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The 2020 US CVP study was originally conducted as a worked example for the forthcoming 
textbook, “Methods for Health Preference Research.” As requested by the reviewers of the 
article, this section is an excerpt from its current draft that I wrote and shows how a study team 
might evaluate a design matrix in terms of coverage after it has been assembled, generated, or 
optimized. 

A design matrix may seem appropriate under idealized conditions; however, the study team 
should seek assurances that the matrix will satisfy the minimum statistical properties for 
estimation under the worst-case scenarios. Assessing a design matrix in terms of coverage may 
seem tedious and unnecessary, but careful evaluation prevents wasting scarce data collection 
resources. 

The worked example has three design matrices, totaling 168 unique sets (56 x 3). The random 
design was assembled by randomly selecting candidate sets, the generator-developed design 
was generated from an orthogonal array, and the efficient design was optimized based on a 
conditional logit, D-error, and fixed priors 𝜷𝜷 = (0, 0, 0.2, 0.2, 0.1, 0.2, 0.3) under the assumption 
of preference homogeneity. Each design was constructed to be the same size, includes overlaps 
on each attribute, and excludes dominated alternatives and duplicate sets. We now review how 
each design may be evaluated using their response matrices. 

Constructing a response matrix as an evaluative tool 
The best way to evaluate a design matrix is to examine the potential responses, 𝒚𝒚 , that it can 
produce, namely the response matrix. To create the response matrix, a study team expands 
each set into its possible responses (e.g., A, B, C) and each response is exploded into its equality 
statements (A>B, A>C, B>A, B>C, C>A, C>B). These statements represent the potential 
preference evidence from a preference elicitation task with this set. A response matrix is an 
evaluative tool that represents all possible evidence given a design matrix, such that each row 
resolves an ambiguity and each column represents a possible tradeoff along a single attribute. 

Mathematically, a response matrix has 𝑆𝑆 × 𝐽𝐽 × (𝐽𝐽 − 1) rows and 𝐾𝐾 columns of tradeoffs. Each 
row represents an inequality statement corresponding to the response, 𝒚𝒚𝒔𝒔𝒔𝒔, where response, 𝒚𝒚, 
is object 𝒋𝒋 of set 𝒔𝒔. Each tradeoff, 𝒙𝒙𝑘𝑘, is a balanced ternary variable (+1, 0, -1), indicating 
whether the tradeoff favors the preferred alternative (+1), its counterpart (-1) or neither (0). 
Each row is like a pro-con list under Franklin’s Rule, where the choice is known, the positive 
tradeoffs represent the “pro,” and the negative tradeoffs represent the “con”. 

These ternary variables, 𝒙𝒙𝑘𝑘, are dummy-coded to indicate the effect of the attribute levels on 
the choice between the two alternatives (increasing or decreasing the probability) relative to 
another level (typically the level below itself). For the worked example, Table 1 shows the 
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response matrix for a single set (11111, 21114, 22122) where the third attribute is a holdout, 
and the sixth tradeoff is not observed regardless of response. 

Table 1. Response matrix for a single task in the worked example 

𝒚𝒚 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒 𝒙𝒙𝟓𝟓 𝒙𝒙𝟔𝟔 𝒙𝒙𝟕𝟕 
11111>21114 1 0 0 0 0 0 1 
11111>22122 1 1 0 1 1 0 0 
21114>11111 -1 0 0 0 0 0 -1 
21114>22122 0 1 0 1 1 0 -1 
22122>11111 -1 -1 0 -1 -1 0 0 
22122>21114 0 -1 0 -1 -1 0 1 

 

If two alternatives are identical, the response does not resolve ambiguity, so this response 
would be excluded from the response matrix. A common mistake is to drop duplicate rows of 
the response matrix prior to its evaluation. Generally, duplicates rows of 𝒙𝒙 are undesirable, but 
tolerated. (A parallel in qualitative work is asking the same question twice with slightly different 
wording.) The variance of any ternary variable 𝒙𝒙𝑘𝑘 is the frequency of the nonzero values divided 
by the number of rows minus one. More advanced designs may include linearity constraints or 
allow for order effects, replacing the main ternary variables with other balanced variables (e.g., 
differences in numerical cost or risk, interactions). 

In the worked example, the response matrix for each design has 336 rows (56 x 3 x 2) and seven 
columns (𝐾𝐾 = 7), including only the seven main effects, not the opt-out. By ignoring the opt-out 
in the task, the three design matrices are evaluated under the assumption that opt-out is never 
selected. Each of the three design matrices selected its 56 sets from the 25,360 candidate sets, 
which are based on 64 possible objects and 1,720 candidate pairs (i.e., the 2,016 possible pairs 
[64 × 63 / 2] excluding those with dominated alternatives). As shown in Table 2, the candidate 
pairs reduce to 499 unique combinations of tradeoffs (potential rows of the response matrix). 
Among these 499, 19% have no holdout—that is, no attribute shared by both alternatives in a 
pair—and the remainder have one or more holdouts. 

Comparing the response matrices in the three designs, three differences are worth mentioning. 
First, the efficient design includes fewer unique objects. Second, the efficient design includes 
more unique responses. Third, the efficient design includes more responses without holdouts 
and fewer responses with holdouts on the fifth attribute. These differences are not necessarily 
good or bad, but it illustrates how different set selection approaches in experimental design 
create differences in the preference evidence. 

  



Table 2 Comparison of the three design matrices in the worked example 

 All Random 
Generator-
developed Efficient Combined 

Unique sets 25,360 56 56 56 168 
Unique objects 64 63 62 48 64 
Unique pairs 1720 150 132 150 401 
Unique responses 499 59 52 113 185 
Holdouts (proportion of unique combinations where an attribute level is shared) 
  Attribute 1 30% 44% 35% 40% 37% 
  Attribute 2 30% 37% 27% 37% 35% 
  Attribute 3 32% 73% 58% 34% 46% 
  Attribute 4 32% 59% 58% 27% 41% 
  Attribute 5 7% 19% 15% 5% 10% 
  No holdouts 19% 0% 0% 12% 8% 

Frequency of tradeoffs and multicollinearity  
Even if a subject is assigned all sets, the response matrix for a single respondent has a subset of 
the rows. For the worked example, when a person chooses A, only two rows (A>B, A>C) of the 
six rows (A>B, A>C, B>A, B>C, C>A, C>B) will be observed and the other four rows (B>A, B>C, 
C>A, C>B) will not be observed. When a person chooses A, preference between B and C is 
endogenously censored. This is because the comparison is made over three alternatives (four if 
including an opt-out), so effectively, we do not observe “second chance” preferences among 
the discarded alternatives. 

To observe all rows, a study must include repeated tasks. If the number of responses per set is 
large and the design excludes dominated alternatives, the preference evidence on all tradeoffs 
will be observed. [1] After the initial review of unique sets and holdouts (Table 2), the 
unweighted response matrix is assessed based on the frequency of tradeoffs (non-zero 
elements) and their multicollinearity. 

Frequency of tradeoffs is assessed by examining the proportion of nonzero elements for each 
tradeoff. This frequency is proportional to the variance and characterizes the amount of 
information on its effect. For example, if an attribute is always a hold out (i.e., frequency of 
zero), the design lacks the variation needed to estimate the effect of that attribute. Note that 
balance in frequency implies level balance (the number of times that an attribute level is 
shown), but level balance does not imply balance in frequency.  As an extreme example, an 
attribute at Level 2 may occur with the same frequency as any other attribute level (level 
balance), but appear only as a hold out; therefore, the design does not have any preference 
evidence on this attribute level. When the frequency of a tradeoff is near zero (like an 
underpowered arm of a clinical trial), the study team may either increase the sample size or 
abandon the design matrix. 

Multicollinearity is assessed by examining the pairwise relationship between ternary variables. 
If two variables are perfectly correlated (perfect collinearity), the design lacks the variation 



needed to allow the estimation of their independent effects. If two variables are highly 
correlated (multicollinearity), the sample size may be too small to identify their independent 
effects, a problem of micronumerosity  or insufficient power. [2] For the purposes of design 
evaluation, study teams may check for multicollinearity by computing the minimum and 
maximum correlations among the ternary variables. 

By construction, tradeoffs on the same attribute will be positively correlated, and tradeoffs on 
different attributes have near-zero or negative correlations. As a general rule, all correlations 
should be between -0.7 and 0.7. Some teams may also estimate the determinants of the 
correlation and covariance matrices as an expedient measure of collinearity. [3] If all ternary 
variables were perfectly uncorrelated, the determinant of the correlation matrix equals 1. [4, 5] 
Maximizing the determinant of the covariance matrix is sometimes known as D-optimality [6] 
or D-efficiency [7], but should not be confused with the minimization of D-error, previously 
described. 

After the assessment of the unweighted response matrix, the final component involves the 
assessment of the design matrix under worst-case scenarios, which entails violations of utility 
balance. 

Utility balance and worst-case scenarios 
Utility balance implies observing each row of the response matrix with equal likelihood, 
𝑃𝑃�𝑦𝑦𝑠𝑠𝑠𝑠 = 1|𝑋𝑋,𝛽𝛽� = 𝑤𝑤𝑠𝑠𝑠𝑠 = 1/𝐽𝐽. Study teams typically start by evaluating the frequencies of 
tradeoffs and correlations under this unrealistic scenario. After this unweighted evaluation, the 
study team computes the likelihood of each row 𝑤𝑤𝑗𝑗𝑗𝑗 under each worst-case scenario and re-
evaluates the weighted response matrices. Unlike priors, which represent the most likely 
parameter set, these worst-case scenarios characterize extreme parameter sets that may 
reasonably occur. 

The weighted evaluation starts with the most likely scenario based on the priors. This evidence 
serves as a reference to better understand coverage under the worst-case scenarios. After the 
prior, we conduct one-way analyses, iteratively placing extreme values on each tradeoff and 
keeping the rest at the prior. In this analysis, any pair with the selected tradeoff is 
deterministic; therefore, the response matrix includes only the pairs where the attribute is a 
holdout. Apart from one-way analyses, the study team may assess the impact of increasing the 
priors by a factor of three or more, mimicking heightened preference intensity. 

Regardless of scenario, the evaluative process involves computing the weights 𝒘𝒘𝒔𝒔𝒔𝒔 given a 
parameter set and estimating the percentage of utility balance, known as B-error (i.e., 
1
𝑆𝑆
∑ ∏ 𝐽𝐽 × 𝑤𝑤𝑠𝑠𝑠𝑠

𝐽𝐽
𝑗𝑗=1

𝑆𝑆
𝑠𝑠=1 ). [8] In the unweighted evaluation (prior values of zero), B-error is one by 

definition which implies complete utility balance. An unsatisfactory design matrix may include 
weights 𝒘𝒘𝒔𝒔𝒔𝒔 near zero or be highly unbalanced overall, having a B-error below 70%. 

For the worked example, Table 3 shows D-, A-, and B-errors, the minimum weights, the 
minimum frequencies, and the correlation ranges based on five scenarios: unweighted (zero 
priors), priors, and two worst-case scenarios. 



Table 3. Evaluation of the three design matrices in the worked example 

 D-Error A-Error B-Error 
Minimum 
weight 

Minimum 
frequency 

Minimum 
correlation 

Maximum 
correlation 

Unweighted (0,0,0,0,0,0,0) 
  Random 0.173 0.212 1.000 0.333 0.262 -0.131 0.566 
  Generator-developed 0.137 0.176 1.000 0.333 0.286 0.000 0.577 
  Efficient 0.130 0.189 1.000 0.333 0.440 -0.496 0.598 
Priors (0,0,0.2,0.2,0.1,0.2,0.3) 
  Random 0.174 0.214 0.984 0.260 0.256 -0.131 0.572 
  Generator-developed 0.139 0.178 0.972 0.242 0.276 -0.015 0.577 
  Efficient 0.130 0.189 0.995 0.301 0.441 -0.495 0.598 
One-way analysis (0,0,10,0.2,0.1,0.2,0.3)  
  Random 0.224 0.290 0.986 0.260 0.316 -0.167 0.614 
  Generator-developed 0.241 0.299 0.980 0.250 0.323 -0.134 0.573 
  Efficient 0.354 0.695 0.998 0.475 0.402 -0.729 0.626 
Five times the priors (0,0,1,1,0.5,1, 1.5) 
  Random 0.204 0.251 0.696 0.078 0.235 -0.158 0.584 
  Generator-developed 0.175 0.229 0.558 0.049 0.249 -0.068 0.567 
  Efficient 0.139 0.202 0.877 0.186 0.444 -0.494 0.599 
 

The one-way analysis in Table 3 mimics the scenario when the third attribute becomes 
deterministic, removing any mention of this tradeoff from the design. This extreme scenario 
has little effect on the random and generator-developed designs but causes the efficient design 
to appear inferior to its counterparts in terms of D- and A- error and minimum correlation. 
Similar results were found in the one-way analyses of the three other ordinal attributes. The 
last worst-case scenario demonstrates the effects of increasing the priors by a factor of five, 
mainly the decrease in the B-error and minimum weights. Overall, each design performs well 
under these assumptions. The reader is reminded that real world performance of the design 
depends on the true parameters, which are unknown. The best that we can do at this stage is to 
evaluate the design matrix under a variety of reasonable and extreme scenarios. 

Summary 
The evaluation of the response matrix is useful to eliminate clearly bad design matrices, 
increasing the chance that the overall experimental design will perform well when data are 
collected. The evaluation is not meant to inform a choice between two good designs, a 
question of design efficiency. The benefits of switching from a satisfactory to a superb design 
matrix are typically unnoticeable. [9] Higher levels of refinement may matter in the cases when 
samples are unavoidably small (e.g., rare disease patients) or when assumptions potentially fail 
(e.g., McFadden’s positivity assumption, misinformed priors, unknown likelihood functions). 
More generally, the outcome of matrix evaluation is either pass or fail. 
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