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1 More Details on the Set-Up
As explained in the main paper, our main achievement is the proposal of a resampling
based multiple comparison procedure that is designed in a way that it is applicable in low-
and high-dimensional settings while estimating the correlation matrix of the different test
statistics is not necessary. We hereby distinguish the two different underlying asymptotic
frameworks corresponding to low-and high-dimensional cases, both being motivated
from statistical practice:

1. The number of experimental conditions (time points) d is fixed and the sample size
N →∞.

2. The number of experimental conditions (time points) d may depend on N and is
not a model constant, i.e. d = d(N)→∞ as N →∞.
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Note that the numbers of hypotheses to be tested may depend on d (e.g. in many-to-
one comparisons) and thus may also diverge as indicated in Case 2. In this context
an astonishing feature of our proposed resampling technique is that it allows for a
simultaneous treatment of both cases.

Multiple contrast tests for the classical low-dimensional case with fixed d have
been studied in detail under normality assumption, see, e.g.,1 for d ∈ {3, 4, 5} and2–4

for general d. Procedures for other parametric models have been considered by5

and implemented in the R-package multcomp6. Global testing procedures for high-
dimensional repeated measures have been proposed by7 and8 for the one and two sample
case and recently been extended by? for an arbitrary number of groups.

After this short prequel recall that we consider a multivariate two-sample design given
by independent and identically distributed d-dimensional random vectors in i = 1, 2
independent groups

Xik = (Xi1k, . . . , Xidk)
′ ∼ F i, i = 1, 2; k = 1, . . . , ni; N = n1 + n2,(1.1)

with expectation E(Xi1) = µi = (µi1, . . . , µid)
′ and covariance matrix Cov(Xi1) =

Σi > 0, i = 1, 2. Set µ = (µ′1,µ
′
2)
′. In this general model, Hypotheses of interest

Hµ
0 : Cµ = 0 are manifold, but can be described in a general way using a q × (2 · d)

dimensional linear contrast matrix

C =

 c′1
...
c′q

 =


c11 . . . c1d c1(d+1) . . . c1(2d)
c21 . . . c1d c2(d+1) . . . c2(2d)

...
. . .

...
...

...
...

cq1 . . . . . . . . . . . . cq(2d)

 .

Each row of C represents one contrast and thus one comparison. Note that the global
null hypothesis Hµ

0 : Cµ = 0 can be equivalently written as

Hµ
0 : Cµ = 0⇔


H

(1)
0 : c′1µ = 0

H
(2)
0 : c′2µ = 0

...
H

(q)
0 : c′qµ = 0

⇔
q⋂
`=1

{
H

(`)
0 : c′`µ = 0

}

and therefore, testing the global null Hµ
0 : Cµ = 0 is basically equivalent to testing

the local null hypotheses H(`)
0 , ` = 1, . . . , q, simultaneously at multiple level α. Which

linear contrast matrix to use, however, depends on specific study questions and cannot be
recommended in general. A few prominent examples are listed below:
(a) Multiple comparisons of the multivariate hypotheses Hµ

0 : µ1 = µ2 can be

performed using C = (Id
...− 1 · Id).9 investigate multiple comparisons for testing the

aforementioned hypothesis in detail.
(b) Testing multiple interaction effects between the factors group and time can be
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performed using C = P d(Id
...− 1Id). Here, P d = (Id − 1

dJd) denotes the so-called
centering matrix.

(c) Main time effects can be tested using C = P d(Id
...Id).

(d) Many-to-one comparisons of the first component to all others per group can be

conducted by C = (1d−1
...− Id−1)⊕ (1d−1

...− Id−1).

2 Theoretical properties
In this section the theoretical properties of the introduced test statistics will be discussed.
For the ease of notation, we concentrate on the multivariate testing problem H0 :
θ1 ± θ2 = 0, where θi = E(Y ik) and Y ik = CXik, i = 1, 2; k = 1, . . . , ni. Since the
numbers of contrasts q to be tested may depend on the dimension d, e.g. in Dunnett-type
many-to-one comparisons, they play an important role in the asymptotic frameworks. We
therefore distinguish between fixed and diverging numbers of comparisons:

• Case A. (Low-Dimensional MCTP) C = Cq ∈ Rq×d in case of a fixed number
q <∞,

• Case B. (High-Dimensional MCTP) C = Cr ∈ Rr×d, where r = r(d) and d→
∞.

In the sequel we study the two different asymptotic frameworks, namely assuming that
the sample size N goes to infinity, i.e. N →∞, and d = d(N) is a subsequence thereof.
This includes both the cases A and B of low- and high-dimensional designs, namely
d(N) ≡ d ∈ N fixed as well as d = d(N)→∞ simultaneously with N →∞. In the
latter, we do not impose any specific relation between N and d, i.e. the high-dimensional
setting with d > N is automatically included. For the existence of Gaussian limit
distributions the following regularity conditions on the covariance matrices are imposed
(corresponding to the choice of C):

Case A Let N →∞, d→∞ and let the numbers of comparisons q in C = Cq ∈
R
q×d be fixed such that

CΣiC
′ → V i ∈ Rq×q, with V i = V

′
i > 0, i = 1, 2.

Case B Let N →∞, d→∞ and let the numbers of comparisons q = q(d) in
C = Cq ∈ Rq×d grow with increasing dimension d such that

CΣiC
′ → V i ∈ RN×N, with V i = V

′
i > 0, i = 1, 2 and

sup
i,`

(vi,``) <∞, where vi,`` denotes the `-th diagonal element of V i.

The additional condition in Case B is needed to guarantee that all variances are
bounded. In most practical applications in the life sciences this is not a restrictive
condition. Moreover, in both of the Cases A and B, we assume that
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N

ni
→ λi <∞, i = 1, 2; N →∞, (2.2)

Let Y i· denote the vector of means in group i and note that Cov(Y ik) = CΣiC
′

and Cov(
√
N Y i·) =

N
ni
CΣiC

′. Using this notation we define the statistic

UN =
√
N(Y 1· ± Y 2·), (2.3)

the covariance matrix of which is given by

SN = Cov(UN ) =

2∑
i=1

N

ni
CΣiC

′. (2.4)

Next we establish the asymptotic distribution of the statistics UN in both asymptotic
frameworks, i.e. assuming fixed and increasing numbers of contrasts.

Theorem 1. Under the respective assumptions of Cases A, B and under the
Assumption (2.2),

UN −
√
N(θ1 ± θ1)

d−→
{

Nq(0q,V q), Case A,
N∞(0∞,V ∞), Case B, (2.5)

where V q =
∑2
i=1 λiV i and V ∞ =

∑2
i=1 λiV i are limiting covariance matrices.

REMARK 2.1. Note that the result in Case B means that we have convergence in
distribution on R

N of the random process ((UN −
√
N(θ1 ± θ1))′,0′∞)′ to a zero-

mean Gaussian-process with covariance function ξ(k, `) = vk`, k, ` ∈ N where vk` is
the (k, `)-th entry of V ∞.

However, as discussed above, raw means are usually not the preferred choice of a test
statistic in practice rather than studentized means. The latter are unit free and therefore do
not depend on data scales. Here, each component of the statistic UN is studentized with
its corresponding variance estimator. In order to derive the asymptotic joint distribution
of the vector of test statistics T , the following Lemma is needed.

Lemma 1. Under the Assumption (2.2)

sup
i,`
|v̂i,`` − vi,``|

p−→ 0 in probability as N →∞.

Next, the asymptotic distribution of T will be established in the next theorem.

Theorem 2. Under the respective assumptions of Cases A, B and under the
Assumption (2.2),

T
d−→
{

Nq(0q,Rq), Case A,
N∞(0∞,R∞), Case B, (2.6)

whereR∞ = (vk`/
√
vkkv``)k,`, k, ` ∈ N , denotes the asymptotic correlation function.
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It follows from both of the two Theorems 1 and 2 that the limiting distributions of the
means and the t-test type statistics follow multivariate normal distributions (Case A) or
Gaussian processes (Case B), respectively.

In the next Theorem we show that the conditional distribution of T ∗ coincides with
the asymptotic null-distribution of T .

Theorem 3. Given the data Xik, i = 1, 2; k = 1, . . . , ni, it holds under the the
Assumption (2.2) that for all µ ∈ R2d the resampling statistic T ∗ has, asymptotically
(N →∞) in probability, the same distribution as T in Theorem 2 under the null
hypothesis H0 : θ1 ± θ2 = 0 in both Case A and Case B.

REMARK 2.2.
(a) This result implies that the proposed randomization approach is consistent in the
sense of approximating the null distribution of the test statistic T .
(b) Let ρq and ρ∞ denote a distance, e.g. the Prohorov distance (see Dudley, 2001), that
metrizes weak convergence on Rq and RN, respectively. Moreover, denote by L(T |H0)
the distribution of T under the null hypothesis and L(T ∗|X) the conditional distribution
of T ∗ given the data. Then Theorem 3 states that

ρq(L(T ∗|X),L(T |H0))
p−→ 0 in Case A and

ρ∞(L(T ∗|X),L(T |H0))
p−→ 0 in Case B

with the same interpretation in Case B as in Remark 2.1.

Furthermore, these results imply that {H(`)
0 : c′`µ = 0, T`, ` = 1, . . . , q} constitute

a joint testing family in the sense of Gabriel10, because the joint distribution of an
arbitrary selection of statistics Tj , j ∈ J ⊆ {1, . . . , q} is completely specified under
the hypothesis H(J )

0 :
⋂
j∈J {H

(j)
0 : c′jµ = 0} (asymptotically in Case A). Note that

the simultaneous test procedure {H0,T , z1−α(max)} is coherent, by construction, and
therefore, {H0,T , z1−α(max)} controls the FWER in the strong sense by Theorem 2
in10.

3 The Proofs
Proof of Theorem 1. Since B.) is more complicated we only prove this part and note that
part A.) follows similarly to the verification of the finite-dimensional (fidi) convergence
below. Note, that due to the centring with

√
NCµ we may assume without restriction

that µ = 0 holds. Moreover, since Y 1· and Y 2· are independent we can treat them
separately. Consider Y 1·. We first show that the Lindeberg condition is satisfied for the
array (Y1`k)k≤n for each fixed `.

We therefore introduce sn1` :=
∑n1

k=1 Var(Y1`k) = n1 · c′`Σ1c`, which fulfills

sn1`/n1 → v1,``,
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by assumption. Now suppose for a moment that v1,`` > 0 holds. Then we have for
all ε > 0: P (|Y1`1| ≥ εsn1`) ≤ ε−2 Var(Y1`1)/sn1` = ε−2n−11 −→ 0. This implies the
Lindeberg condition for the array (Y1`k)k, since c′`Σ1c` → v1,`` > 0 and

s−2n1`

∑
k

∫
Y 2
1`k1{|Y1`k| ≥ εsn1`}dP =

n1
sn1`

∫
Y 2
1`11{|Y1`1| ≥ εsn1`}dP → 0

by Pratt’s Lemma and the preceding considerations. In the case v1,`` = 0 we may
set Ỹ 2

1`k = n1Y
2
1`k/sn1` (with 0/0 := 0). In this case the first equality above becomes∫

Ỹ 2
1`k1{|Ỹ1`k| ≥ ε

√
n1}dP which also converges to zero.

Now fix r ∈ N and setZ(r)
ik = [(Yi`k)

′
1≤`≤r]

′, 1 ≤ k ≤ ni, i = 1, 2. Repeating the above

steps for ‖Z(r)
1k ‖ shows that the r-dimensional array Z(r)

1k satisfies the multivariate
Lindeberg condition. Hence it follows that

1
√
n1

n1∑
k=1

Z
(r)
1k
L→ Nr(0, (v1,k`)k,`≤r).

Since the similar result also holds for the second sample (with the index 1 replaced by 2)
and vk` = λ1v1,k` + λ2v2,k`, we have

√
N
( 1

n1

n1∑
k=1

Z
(r)
1k ±

1

n2

n2∑
k=1

Z
(r)
2k

)
L−→ Nr(0, (vk`)k,`≤r).

Finally, following Billingsley (1968, 29 f.) this proves part B.) since it suffices to show
convergence of the finite-dimensional distributions. 2

Proof of Lemma 1 Keeping the notation of the last proof (while still assuming µ = 0
w.l.o.g.) we recall that we have sin`/ni → vi,`` for all ` and i = 1, 2. Since

ni − 1

ni
v̂i,`` =

1

ni

ni∑
k=1

Y 2
ik` − (

1

ni

ni∑
k=1

Yik`)
2

and the latter part is uniformly negligible by Slutzky’s Lemma and the proof of
Theorem 1, it suffices to prove the result for ṽi`` := 1

ni

∑n1

k=1 Y
2
ik` instead of v̂i,``. Since

(Yi`k)k fulfills the Lindeberg condition and is centered, Raikov’s Theorem, see Raikov
(1938) or Janssen (2004, Lemma A.), implies convergence in probability

1

ni

ni∑
k=1

Y 2
ik`

p→ vi,``

for every fixed ` in both the Cases A.) and B.). Note, that in Case B) we even have
convergence in probability (ṽ``)`∈N

p→ (v``)`∈N on RN by the subsequence principle for
convergence in probability. Since sup is continuous on RN the assertion follows. 2

2
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Proof of Theorem 2 The result is a direct consequence of Lemma 1 in combination
with Theorem 2. 2

Proof of Theorem 3 As in the proof of Theorem 1 we only prove part B.)
and note that A.) follows similarly. Moreover, with respect to Slutzky’s Lemma
we can treat the conditional convergences of U∗N and D̂

∗
V separately. Let us start

with U∗N . Fix r ∈ N and consider the arrays Z∗(r)ik = (Z∗i`k)`≤r, 1 ≤ k ≤ ni for i =
1, 2, where Z∗ik = (Z∗i1k, . . . , Z

∗
idk)
′. Recall from the proof of Theorem 1 that the

array (Yi`k)
′
1≤`≤r]

′, 1 ≤ k ≤ ni satisfies the multivariate Lindeberg condition. Hence it
follows as in the proof of Lemma 1 that the following two convergences hold true

1

ni

ni∑
k=1

(Yi`k − Y i`·)`≤r(Yi`k − Y i`·)′`≤r
p→ (vi,k`)k,`≤r,

1

n
max
k≤n
‖(Y`k − Y `·)`≤r‖2

p→ 0.

Hence an application of Theorem A.1 in Beyersmann et al. (2013) shows that the
conditional distribution of

√
ni(Z

∗
i1·, . . . , Z

∗
ir·) given the data converges weakly in

probability to Nr(0r, (vik`)k,`≤r). Again applying Billingsley (1968, 29 f.) this proves
that
√
niZ

∗
i· is weakly asymptotically N∞(0∞,V i) in probability given the data. Hence

it follows that
√
NU∗N given the data converges weakly in probability to N∞(0∞,V ∞)

and it only remains to investigate D̂
∗
. To this end we will again apply Raikov’s Theorem

in its multivariate version; but now point-wise (i.e. given the data). Note that for fixed
observations Z∗ik, 1 ≤ k ≤ ni defines an array of row-wise i.i.d. random variables for
i = 1, 2. From the proof of Theorem A1 in Beyersmann et al. (2013) it follows that the
array Z∗(r)ik fulfills the Lindeberg condition in probability. Hence a two-fold application
of the subsequence principle for convergence in probability shows that

1

ni

ni∑
k=1

(Zi`k − Zi`·)`≤r(Zi`k − Zi`·)′`≤r

converges in probability to the matrix (vk`)k`≤r. This proves that D̂
∗

converges in
probability to diag{v`` : ` ∈ N} and the result follows. 2
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4 Additional Information for Protein Abundance Data

Table 1. Means and variances of the protein abundance data for each protein × region ×
group combination. The meaning of the dimension is listed below (1.1).

Means Empirical Variances
Dimension Group 1 Group 2 Group 1 Group 2

1 16.83 16.44 2.30 6.22
2 17.46 16.95 0.88 4.14
3 15.83 13.70 1.56 9.62
4 15.26 14.26 3.52 4.87
5 16.13 15.10 2.46 6.94
6 17.36 16.18 3.75 5.30
7 16.99 17.60 0.74 0.33
8 15.74 16.82 0.84 0.49
9 17.03 17.27 0.68 0.06

10 16.12 16.32 0.31 0.21
11 17.67 17.83 0.52 0.17
12 18.49 18.57 0.07 0.05
13 18.38 17.79 0.35 0.83
14 18.67 18.61 0.23 0.34
15 13.39 13.48 5.80 4.89
16 14.64 14.92 0.91 1.09
17 17.69 17.31 0.11 1.19
18 18.26 18.11 0.22 0.71
19 15.09 15.95 1.24 2.21
20 15.47 16.85 1.47 3.76
21 16.82 16.58 0.48 0.48
22 14.61 15.08 0.43 0.47
23 17.15 16.72 0.34 3.96
24 18.44 18.17 0.15 0.76
25 18.62 18.78 0.04 0.01
26 18.29 18.60 0.10 0.05
27 15.19 16.73 3.41 1.98
28 13.61 14.98 5.01 2.65
29 18.06 18.08 0.50 0.35
30 16.66 16.94 2.46 2.44
31 17.50 17.10 0.37 0.08
32 17.65 17.58 0.23 0.12
33 16.28 15.68 0.52 0.93
34 15.78 15.27 0.50 0.45
35 17.43 17.57 0.44 0.31
36 18.68 18.38 0.03 0.16
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Figure 1. Dotplots (log) of the Protein Abundance trial.
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Figure 2. Boxplots of the protein abundance data (log-scale). Here, data of group 1 are in the
upper panel.
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5 Simulation Results

5.1 Type-1 error simulation results
Due to the abundance of possible factorial designs and hypotheses, two-way designs
with varying dimension d ∈ {2, 4, . . . , 150} will be simulated and the hypothesis H0 :
P d(µ1 − µ2) = 0 of no interaction effect will be tested at 5% level of significance. Data
was generated from model

Xik ∼ F i(µ0,Σi) + µi, i = 1, 2, k = 1, . . . , ni, (5.7)

where F i(µ0,Σi) represents a multivariate distribution with expectation vector
µ0, correlation matrix Σi and location shifts µi. As representative marginal data
distributions, we selected three differently tailed symmetric distributions (normal,
logistic, T3) and three skewed distributions (ranging from mildly to very skewed) (χ2

7,
χ2
15, exponential) each with sample sizes ni ∈ {10, 20}. A major assessment criteria of

the quality of the proposed approximations is the impact of both the chosen contrast
as well as the dependency structures of the data—especially when data has different
covariance matrices and thus covering a typical Behrens-Fisher situation. Here, we used
normal copulas in order to generate rather complex dependency structures of the repeated
measurements using the R-package copula11. The different allocations of the correlation
matrices used in the simulation studies are summarized in Table 2.

Table 2. Different correlation matrices used in the simulation study.

Setting 1: Σ1 = (σ1,ij) = 0.6|i−j| Σ2 = (σ2,ij) = 0.6|i−j|

Setting 2: Σ1 = (σ1,ij) = 0.6|i−j|/(d−1) Σ2 = (σ2,ij) = 0.6|i−j|

Setting 3: Σ1 = (σ1,ij) = 1− |i− j|/d Σ2 = (σ2,ij) = 0.6|i−j|/(d−1)

Setting 4: Σ1 = Id + 0.5 · (Jd − Id) Σ2 = Id + 0.25 · (Jd − Id).

In Setting 1, both correlation matrices Σ1 and Σ2 are identical and represent an
autoregressive structure. In Settings 2 and 3, the covariance matrices Σ1 and Σ2 have
different off-diagonal elements models, whereas an autoregressive structure depending
on the dimension d is modeled by Σ1 in Setting 2, and a linearly decreasing (symmetric)
Toeplitz structure is covered by Σ1 in Setting 3 (see Table 2), see7 for similar choices.
For a detailed overview of copulas we refer to Nelsen (2007)12 or Marozzi (2015)13.

All these four settings will be simulated for all four sample sizes (ni ∈ {10, 20}),
dimensions (d ∈ {2, 4, . . . , 150}) and distributional configurations as described above.
The type-1 error simulation results obtained under Setting 1 are displayed in Figure 3.
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Figure 3. Type-1 error (α = 5%) simulation results of the Wild-bootstrap randomization test
(Wild) and simulation-based test (Chang). Data have covariance matrices as described in
Setting 1 in Table 2.
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Figure 4. Type-1 error (α = 5%) simulation results of the Wild-bootstrap randomization test
(Wild) and simulation-based test (Chang). Data have covariance matrices as described in
Setting 2 in Table 2.
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Figure 5. Type-1 error (α = 5%) simulation results of the Wild-bootstrap randomization test
(Wild) and simulation-based test (Chang). Data have covariance matrices as described in
Setting 3 in Table 2.
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Figure 6. Type-1 error (α = 5%) simulation results of the Wild-bootstrap randomization test
(Wild) and simulation-based test (Chang). Data have covariance matrices as described in
Setting 4 in Table 2.
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5.2 Power simulation results
The any-pairs power curves are displayed in Figure 7 (small sample sizes) and in Figure 8
(large sample sizes) . All-pairs power curves are provided in Figure 9 (small sample sizes)
and Figure 10 (large sample sizes) and in F, respectively.
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Figure 7. Any-pairs power (α = 5%) simulation results of the Wild-bootstrap randomization
test (Wild) and simulation-based test (Chang) with small (ni = 10) sample sizes. Data have
covariance matrices as described in Table 2.
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Figure 8. Any-pairs power (α = 5%) simulation results of the Wild-bootstrap randomization
test (Wild) and simulation-based test T (Chang) with large (ni = 100) sample sizes. Data
have covariance matrices as described in Table 2.
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Figure 9. All-pairs power (α = 5%) simulation results of the Wild-bootstrap randomization
test (Wild) and simulation-based test T (Chang) with small (ni = 10) sample sizes. Data
have covariance matrices as described in Table 2.
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Figure 10. All-pairs power (α = 5%) simulation results of the Wild-bootstrap randomization
test (Wild) and simulation-based test (Chang) with large (ni = 100) sample sizes. Data have
covariance matrices as described in Table 2.
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6 Particular Designs and Hypotheses
In order to demonstrate the application of the procedures, we consider some frequently
occuring designs. Our general apporach includes the so-called (simple) split-splot
repeated measures design14 where it is assumed that Xik = (Xi1k, . . . , Xidk)

′ ∼
N(µi,Σi), i = 1, 2. In our more general model we drop the assumption of the normal
distribution and require only that the Xi are i.i.d. with E(Xi) = µi and Cov(Xi) =
Σi > 0. Moreover, we even allow that the dimension d can be much larger than the
sample size N . Note that also the case of unequal covariance matrices is included in
this set-up, thus covering the generalized multivariate Behrens-Fisher problem. Even
under the assumption of normality it is well known that the assumption of equal
covariance matrices is crucial for classical multivariate inference procedures. In the high-
dimensional case it has been demonstrated by15 that this assumption is even more crucial.
To take into account the problem of unequal covariance matrices in the multivariate high-
dimensional two-sample set-up several techniques have been developed recently,7,8,16,17.
Although our approach can also be used for such a multivariate testing problem, it is not
the major aim of the present paper, which is developing multiple testing procedures for
repeated measurements, where also hypotheses about the components of the vectors are
of interest.

As another example, our general approach particularly covers models with random
subject effects c · Sk, k = 1, . . . , ni, where the Sk are i.i.d. random variables with
E(Sk) = 0 and Var(Sk) = 1. Here, c is an unknown scaling factor to model the variance
of the unknown random subject effect. The corresponding semiparametric mixed effects
model is written as

Xik = µi + cSk1d + εik,

where εik = (εi1k, . . . , εidk)
′ are i.i.d. error terms with E(εi1) = 0 and Cov(εi1) =

Si > 0 which are independent of Sk. Thus, Cov(Xi1) = Σi = Si + c2Jd with Jd =
1d1

′
d. Common covariance choices of Si as the identity, compound symmetry or an

autoregressive structure are special cases and fulfill the Assumptions.
Factorial structures on the repeated measures are introduced by splitting the index

j = 1, . . . d into subindices. For example, a setting with two factors is achieved by setting
d = ab and denoting the levels of factor A with j1 = 1, . . . , a and the levels of factor B
with j2 = 1, . . . , b. Such designs occur frequently in biological or medical trials when the
observations are repeatedly taken over time (e.g., factor A) on paired organs or different
parts of the same subject (e.g., factor B) under two different treatments, i = 1, 2. For a
practical occurrence, see e.g., the sleep laboratory trial of18 as well as the postoperative
edema study on p. 18 in19. Using the notation introduced in Section 1, the hypotheses
of parallel time profiles for the different parts of the subject under different treatments
(factor T ) is written as

H0(ABT ) : (md ⊗ P a ⊗ P b)µ = 0. (three-fold ABT-interaction)

Here, µi = (µ′i1, . . . ,µ
′
ia), where µij1 = (µij11, . . . ,µij1b)

′ is structured according to
the hypothesis matrix md ⊗ P a ⊗ P b. As another example, many-to-one comparisons
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for different treatment effects on the time points with respect to the baseline time
averaged over the different parts of the subjects can be written as

H0(AT ) : (md ⊗Ma ⊗ 1
bJb)µ = 0. (two-fold AT-interaction)

For other hypotheses in this design, see e.g. Brunner et al. (2012, Section 4.1).

7 Simulation Code
library(multcomp)
library(copula)

simu_CI2<-function(n1,n2,d,Sigma1,Sigma2,nsim, nboot, Distribution, Setting){
#-------------------------Useful Matrices------------------------#
###alpha=0.05

WRade=WCheng=c()

Pd=diag(d)-1/d
nc<-nrow(Pd)
N<-n1+n2

#---------------------------Bootstrap Weights--------------------------------#
WR<-matrix(rbinom(N*nboot,1,1/2)*2-1, nrow=nboot, ncol=N)
WR1<-WR[,1:n1]
WR2<-WR[,(n1+1):N]

#-----------------------Matrices for Means-----------------------------------#
WRM1 <- 1/n1*WR1
WRM2 <- 1/n2*WR2
Pn1 <- diag(n1) - 1/n1
Pn2 <- diag(n2) - 1/n2
#----------------------Matrices for Variances--------------------------------#
WR12 <- WR1ˆ2
WR22 <- WR2ˆ2
WRV1 <- 1/(n1-1)*WR12
WRV2 <- 1/(n2-1)*WR22
#-----------Compute Parameters for Copula Generation ------------------------#
Rho1= cov2cor(Sigma1)
URho1= upper.tri(Rho1)
rvec1=NULL
Rho2= cov2cor(Sigma2)

URho2= upper.tri(Rho2)
rvec2=NULL
for(rv1 in 1:d){
for(rv2 in 1:d){
if(URho1[rv1,rv2]){rvec1=c(rvec1,Rho1[rv1,rv2])}
if(URho2[rv1,rv2]){rvec2=c(rvec2,Rho2[rv1,rv2])}}}
#--------------------------Data Generation-----------------------------------#
if(Distribution=="Normal"){

cop1 <- mvdc( copula=normalCopula(rvec1, dim = d, dispstr = "un"),
margins=rep("norm",d),
paramMargins=lapply(1:d,function(arg){list(mean=0,sd=1)}))

cop2 <- mvdc( copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("norm",d),
paramMargins=lapply(1:d,function(arg){list(mean=0,sd=1)}))

x1 <- rMvdc(n1*nsim,cop1) %*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

if(Distribution=="T3"){
cop1 <- mvdc( copula=normalCopula(rvec1, dim = d, dispstr = "un"),

margins=rep("t",d),
paramMargins=lapply(1:d,function(arg){list(df=3)}))

cop2 <- mvdc( copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("t",d),
paramMargins=lapply(1:d,function(arg){list(df=3)}))

x1 <- rMvdc(n1*nsim,cop1) %*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

if(Distribution=="Logistic"){
cop1 <- mvdc( copula=normalCopula(rvec1, dim = d, dispstr = "un"),

margins=rep("logis",d),
paramMargins=lapply(1:d,function(arg){list(location = 0, scale = 1)}))

cop2 <- mvdc( copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("logis",d),
paramMargins=lapply(1:d,function(arg){list(location = 0, scale = 1)}))

x1 <- rMvdc(n1*nsim,cop1) %*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

if(Distribution=="Exp"){
cop1 <- mvdc(copula=normalCopula(rvec1, dim = d, dispstr = "un"),
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margins=rep("exp",d),
paramMargins=lapply(1:d,function(arg){list(rate=1)}))

cop2 <- mvdc( copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("exp",d),
paramMargins=lapply(1:d,function(arg){list(rate=1)}))

x1 <- rMvdc(n1*nsim,cop1)%*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

if(Distribution=="Chisq7"){
cop1 <- mvdc( copula=normalCopula(rvec1, dim = d, dispstr = "un"),

margins=rep("chisq",d),
paramMargins=lapply(1:d,function(arg){list(df=7)}))

cop2 <- mvdc(copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("chisq",d),
paramMargins=lapply(1:d,function(arg){list(df=7)}))

x1 <- rMvdc(n1*nsim,cop1)%*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

if(Distribution=="Chisq15"){
cop1 <- mvdc( copula=normalCopula(rvec1, dim = d, dispstr = "un"),

margins=rep("chisq",d),
paramMargins=lapply(1:d,function(arg){list(df=15)}))

cop2 <- mvdc(copula=normalCopula(rvec2, dim = d, dispstr = "un"),
margins=rep("chisq",d),
paramMargins=lapply(1:d,function(arg){list(df=15)}))

x1 <- rMvdc(n1*nsim,cop1) %*%Pd
x2 <- rMvdc(n2*nsim,cop2)%*%Pd}

#-----------------------Center the Data Vectors--------------------------------#

x1Z<-matrix(0,nrow=n1*nsim,ncol=nc)
x2Z<-matrix(0,nrow=n2*nsim,ncol=nc)
num1<-1:n1
num2<-1:n2
for (j in 0:(nsim-1)){

s11<-num1+j*n1
s12<-num2+j*n2
pl1<-x1[s11,]
pl2<-x2[s12,]
plZ1<-Pn1%*%pl1
plZ2<-Pn2%*%pl2
x1Z[s11,]<-plZ1
x2Z[s12,]<-plZ2

}

x12 <- x1ˆ2
x22 <- x2ˆ2
x1Z2<-x1Zˆ2
x2Z2<-x2Zˆ2
#-------------------Begin of Simulation Loop---------------------------------#
for (i in 0:(nsim-1)){

s1<-num1+i*n1
s2<-num2+i*n2
pl1<-x1[s1,]
pl12 <- x12[s1,]
pl1Z <- x1Z[s1,]
pl1Z2 <-x1Z2[s1,]
mx1 <- colMeans(pl1)
vx1 <- (colSums(pl12)-n1*mx1ˆ2)/((n1-1))
pl2<-x2[s2,]
pl22 <- x22[s2,]
pl2Z <- x2Z[s2,]
pl2Z2 <-x2Z2[s2,]
mx2 <- colMeans(pl2)
vx2 <- (colSums(pl22)-n2*mx2ˆ2)/((n2-1))
mx <- (mx1-mx2)
vx<-(vx1/n1+ vx2/n2)

#--------------------------Original Statistic T0---------------------------#
Torig <- mx/sqrt(vx)
Tmax <- max(abs(Torig))
#######################################################################
#-----------------------------Wild- Bootstrap-------------------------#
#######################################################################

#-----------------------------Rademacher Weights---------------------------#

MZR1 <- WRM1%*%pl1Z
VZR1 <- (WRV1%*%pl1Z2-n1*MZR1ˆ2/(n1-1))/(n1)

MZR2 <- WRM2%*%pl2Z
VZR2 <- (WRV2%*%pl2Z2-n2*MZR2ˆ2/(n2-1))/(n2)
TR0 <- (MZR1-MZR2 ) / sqrt(VZR1+VZR2)
TR <- abs(TR0)
WRade[i+1]<-(mean(((rowSums(TR>=Tmax))>=1))<0.05)
#------------ Implement the Cheng Method ------------------------#
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SBoot=rmvnorm(n=nboot,sigma=cov2cor(var(pl1)/n1 +var(pl2)/n2),method="svd")
TSB <- abs(SBoot)

WCheng[i+1]<-(mean(((rowSums(TSB>=Tmax))>=1))<0.05)

#--------------------Ende of Simulation Loop -------------------------------#
}

Result<-data.frame(
nsim=nsim, nboot=nboot,d=d,n1=n1,n2=n2,
WRade=mean(WRade),
Cheng = mean(WCheng),
Distribution=Distribution,
Setting=Setting)

print(Result)

write.table(Result,file="Simu_Typ1_Copula_Final.txt",eol="\r\n",
row.names=FALSE,col.names=FALSE,quote=FALSE,append=TRUE)

}

################################################################################

AR1<-function(d){
si<-matrix(0,ncol=d,nrow=d)
for (i in 1:d){ for(j in 1:d) {

si[i,j]<-(0.6)ˆ((abs(i-j)) )
}}
si}

AR2<-function(d){
si<-matrix(0,ncol=d,nrow=d)
for (i in 1:d){ for(j in 1:d) {

si[i,j]<-(0.6)ˆ((abs(i-j)/(d-1)) )
}}
si}

TO=function(d){
si<-matrix(0,ncol=d,nrow=d)
for (i in 1:d){ for(j in 1:d) {

si[i,j]<-1-abs(i-j)/d
}}
si}

CS1=function(d){
diag(d)+0.5*(1-diag(d))}

CS2=function(d){
diag(d)*2+0.5*(1-diag(d))}

n1<-c(10,20)
n2<-c(10,20)
d <- seq(33,150,5)
Distribution <- c("Normal","Logistic", "T3", "Chisq7", "Chisq15", "Exp")

nsims=10000
nboots=1000

for(p3 in 1:length(d)){
for(p4 in 1:length(Distribution)){

simu_CI2(10,10,d[p3],AR1(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],1)
simu_CI2(10,10,d[p3],AR2(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],2)
simu_CI2(10,10,d[p3],TO(d[p3]),AR2(d[p3]),nsims,nboots,Distribution[p4],3)
simu_CI2(10,10,d[p3],CS1(d[p3]),CS2(d[p3]),nsims,nboots,Distribution[p4],4)

simu_CI2(10,20,d[p3],AR1(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],1)
simu_CI2(10,20,d[p3],AR2(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],2)
simu_CI2(10,20,d[p3],TO(d[p3]),AR2(d[p3]),nsims,nboots,Distribution[p4],3)
simu_CI2(10,20,d[p3],CS1(d[p3]),CS2(d[p3]),nsims,nboots,Distribution[p4],4)

simu_CI2(20,10,d[p3],AR1(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],1)
simu_CI2(20,10,d[p3],AR2(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],2)
simu_CI2(20,10,d[p3],TO(d[p3]),AR2(d[p3]),nsims,nboots,Distribution[p4],3)
simu_CI2(20,10,d[p3],CS1(d[p3]),CS2(d[p3]),nsims,nboots,Distribution[p4],4)

simu_CI2(20,20,d[p3],AR1(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],1)
simu_CI2(20,20,d[p3],AR2(d[p3]),AR1(d[p3]),nsims,nboots,Distribution[p4],2)
simu_CI2(20,20,d[p3],TO(d[p3]),AR2(d[p3]),nsims,nboots,Distribution[p4],3)
simu_CI2(20,20,d[p3],CS1(d[p3]),CS2(d[p3]),nsims,nboots,Distribution[p4],4)
}}
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