38
•••	

p38	 2h
GAPDH	
pp38	
GAPDH	
p38	 24h
GAPDH	
pp38	
GAPDH	
p38	 48h
GAPDH	
pp38	
GAPDH	
p38	 72h
GAPDH	
pp38	
GAPDH	

4. SAPK/JNK

SAPK/JNK	2h
GAPDH	
pSAPK/JNK	
GAPDH	
SAPK/JNK	 24h
GAPDH	
pSAPK/JNK	
GAPDH	
SAPK/JNK	48h
GAPDH	
pSAPK/JNK	
GAPDH	
SAPK/JNK	 72h
GAPDH	
pSAPK/JNK	
GAPDH	

5. IkBa

IkBα		2h
IkBα		
GAPDH		
pIkBα		
GAPDH		
IkBα		24h
GAPDH		
pIkBα		
GAPDH		
IkBα		48h
GAPDH		
pIkBα	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GAPDH		
IkBα		72h
GAPDH		
pIkBα	and the set of the set	
GAPDH		

6. AKT

AKT	Me	2h
GAPDH		
рАКТ	where where there was and and are the third and where was the	
GAPDH		
AKT		24h
		2411
GAPDH		
рАКТ	the same and the same and the same the same and the	
GAPDH		
		403
АКТ		48h
GAPDH		
рАКТ		
GAPDH		
AKT		72h
		/ 211
GAPDH		
рАКТ	water water but had not not not not not not but the state	
GAPDH		

7. mTOR

mTOR	2h
GAPDH	
Phopspho- mTOR	
GAPDH	
mTOR	 24h
GAPDH	
Phopspho- mTOR	
GAPDH	
mTOR	48h
GAPDH	
Phopspho- mTOR	
GAPDH	
mTOR	 72h
GAPDH	
Phopspho- mTOR	
GAPDH	