Supplementary Information

Pre-clinical lead optimization of a 1,2,4-triazole based tankyrase inhibitor

Jo Waaler, Ruben G. G. Leenders, Seen T. Sowa, Shoshy Alam Brinch, Anita Wegert, Marc Nazaré, Lari Lehtiö, and Stefan Krauss, Albert Galera-Prat, Eddy Damen, Anita Wegert, Marc Nazaré, Lari Lehtiö, and Stefan Krauss,

[†]Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317, Oslo, Norway.

[†]Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424, Oslo, Norway.

§Mercachem BV, Kerkenbos 1013, 6546 BB Nijmegen, the Netherlands.

Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, PO Box 5400, 90014 Oulu, Finland.

Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany.

Contents

Supplementary Table 1. East, West, South and Linker variations.

Supplementary Figure 1. Co-crystal structures of TNKS2 with inhibitors.

Supplementary Table 2. East-side variations of compound **13**.

Supplementary Table 3. Inhibition of ARTDs/PARPs.

Supplementary Figure 2. Exemplary dose-response measurements of **13** with TNKS1 and TNKS2.

Supplementary Figure 3. Quantification of immunoblots shown in Fig. 5a.

Supplementary Table 4. Data collection and refinement statistics for the crystal structures.

a)				b)			
East variation	N N CI	Biochemical IC ₅₀ TNKS2 (nM)	Cellular IC ₅₀ HEK293 (nM)	West variation	N NH CI	Biochemical IC ₅₀ TNKS2 (nM)	Cellular IC ₅₀ HEK293 (nM)
1	NH NH	6.3	19	1	[N]	6.3	19
	§ CN			55	YNY	3.9	40
17	N.Me	34	116	56	N N	8.4	330
18	Q. CN	48	274	57	\n\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	18	43
			274	58	N	5.7	51
36	S NH	5.5	3	_ 22	EtO N	9.3	21
37	\$ \$	6.4	30	59	N S	2.3	140
38	\$ NH P	6.7	40	60	N-X S	23	290
39	NH F	4.1	30	61	/ N~	30	400
40	₹ NH F,	1700	7880	62	25	120	6400
	₹ NH F			63	/\ >	220000	>10000
20	§>NH N	4.9	1.7	64	√ \	2600	8410
41	NH N	18	50	c)			' !
42	§ NH NH	57	70	South variation	N-N NH NH	Biochemical IC ₅₀ TNKS2 (nM)	Cellular IC ₅₀ HEK293 (nM)
43	S NH N N	3.5	4	1	T CI	6.3	19
44		25000	>100000	65		15	200
45	Me F	2.7	2.4	66	0	5.4	30
46	, » ,	37	57	_	CF ₃		
47	\$>NH N-	3.0	6.7	67	CI CI	19	260
48	\$>=NH N=7	5.4	1	23	F	30	142
	NH N	0.0	0.040	68	7	23	310
21	NH N	2.6	0.048	69	7	50	590
49	NH NH	350	750	70	F E	25	290
50	NH NH	680	1300	71	F	49	460
51	3/	6.6	32	_	CS.		
52		6300	>10000	72	2	170	300
	\$ NH			73	5	1700	1050
53	§>NH ○	1700	2260	74	5	5600	>10000
54	SV NH	2300	8900	d)	~oʻ		
				Linker variation	N N CI CN	Biochemical IC ₅₀ TNKS2 (nM)	Cellular IC ₅₀ HEK293 (nM)
				1 75	I →	6.3 44	19 220

Supplementary Table 1. (a) East, (b) West, (c) South and Linker (d) variations.

Supplementary Figure 1. Co-crystal structures of TNKS2 with inhibitors. (a) Superposition of **105** and **1** co-crystal structures (PDB codes 6TKN, 5NOB) showing the compounds and TNKS2 proteins for the TNKS2-**105** co-crystal structure (blue) and TNKS2-**1** co-crystal structure (yellow). Hydrogen bonds (dashed lines) and a water molecule (red sphere) are shown for the TNKS2-**105** co-crystal structure. (b) Superposition of **13** and **1** co-crystal structures showing the compounds and TNKS2 protein from the TNKS2-**13** co-crystal structure (PDB codes 6TG4, 5NOB). (c) Binding mode of **106** with TNKS2 catalytic domain (PDB code 6TKP). (d) Binding mode of **107** with TNKS2 catalytic domain (PDB code 6TKR). The σ_A weighted 2F_o-F_c electron density maps around the ligands are contoured at 1.4-1.7σ. Crystal structures were solved with molecular replacement using the structure of TNKS2 (PDB code: 5NOB) as a starting model.

ID	East point mutations	Biochemical IC ₅₀ TNKS2 (nM)	Cellular IC ₅₀ HEK293 (nM) Solubility (µM)
76	३ ₩	9.5	73
77	Ĵ—F	10	62
13		14	19 (>80)
78	° F	4.2	14
79	\$\frac{1}{N}	4.5	25
80	<u></u>	190	919
81	2	5.0	39
82	ON CF3	28	70
83	2	2.1	1.1 (3.4)
10		4.3	0.63 (>80)
84		2	0.17 (3.1)
85	2	6.4	14 (14)
86	° N → F	9.1	12
87	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.5	5.0 (<2)
88	2	2.8	7.5 (>80)
89	Ž	19	78 (<2)
90		4.9	14 (<2)

91		5.4	18 (13)
92	→ HN	10	57
93	SHN.N	21	67
94	\$\frac{1}{N}\times	13	36
95	2	4.5	47
96	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	18	65
97	2-(n'	87	550
98		12	100
99	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	5.0	8.0
100		4.4	34
101		4.1	27
102		19	144
103		14	25
104	\$ € S	7.4	27

Supplementary Table 2. East-side variations of compound **13**.

	1**	13
ARTD1/PARP1 (µM)	>100	29
ARTD2/PARP2 (µM)	>100	26
ARTD3/PARP3 (µM)	>100	75
ARTD4/PARP4 (µM)	>100	>100
ARTD5/TNKS1 (nM)	29 (7.54±0.007)	127 (6.90±0.05)
ARTD6/TNKS2 (nM)	6.3 (8.20±0.03)	14 (7.85±0.04)
$\textbf{ARTD7/PARP15}^{\vartriangle}(\mu M)$	> 10	>>10
ARTD8/PARP14 (µM)	> 10	>100
ARTD10/PARP10 (μM)	> 10	>> 10
$\textbf{ARTD12/PARP12}^\vartriangle(\mu M)$	> 10	>>10

>> no inhibition detected

Supplementary Table 3. Inhibition of ARTDs/PARPs (IC₅₀ [pIC $_{50}\pm$ SEM]).

Supplementary Figure 2. Exemplary dose-response measurements of 13 with TNKS1 (a) and TNKS2 (b). The measurements were fitted using 4-parameters with GraphPad Prism. As compound showed no fluorescence interference, raw values were used for the fit. Controls were placed 2-logarithm units below or above the highest, and lowest compound concentrations (open diamonds).

below 50% inhibition concentration limited by DMSO tolerance

Supplementary Figure 3. Quantification of immunoblots (protein/actin or lamin B1 loading controls) relative to controls (0.01% DMSO = 1) shown in Fig. 5a. (a) Cytoplasmic TNKS1/2, AXIN1, AXIN2, transcriptionally active β -catenin (non-phospho) and β -catenin. (b) Nuclear active β -catenin and β -catenin.

Compound	13	10	105	106	107	87	88
PDB code	6TG4	6ТКМ	6TKN	6ТКР	6TKQ	6TKR	6TKS
Beam line	ESRF ID30B	DLS 104	ESRF ID30B	ESRF ID23-1	ESRF ID23-1	DLS 104	ESRF ID30A
Wavelength (Å)	0.9677	0.9795	0.97625	1.03285	0.97625	0.9795	0.966
Space group	P2 ₁ 2 ₁ 2 ₁						
Cell dimensions	42.68,	42.32,	41.73,	42.01,	42.12,	41.99,	41.60,
a, b, c (Å)	77.9,	77.41,	76.76,	77.08,	76.84,	76.76,	76.42,
	149.52	148.68	147.91	148.36	148.8	148.12	148.19
Paralutian (Å)	37 - 2.76	29.7 - 2.7	38.4 - 2.5	41.6 - 2.4	41.7 - 2.5	41.5 - 2.75	42 - 2.50
Resolution (Å)	(2.86-2.76)	(2.80- 2.7)	(2.59- 2.5)	(2.49- 2.4)	(2.59- 2.5)	(2.85- 2.75)	(2.56-2.50)
R _{merge}	29.0 (153.7)	24.4 (114.4)	22.0 (151.7)	12.1 (87.4)	19.7 (85.1)	30.1 (200.1)	10.1 (72.5)
Ι/σΙ	5.33 (1.06)	5.09 (1.21)	7.64 (1.10)	11.03 (1.93)	8.37 (2.04)	5.66 (1.12)	9.91 (2.03)
Completeness (%)	99.3 (99.6)	98.4 (99.9)	99.8 (99.6)	99.8 (99.9)	99.7 (99.5)	98.3 (99.5)	99.3 (98.7)
Redundancy	6.2 (5.8)	3.4 (3.5)	6.3 (6.5)	6.5 (6.3)	6.5 (6.7)	6.4 (6.5)	5.4 (5.7)
Refinement							
R _{work} / R _{free}	0.226/0.270	0.237/0.265	0.201/ 0.244	0.202/ 0.231	0.188/0.229	0.228/0.282	0.214/0.259
B-factors							
Protein	49	42	45	44	35	55	58
Inhibitor	42	31	38	36	24	41	51
R.m.s.d.							
Bond lengths (Å)	0.013	0.013	0.013	0.013	0.013	0.013	0.013
Bond angles (°)	1.72	1.64	1.72	1.64	1.79	1.72	1.66
Ramachandran plot (%)							
Favored regions	97.22	97.24	96.03	99.5	99	96.02	97.01
Additionally allowed regions	2.78	2.76	3.97	0.5	1	3.98	2.99

Supplementary Table 4. (a) Structures for compounds shown in (b). (b) Data collection and refinement statistics for the crystal structures.