Supporting Information

Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts

Lucia Fagiolari,^{a,†} Marzia Bini,^b Ferdinando Costantino,^a Giordano Gatto,^a A. Jeremy Kropf,^c Fabio Marmottini,^a Morena Nocchetti,^b Evan C. Wegener,^c Francesco Zaccaria,^a Massimiliano Delferro,*^c Riccardo Vivani,*^b Alceo Macchioni*^a

^aDepartment of Chemistry, Biology and Biotechnology, University of Perugia and CIRCC, Via Elce di Sotto, 8, I-06123 Perugia, Italy; ^bDepartment of Pharmaceutical Sciences and CEMIN, University of Perugia, Via Fabretti 48, I- 06123 Perugia, Italy; ^cChemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States of America

* Email for A. M.: alceo.macchioni@unipg.it
* Email for R. V.: riccardo.vivani@unipg.it
* Email for M. D.: delferro@anl.gov

Summary

•	Synthetic details	2
•	Characterization details	3
•	Kinetic plots for NaIO ₄ -driven WO	. 10

• Synthetic details

Sample	Solution (mol%)		Solid (mol %)			
	Zn	Al	lr	Zn	Al	lr
1	69.6	30.0	0.4	64.5	35.0	0.5
2	70.0	29.0	1.0	72.4	26.5	1.1
3	67.0	30.5	2.5	66.0	31.0	3.0
4	69.7	25.6	4.7	64.7	34.9	0.4

Table S1. Comparison of molar composition of reaction solution and solid products relative to the synthesis of 1-4.

Concentrations are expressed in mol% with respect to the total metal content.

Table S2. Composition of oil and aqueous phase for microemulsions used for the synthesis of 1-3.

Ir-LDH	-LDH Microemulsion Oil phase		Aqueous phase		
1	А	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 0.525 M salt solution (0.3654 M ZnCl ₂ , 0.1575 M AlCl ₃ •6H ₂ O, 2.1 mM IrCl ₃)		
1	В	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 1.25 M NH_3 solution		
2	A	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 0.525 M salt solution (0.3675 M ZnCl ₂ , 0.1522 M AlCl ₃ •6H ₂ O, 5.2 mM IrCl ₃)		
2	6.25 g CTABr B 7.8 ml n-butan 18 ml isooctan	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 1.25 M NH $_3$ solution		
2	A	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 0.525 M salt solution (0.3502 M ZnCl ₂ , 0.1606 M AlCl ₃ •6H ₂ O, 0.0142 M IrCl ₃)		
3	В	6.25 g CTABr 7.8 ml n-butanol 18 ml isooctane	6.75 ml of 1.25 M NH_3 solution		

• Characterization details

Figure S1. FE-SEM images of 1.

Figure S2. FE-SEM images of 3.

B.E.T. BJH Sample Mesopore volume (cm³/g) Surface area (m²/g) 1 140 0.31 2 45 0.08 3 52 0.10 4 10 0.01

Figure S3. N₂ adsorption-desorption isotherm plots for 1-4.

Table S3. Surface area and mesopore volume obtained from N_2 adsorption and desorption measurements.

Figure S4. The magnitude of the Fourier transform of the k²-weighted EXAFS of **2**: raw data (black) and two-path-fit of the first scattering shell (red).

Figure S5. The magnitude of the Fourier transform of the k²-weighted EXAFS of 2 and reference Ir(III) species like Ir(acac)₃ and IrCl₃.

Figure S6. The magnitude (solid) and imaginary part (dashed) of the Fourier transform of the k²-weighted EXAFS of 2 and IrO₂.

Figure S7. Ir L_3 edge XANES of 2 before and after catalytic run.

Figure S8. The magnitude (solid) and imaginary part (dashed) of the Fourier transform of the k²-weighted EXAFS of **2** before and after catalytic run.

Figure S9. Ir L₃ edge XANES of 2 recovered after catalytic run in unbuffered water and reference IrO₂.

Figure S10. The magnitude (solid) and imaginary part (dashed) of the Fourier transform of the k²-weighted EXAFS of of **2** after catalytic run and reference IrO₂.

Figure S11. Ir L₃ edge XANES of 2 before and after extensive washing with water at 80°C (see caption of Figure S10 for details).

Figure S12. The magnitude (solid) and imaginary part (dashed) of the Fourier transform of the k²-weighted EXAFS of **2** before and after extensive washing with water at 80°C. XANES Energies and EXAFS coordination parameters for **2** washed: Edge Energy (eV) = 11 214.6; $S_0^2 = 0.78$; CN = 5.9 ± 0.5 (Ir–O); R (Å) = 1.98 ± 0.01; σ^2 (10⁻³ Å²) = 2.5 ± 1.1; E^o (eV) = 6.3 ± 1.1; R-factor = k1: 0.003, k2: 0.006, k3: 0.009.

• Kinetic plots for NaIO₄-driven WO

Figure S13. Kinetic profiles for WO by catalyst **1** (pH 7 by phosphate buffer, 25°C) at different catalyst (left) and NaIO₄ (right) concentrations.

Figure S14. Kinetic profiles for WO by catalyst 2 (pH 7 by phosphate buffer, 25°C) at different catalyst (left) and NaIO₄ (right) concentrations.

Figure S15. Kinetic profiles for WO by catalyst 4 (pH 7 by phosphate buffer, 25°C) at different catalyst (left) and NaIO₄ (right) concentrations.

Figure S16. log k' – log [Ir] plot for catalysts **1** (up left) **2**, (up right), **3** (down left) and **4** (down right). ([NaIO₄] = 20 mM; [Ir] = 1.0, 2.5, 5.0, 10 μ M; pH 7 by phosphate buffer).

Figure S17. log k' – log [NalO₄] plot for catalysts **1** (up left) **2**, (up right), **3** (down left) and **4** (down right). ([Ir] = 5 μ M [NalO₄] = 5.0, 10, 20, 40 mM; pH 7 by phosphate buffer).

Figure S18. Comparison of TOFs ([Ir] = 5 μ M, [NaIO₄] = 20 mM) vs. BET surface area for catalysts 1-4.

Figure S19. Comparison of kinetic profiles obtained in recyclability test for **2** ([Ir] = 5 μ M, [NaIO₄] = 20 mM, pH 7 by phosphate buffer, 25°C). Balck trace: first catalytic run; red trace: the second catalytic run, carried out by recovering the solid catalyst used in the first experiment.