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Summary
We generated an online brain pQTL resource for 7,376 proteins through the analysis of genetic and proteomic data derived from post-

mortem samples of the dorsolateral prefrontal cortex of 330 older adults. The identified pQTLs tend to be non-synonymous variation, are

over-represented among variants associated with brain diseases, and replicate well (77%) in an independent brain dataset. Comparison

to a large study of brain eQTLs revealed that about 75% of pQTLs are also eQTLs. In contrast, about 40% of eQTLs were identified as

pQTLs. These results are consistent with lower pQTL mapping power and greater evolutionary constraint on protein abundance. The

latter is additionally supported by observations of pQTLs with large effects’ tending to be rare, deleterious, and associated with proteins

that have evidence for fewer protein-protein interactions. Mediation analyses using matched transcriptomic and proteomic data pro-

vided additional evidence that pQTL effects are often, but not always, mediated by mRNA. Specifically, we identified roughly 1.6 times

moremRNA-mediated pQTLs thanmRNA-independent pQTLs (550 versus 341). Our pQTL resource provides insight into the functional

consequences of genetic variation in the human brain and a basis for novel investigations of genetics and disease.
Introduction

Analyses mapping expression quantitative trait loci

(eQTLs) have deepened our understanding of the links

between genetics and disease.1–5 eQTLs tend to overlap

with disease-associated variants identified by genome-

wide association studies (GWASs) and are often used to

provide insight into the functional consequences of ge-

netic variation and identify candidate causal genes.6–10

These investigations implicitly assume that the genetic

effects on mRNA expression propagate to protein—the

main determinant of cellular function and ultimately

most phenotypes. However, gene expression is not a per-

fect proxy for protein expression. Previous studies have

shown that mRNA and protein abundances are often

only weakly correlated.11,12 Furthermore, analyses map-

ping protein quantitative trait loci (pQTLs), in addition

to eQTLs, have shown pQTLs to provide novel insight

into the impacts of genetic variation.13–18 Since proteins

represent a major source of druggable molecular targets,

this information can greatly aid the development of

new therapeutics.19

The genetic control of mRNA expression in the brain has

been well studied,20–27 but currently little is known about

how genetics influences brain protein abundances. Large-

scale analyses of brain pQTLs have not yet been performed

because the necessary data have only recently emerged.

Here, we investigate the genetic control of the human
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brain proteome by using high-throughput mass spectrom-

etry-based protein data from post-mortem brain samples of

the dorsolateral prefrontal cortex (dPFC) of older adults.

Additionally, to better understand the relationship be-

tween the genetic control of the human brain proteome

and transcriptome, we compare the pQTL results to a

recent brain eQTL meta-analysis and perform mediation

analyses by using matched gene and protein expression

data. The results of our pQTL analyses are made available

on the pQTL web application as a resource for future inves-

tigations (see ‘‘Web resources’’).

Material and methods

Data
Discovery dataset

To investigate the genetic control of the human brain proteome,

we analyzed genetic, transcriptomic, and proteomic data derived

from post-mortem samples of the dPFC of participants of the Reli-

gious Orders Study (ROS) and Rush Memory and Aging Project

(MAP).28–30 ROS and MAP are longitudinal cohort studies of aging

and dementia maintained by investigators at the Rush Alzheimer

Disease Center in Chicago, IL.28–30 Both studies recruit partici-

pants without known dementia at baseline and follow them annu-

ally via detailed clinical evaluation. The studies were approved by

an institutional review board of Rush University Medical Center.

All participants provided informed consent and signed an

Anatomic Gift Act and repository consent to allow their data

and biospecimens to be repurposed.
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Proteomic data. Protein abundance data from cortical microdis-

sections of the dPFC of ROS/MAP subjects were generated via tan-

dem mass tag (TMT) isobaric labeling mass spectrometry methods

for protein identification and quantification, as previously

described by Johnson et al. (2020)31 and Wingo et al. (2020).32

Briefly, tissue homogenization, protein digestion, TMT labeling,

and high-pH fractionation were performed in sequence. An equal

amount of protein digested from each sample was aliquoted and

digested in parallel to serve as the global pooled internal standard

(GIS) in each TMT batch. Prior to TMT labeling, all samples were

randomized into 50 batches (8 samples per batch) based on age

at death, sex, post-mortem interval, diagnosis, and measured neu-

ropathologies. Peptides from each individual sample (n ¼ 400)

and the GIS (n ¼ 100) were labeled with the TMT 10-plex kit

(Thermo Fisher). All fractions were resuspended in equal volume

of loading buffer and analyzed by liquid chromatography coupled

to mass spectrometry. The Orbitrap Fusion mass spectrometer

(Thermo Fisher Scientific) was run with MS/MS (MS2) scans for

45 TMT batches and with the SPS-MS3 method for five TMT

batches.

All raw files were analyzed via the Proteome Discoverer suite

(version 2.3 Thermo Fisher Scientific). MS2 spectra were searched

against the canonical UniProtKB human proteome database

(downloaded February 2019 with 20,338 total sequences). The Se-

quest HT search engine was used and parameters were specified as

previously described by Johnson et al. (2020)31 and Wingo et al.

(2020).32 Peptide spectral matches (PSMs) and peptides were

filtered with Percolator to a false discovery rate (FDR) of less

than one percent. Peptides were then assembled into proteins

and further filtered on the basis of the combined probabilities of

the constituent peptides to a final FDR of less than one percent.

In cases of redundancy, shared peptides were assigned to protein

sequences in adherence with the principles of parsimony. Reporter

ions were quantified from MS2 or MS3 scans via an integration

tolerance of 20 ppm with the most confident centroid setting. A

total of 12,691 proteins were quantified. Correlation of technical

replicates within each batch was over 99%, indicating a high de-

gree of reproducibility for the quantified proteins (Figure S1).

To ensure the analysis of high-quality data, we excluded pro-

teins with low correlations between the two GISs (outside the

95% confidence interval) within batches and proteins with

missing data for over 50% of subjects across batches. Additionally,

we scaled each abundance value by a subject-specific total protein

abundancemeasure to remove the effects of loading differences in

the proteomic experiments. After transformation to the log2 scale,

outlier subjects were identified and removed through iterative

principal-component analysis. For each iteration, subjects more

than four standard deviations from the mean of the first or second

principal component were removed and the principal compo-

nents were re-calculated. Following outlier removal, proteins

with missing data for over 50% of the remaining subjects were

removed. Finally, we residualized the abundance of each protein

via linear regression to remove the effects of sex, age at death,

post-mortem interval, study, batch, and MS2 versus MS3 reporter

quantitation mode. After these quality control procedures, there

were 7,376 high-quality proteins available for analysis.

To reduce confounding due to disease, we included dementia

status at death as a covariate in all proteomic analyses. For each

ROS/MAP participant, a clinical diagnosis of dementia was

rendered at the time of death blinded to all pathologic data.

Here, we coded the diagnoses of dementia status as no cognitive

impairment (NCI), mild cognitive impairment (MCI), or Alz-
The Ameri
heimer dementia (AD) and excluded individuals with a diagnosis

of non-Alzheimer dementia from analysis. For secondary analyses

on the influence of disease, all described quality control proced-

ures were repeated with data from the subset of samples with

NCI at death.

Genotyping data. Genotype data were generated from whole-

genome sequencing (WGS) of DNA that was extracted from cryo-

preserved peripheral blood mononuclear cells or frozen dPFC

of ROS/MAP subjects. WGS was performed as previously

described33 and is available via Synapse (ID: syn10901595). Briefly,

libraries were constructed with the KAPA Hyper Library Prepara-

tion Kit per the manufacturer’s protocol and sequenced on an Illu-

mina HiSeq X sequencer (v.2.5 chemistry) with 150 bp paired-end

reads. Reads were aligned to the GRCh37 human reference

genome via Burrows-Wheeler Aligner (BWA-MEM v.0.7.8)34 and

processed with the GATK best-practices workflow, which includes

marking duplicate reads by Picard tools v.1.83, local realignment

around indels, and base quality score recalibration by Genome

Analysis Toolkit (GATK v.3.4.0).35,36 A multi-sample genomic

variant call format (gVCF) was generated by merging results of

HaplotypeCaller on each sample individually in gVCF mode

(GATKv.3.4.0), and batches of gVCF were merged into gVCFs pro-

cessed by a joint genotyping step (GATK v.3.2.2).

Annotation of the multi-sample VCF (n ¼ 1,196) was performed

with Bystro.37 After quality control, a total of 1,133 subjects re-

mained for analysis. A total of 63 subjects were excluded for one

or more of the following reasons: (1) q, silent:replacement sites,

or transition:transversion ratios greater than five standard devia-

tions from the mean (n ¼ 7); (2) genotype missingness, heterozy-

gosity, or homozygosity greater than three standard deviations

from the mean (n ¼ 14); (3) sex discordance based on the hetero-

zygosity of the X chromosome (n ¼ 7); and (4) cryptic relation or

duplication identified by identity-by-state sharing with PLINK38

(n ¼ 31). We used unlinked ancestrally informative markers to

infer eigenvectors for principal-component analysis by using

EIGENSTRAT39 and over six standard deviation outliers (n ¼ 1)

were removed. Before analysis, the data was restricted to subjects

of European descent and filtered to the HapMap 3 SNVs40 that

are in Hardy-Weinberg equilibrium (HWE) and have a minor allele

frequency (MAF) greater than 0.05.

After quality control, we had 501,414 common SNVs to test and

330 subjects with both proteomic and genetic data. Information

on the demographics and disease status of these subjects is pro-

vided in Table S1. As a result of the batch-specific nature of missing

data from TMT-labeledMS/MS protein quantification, the number

of subjects with proteomic data differs for each protein and ranges

from 161 to 330 (Figure S2). As expected, proteins that were more

abundant were also more likely to have complete data (Figure S3).

Transcriptomic data. Gene expression was measured from the

dPFC as previously described.33 Briefly, RNA was extracted from

cortically dissected sections of dPFC gray matter and samples

with RNA integrity numbers (RINs) over 5 were used to prepare

RNA-sequencing (RNA-seq) libraries via strand-specific dUTP

method with poly-A selection41,42 with the Illumina HiSeq with

101-bp paired-end reads to a target coverage of 50 million reads

per library. Raw RNA-seq reads were aligned to a GRCh38 refer-

ence genome, and gene counts were computed via STAR43 as

described in Logsdon et al. (2019).44 We obtained RNA-seq data

from Synapse (ID: syn17010685) and performed library normali-

zation and quality control as described by Sieberts et al. (2020).22

Genes with <1 cpm in over 50% of subjects were removed, and

the remaining genes were normalized via conditional quantile
can Journal of Human Genetics 108, 400–410, March 4, 2021 401



normalization45 followed by weighted normalization via the

voom-lima package in Bioconductor.46 Outlier subjects were de-

tected and removed via principal-component analysis and hierar-

chical clustering. Only samples within three standard deviations

of the mean of the first and second principal components were

retained for further analysis. Finally, we residualized the expres-

sion of each gene via linear regression to remove the effects of

sex, age at death, post-mortem interval, study, and batch. After

quality control, 173 subjects had matched transcriptomic, prote-

omic, and genetic data. Table S1 provides the demographic and

disease characteristics of these subjects.

Replication dataset

Genetic and proteomic data derived from dPFC of participants of

the Banner Sun Health Brain and Body Donation Program (Ban-

ner BBDP) were used for replication analyses. The Banner Sun

Health Research Institute recruited cognitively normal individ-

uals from the retirement communities of the greater Phoenix,

AZ.47 The study was approved by the Banner Sun Health

Research Institute Institutional Review Board, and all individuals

or their legal representatives provided informed consent for

participation.

Proteomic data. Proteomic profiling was performed with the sam-

ples of the dPFC following the same approach as described for

ROS/MAP subjects with two differences: (1) only MS2 scans were

obtained and (2) MS2 spectra were searched against the UniProtKB

human brain proteome database downloaded in April 2015. A to-

tal of 11,518 proteins were quantified. We used the same quality

control procedures as the ROS/MAP proteomic data to remove

proteins with more than 50% missing data, remove outlier indi-

viduals, and remove the effects covariates (i.e., age at death, sex,

batch, and post-mortem interval) from the proteomic profiles. Af-

ter these quality control procedures, there were 6,526 high-quality

proteins available for analysis.

Analogous to the analyses in the discovery dataset, dementia

status at death was included as in all relevant models. Banner

BBDP participants were assessed during life with annual medical,

neurologic, and neuropsychological assessments, and upon death,

their donated brains underwent detailed neuropathologic assess-

ment. The final clinical diagnoses of Banner BBDP participants

was based on the five-point clinical dementia rating (CDR)

score.48 Individuals with CDR scores of 0, 0.5, and greater than

0.5 were considered to have a diagnosis of NCI, MCI, and

AD, respectively. Individuals without a clinical diagnosis were

excluded from analysis.

Genotyping data. Individuals were genotyped via Affymetrix Pre-

cision Medicine Array following the manufacturer’s protocol with

DNA extracted from brain via the QIAGEN GenePure kit. We fol-

lowed the same approach to quality control as was used for the dis-

covery dataset genetic data, including filtering on the basis of data

completeness, HWE, MAF, European ancestry, and relatedness. Af-

ter quality control, we had 460,954 common SNVs to test and 149

subjects with both proteomic and genetic data. Demographic and

disease information on these subjects is available in Table S1.

GWAS and eQTL summary statistics

For comparison, we downloaded summary statistics of four large

GWASs (average N > 382,000): Alzheimer disease,49 Parkinson dis-

ease,50 schizophrenia,51 and neuroticism.52 We also downloaded

the summary statistics for a large meta-analysis of brain eQTLs22

(n ¼ 1,433). The four GWAS results were from individuals of Euro-

pean descent and were used to identify disease-associated variants

at a significance thresholdof 5310�8. ThebraineQTLmeta-analysis

combined ROS/MAP genetic and transcriptomic data with genetic
402 The American Journal of Human Genetics 108, 400–410, March
and transcriptomic data from the CommonMind Consortium53

and defined eQTLs at a FDR of 5%.

Genetic and protein annotation data

Each tested protein was annotated with the number of protein-pro-

tein interactions on the basis of the number of interactions reported

in BioGrid data.54 Furthermore, Bystro37 was used to annotate each

tested genetic variant with combined annotation dependent deple-

tion (CADD)scores,55genomiccontexts (i.e., exonic, intronic,UTRs,

intergenic), and substitution types (i.e., non-synonymous versus

synonymous). The annotations used for genomic context and sub-

stitution typewere taken from the RefSeqdatabase.56 Since a variant

may be tested against the abundance of more than one protein, we

revised the genomic context annotations to be test specific. That

is, for each SNP-protein pair tested, a SNP with genic genomic

context (i.e., exonic, intronic, UTR) was re-annotated to intergenic

if the SNP is not within the gene of the paired protein.
Statistical analyses
Estimation of additional confounders

To reduce confounding due to population structure, we added the

first ten principal components of the discovery and replication

dataset genotype data as model covariates in all relevant analyses.

For both datasets, all ten principal components had significant

Tracey-Widom statistics (p value < 0.05). Additionally, unknown

confounders in the proteomic data were estimated via surrogate

variable analysis and the SVA package in R.57,58 For proteomic

data for both datasets, ten surrogate variables were built and added

as model covariations in all relevant analyses. Since the protein

data was generated from bulk tissue, it is likely that some of these

surrogate variables represent cell type proportions.

Identification of pQTLs

We identified genetic variants associated with protein abundance

in the brain by using linear regression tomodel protein abundance

as a function of genotype. We reduced our computational and

testing burden by investigating only the proximal genetic effects

of common single nucleotide variants (SNVs). We tested the prox-

imal genetic control of each protein by using linear regression to

model protein abundance as a function of genotype for every

common SNV (MAF > 0.05) within a 100 kb window around the

protein-coding gene. This window size was chosen because the

majority of reported eQTLs are located within 100 kb of the regu-

lated gene.59–61 The location of each protein coding gene was

defined by the knownGene table (GRCh37/hg19 assembly) from

the University of California, Santa Cruz (UCSC) table browser.62

For each SNV-protein pair, we regressed genotype against protein

abundance, assuming additive genetic effects and including clin-

ical diagnosis, the first ten genetic principal components, and

ten surrogate variables as covariates. Analyses that restricted

samples to those with NCI at death included only the first ten

principal components as covariates. SNVs where genotype was

significantly associated with protein abundance at a FDR of 5%

were declared protein quantitative trait loci (pQTLs; FDR <

0.05). For each protein with more than one pQTL, we identified

the independent pQTL signals via stepwise linear regression.

Quantification of replication rates

Replication rates were estimated via thep1 statistic from the qvalue

package in R.63 This statistic, which estimates the proportion of

non-null hypotheses on the basis of the p value distribution, is

more robust than a simple overlap of significant results.64 For

each replication analysis, we examined the distribution of replica-

tion study p values for sites found to be significant in the discovery
4, 2021



Table 1. Identification of pQTLs

Number of pQTLs Number of genes

Tested 501,414 7,376

Significant at FDR < 0.05 [independent] 35,601 [8,451] 2,474

Independent pQTLs were identified via stepwise regression.
study (FDR < 0.05). To reduce the influence of linkage disequilib-

rium, we analyzed only the lead discovery QTLs for each gene

(i.e., sites with the strongest associations).

Enrichment analyses

Weused Fisher’s exact tests to assess the enrichmentof brainpQTLs

among (1) variants annotated to different genomic contexts (i.e.,

exonic, intronic, UTRs, intergenic) and substitution types (i.e.,

non-synonymous versus synonymous), (2) brain eQTLs, and (3)

disease-associated variants. The tests for enrichment of pQTLs

among variants in different genomic contexts and of different sub-

stitution types included only sites that were both annotated and

tested in the pQTL analysis. Similarly, the test for enrichment of

pQTLs among eQTLs included only sites that were tested in both

the pQTL analysis and brain eQTL meta-analysis.22 In contrast,

the tests for enrichment of pQTLs among disease-associated vari-

ants included all sites tested in the pQTL analysis regardless of

testing status in the investigated GWASs.

Mediation analyses

Mediation analyses were performed with the mediation package65

in R and data from participants in the discovery dataset with both

RNA-seq and TMT protein data. To increase the stability of statis-

tical power across tests, we only considered proteins with more

than 170 samples with both RNA-seq that TMT protein data.

The analyses assessed mRNA abundance as a mediator of the ge-

netic effects on protein abundance through the comparison of

linear regression models. For each pQTL-protein pair, a model

where genotype predicts protein abundance was compared to a

model where both genotype and mRNA abundance predict pro-

tein abundance. All models additionally included clinical cogni-

tive diagnosis, the first ten genetic principal components, and

ten surrogate variables as covariates. A significant reduction in

the effect of genotype on protein abundance with the addition

mRNA abundance as a covariate is consistent with mediation.

We compared the mediation results with the results of a large

eQTL meta-analysis22 to avoid spurious results due to a limited

sample size. For this comparison, the eQTL meta-analysis was sub-

set to the sites included in the pQTL analysis.

Gene Ontology analyses

Gene Ontology (GO) analyses were performed to gain a better un-

derstanding of the proteins that were found to be under genetic

control and have mRNA-mediated or mRNA-independent abun-

dance. We used GOrilla66 to assess whether any biological pro-

cesses significantly associate with the sets of genes with mRNA-

mediated or mRNA-independent pQTLs. GOrilla uses a minimal

hypergeometric score to quantify the enrichment of each GO

term. Each set of genes was independently compared to the entire

set of genes included in mediation testing.
Results

pQTL discovery

We identified proximal brain pQTLs for 2,474 genes

(Table 1). These variants explained an average of 8.5% of
The Ameri
the variation in abundance of each protein (Figure S4)

and were enriched for SNVs with higher MAFs

(Figure S5). All pQTL summary statistics, regardless of sig-

nificance, are available for visualization and download

on the pQTL web application (see ‘‘Web resources’’).
Genomic context of pQTLs

To better understand the genomic context of the identified

pQTLs, we performed enrichment analyses to assess the

overlap of pQTLs and genomic annotations. We found

the identified pQTLs to be over-represented among SNVs

in coding regions and SNVs with non-synonymous varia-

tion (Figure 1, Table S2). Additionally, we compared the

distribution of pQTL effect sizes by genomic annotation

and found pQTLs in coding regions (i.e., exons and

UTRs) to have significantly larger median effect sizes

than pQTLs in non-coding regions (p < 0.005 for all pair-

wise Nemenyi tests; Figure S6A). Furthermore, within

exonic pQTLs, which have the largest median effect size

overall, we found pQTLs with non-synonymous variation

to have significantly larger median effect sizes than pQTLs

with synonymous variation (Figure S6B). We see this

pattern at pQTLs with a reference allele that increases pro-

tein abundance (Kruskal-Wallis c2 ¼ 7.3, p¼ 0.006) as well

as at pQTLs with a reference allele that decreases protein

abundance (Kruskal-Wallis c2 ¼ 8.1, p ¼ 0.004). We per-

formed separate analyses on exonic pQTLs with positive

and negative effects to reduce possible confounding due

to protein quantification bias. Because rare peptides may

not be included in the proteomic database and are less

likely to be accurately quantified, exonic coding-variation

is more likely to associate with a decrease in protein abun-

dance. We observed the reference allele to associate with

decreased protein abundance for 61% of all exonic pQTLs

and 68% of exonic pQTLs with non-synonymous varia-

tion. Together, these results suggest that genetic variation

that changes a coded amino acid tends to have a large in-

fluence on protein abundance.
Influence of disease on pQTL identification

The proteomic data was generated from post-mortem sam-

ples of older adults, of which 31% had a clinical diagnosis

of Alzheimer disease (AD) at death. To assess the influence

of AD on the identification of pQTLs, we compared the

results of the pQTL analysis for the discovery dataset

(N ¼ 330), which was adjusted for clinical diagnosis at

death, to individuals from the discovery dataset with no

cognitive impairment at death (N ¼ 144). We found the

estimated genetic effects on protein abundance to have a
can Journal of Human Genetics 108, 400–410, March 4, 2021 403
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Figure 1. Enrichment of proximal pQTLs
(A) Enrichment of proximal pQTLs by genomic context.
(B) Enrichment of proximal pQTLs in exonic coding regions. For
each annotation, enrichment was evaluated on the basis of a
Fisher’s exact tests assessing the overlap between pQTLs and the
annotated SNVs. The estimated odds ratio (OR) and 95% confi-
dence interval (CI) is shown for each test.
correlation of 0.62 between the main and control analyses

(Figure S7; p < 2.2 3 10�16). Furthermore, we found this

correlation to increase to 0.92 when we restricted to sites

identified as pQTLs in the main analysis. This comparison

suggests that AD has only a small influence on the identi-

fication of pQTLs in this study. The summary statistics

from the control-only pQTL analysis are also available for

visualization and download on the pQTL web application

(see ‘‘Web resources’’).

Enrichment of brain disease-associated variants among

pQTLs

Previous studies have shown that eQTLs tend to overlap

with disease-associated variants identified by GWASs.6–9

To assess whether variants associated with brain diseases

are over-represented among the identified pQTLs, we per-

formed a Fisher’s exact test that compared the set of pQTLs

to a set of SNVs that were identified to be disease associated

by large GWASs of four brain disorders. We found the iden-

tified pQTLs to be highly enriched in brain disease-associ-

ated genetic variation (OR: 2.82, p value ¼ 1.63 10�60; see

Table S3 for individual disorder enrichments). The esti-

mated enrichment supports the co-occurrence of pQTLs

and disease-associated variants across the genome. How-

ever, further evaluation is needed to understand the func-

tional consequences of these loci. Genetic colocalization

methods, for example, could be used to mitigate false

positives caused by linkage disequilibrium. The pQTL

resource provided by this study will facilitate such analyses

in the future.

pQTL replication

We assessed the replication rate of the identified brain

pQTLs in an independent brain replication dataset,47

which was comprised of genetic and proteomic data

derived from the dPFC on 149 subjects of European

descent. We identified proximal brain pQTLs for 1,803

genes in the replication dataset (Table S4). Next, we
404 The American Journal of Human Genetics 108, 400–410, March
compared the 5,712 proteins that passed quality control

and were analyzed in both the discovery and replication

datasets. We used the p1 statistic, which estimates the pro-

portion of non-null hypotheses, to evaluate the replication

rate of the brain pQTLs.64 We found the pQTLs identified

by the main analysis of data from the discovery

dataset to be well replicated in the replication dataset

(p1 ¼ 0.77). Furthermore, the estimated genetic effects

on protein abundance in the discovery and replication an-

alyses are highly correlated (r ¼ 0.90, p < 2.2 3 10�16,

Figure S8). These results indicate that the identified brain

pQTLs are robust and not specific to an individual dataset.

Comparison of the genetic control of the human brain

proteome and transcriptome

To quantify the extent to which genetic variation influ-

ences both mRNA and protein abundance in the brain,

we examined the relationship between the pQTLs identi-

fied in this study and the eQTLs identified in a large

meta-analysis of brain transciptomic data (n ¼ 1,433).22

Using simple overlap and enrichment methods, we found

brain eQTLs to be significantly over-represented among

brain pQTLs (OR: 7.42, 95% CI: [7.26,7.58], p value <

2.2 3 10�16), with the majority of brain pQTLs (61%)

also identified as brain eQTLs. We also found that most

of the sites identified to be both a pQTL and an eQTL

have the same direction of effect on gene and protein

expression (88%, Figure 2A). We additionally performed

replication testing and found that the majority (75%) of

genetic variants associated with protein abundance are

also associated with mRNA abundance, but only the mi-

nority (40%) of genetic variants associated with mRNA

abundance are also associated with protein abundance

(Figure 2B). Furthermore, for variants that influence both

mRNA and protein abundance, we found that the median

effect size on protein abundance to be significantly lower

than the median effect size on mRNA (Figure 2C; Krus-

kal-Wallis test c2 ¼ 8,208, p < 2.23 10�16). These observa-

tions, which have also been noted in lymphoblastoid cell

lines,15 are consistent with differences in mapping power

between the pQTL and eQTLs studies as well as differences

in evolutionary constraint on mRNA and protein.

Comparative studies across species have shown protein

abundance to be less variable than mRNA.67,68 These

studies suggest that strong selective pressure maintains

protein expression since large changes in protein abun-

dances are likely to be deleterious given the pivotal roles

of proteins in biological processes. To test whether there

is evidence for evolutionary constraint on protein abun-

dance, we examined the relationships between pQTL

effects, MAFs, and CADD scores.55 CADD scores are a

quantitative measures of human variant deleteriousness

that are highly related to evolutionary conservation. For

pQTLs with large effects on protein abundance (in the

top 10%), we observe a significant negative relationship

between effect size and MAF (Figure S9, p ¼ 0.0006) and

a significant positive relationship between effect size and
4, 2021



Figure 2. Comparisons between genetic
effects on mRNA and protein abundance
(A) Comparison of the effect of each variant
on mRNA and protein abundance. Each
point represents one SNV tested against
the abundance of the mRNA and protein
of a single gene. The eQTLs (defined on
the basis of False Discovery Rate [FDR] <
0.05) are shown in green, the pQTLs
(defined on the basis of FDR < 0.05) are
shown in blue, and the sites that are both
an eQTL and a pQTL are shown in red.
The shown effects are t-statistics.
(B) Replication rates (p1) of pQTLs and
eQTLs at FDR < 0.05. These analyses
included the lead discovery QTLs for each
gene tested in both studies.
(C) Comparison of the distribution of the
size of genetic effects on mRNA and protein
abundance for variants influencing both.
The effect size is the absolute value of the
pQTL or eQTL t-statistic. The boxes reflect
the values corresponding to the first and
third quartile, the horizontal line within
the box reflects the median, the lines ex-
tending from the box represents the range
of values within 1.5 times the interquartile
range, and points beyond the line are
plotted individually.
(D) Comparison of the genetic effects on
mRNA and protein abundance for genes
with protein expression mediated by
mRNA.
(E) Comparison of the genetic effects on
mRNA and protein abundance for genes
with protein expression not mediated by
mRNA. For all analyses the genetic effects
on protein and mRNA abundance were
from the discovery ROSMAP pQTL results
and Sieberts et al. (2020),22 respectively.
CADD score (Figure S10, p ¼ 0.018). These results suggest

that genetic variation that has a large impact on protein

abundance tends to be rare and deleterious. Furthermore,

we observe a significant negative relationship between

the effect size of the lead pQTL for each gene and the num-

ber of protein-protein interactions for the corresponding

protein (Figure S11, p ¼ 8.63 3 10�8). This suggests that

pQTLs for proteins with a larger number of interacting

partners, which may indicate importance in cellular func-

tioning, tend to have smaller effect sizes. Together, these

observations support the notion that protein abundance

is evolutionarily constrained.

Mediation of the genetic effects on protein by mRNA

To further investigate the influence of genetic variation

on mRNA and protein abundance, we examined 173 indi-

viduals in the discovery dataset with genetic, transcrip-

tomic, and proteomic data. The goal of this analysis

was to identify whether there are distinct classes of pro-
The American Journal of Human
teins with underlying genetic varia-

tion that affects protein abundance

through mRNA versus independent
of mRNA. To infer this, we considered each independent

pQTL and tested whether the genetic effect on protein

was mediated by mRNA by using linear regression. To

avoid spurious results due to a limited sample size, we

considered a pQTL to be consistent with mRNA mediation

only if the following were true: (1) mRNA abundance is a

significant mediator of the genetic effect on protein abun-

dance (FDR < 0.05) and (2) an eQTL has been identified

for the corresponding gene in the large eQTL meta-anal-

ysis by Sieberts et al. (2020).22 (n ¼ 1,433; FDR < 0.05).

Similarly, we considered a pQTL to not be consistent

with mRNA mediation if the following are true: (1)

mRNA abundance is not a significant mediator of the ge-

netic effect on protein abundance (FDR > 0.05) and (2) an

eQTL has not been identified for the corresponding

gene in the large eQTL meta-analysis (FDR > 0.05). For

ease, we call pQTLs meeting the first and second set of

conditions mRNA-mediated and mRNA-independent

pQTLs, respectively.
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Using these criteria, we found 10.5% of pQTLs to be

mRNA mediated (n ¼ 550/5,218) and 6.5% of pQTLs to

be mRNA independent (n ¼ 341/5,218). For mRNA-medi-

ated pQTLs, we found the genetic effect of each variant

on protein and mRNA abundance to be significantly corre-

lated (Figure 2D; r ¼ 0.85; p < 2.2 3 10�16). Notably, the

genetic effects of mRNA-mediated pQTLs tend to be

smaller on protein abundance than mRNA, and the associ-

ated genes were not found to be enriched for any particular

biological process (see Table S5 for a list of all investigated

genes). As expected for mRNA-independent pQTLs, the ge-

netic effect of each variant on protein and mRNA abun-

dance was found to be uncorrelated (Figure 2E; r ¼ 0.1,

p ¼ 0.08). Interestingly, GO analyses revealed genes with

mRNA-independent pQTLs to be enriched among genes

involved in transepithelial transport and neuron apoptotic

processes (enrichment score ¼ 10.9 and unadjusted

p ¼ 7.6 3 10�4 for both terms).
Discussion

We performed a large-scale investigation into the proximal

genetic control of the human brain proteome by using

deepbrainproteomicprofiling in two independentdatasets.

From this investigation, we generated a resource of pQTL

summary statistics for the genetics and neuroscience com-

munities that is accessible on the pQTL web application

(see ‘‘Web resources’’). The identifiedpQTLs in thediscovery

dataset tend to be non-synonymous variation, are over-rep-

resented among variants associatedwith brain diseases, and

replicated well in an independent replication dataset.

We found that the majority of genetic variation that in-

fluences protein abundance also influences mRNA abun-

dance but that the reverse is not true. That is, most pQTLs

are eQTLs, but most eQTLs are not pQTLs. This result is

potentially consistent with both reduced power to map

pQTLs and greater evolutionary constraint on protein

abundance. The latter is additionally supported by our

observations of pQTLs with large effects’ tending to be

rare, deleterious, and associated with proteins that are

less important to cellular functioning. These observations

supplement previously reported evidence of purifying

selection removing genetic variation that causes large dele-

terious changes to protein abundances.15,67,68

Mediation analyses using matched genetic, transcrip-

tomic, and proteomic data provided evidence of mRNA-

mediated and mRNA-independent genetic effects on

protein abundance. We identified roughly 1.6 times more

mRNA-mediated pQTLs than mRNA-independent pQTLs.

This suggests that the genetic effects on protein abundances

often, but not always, act throughmRNA and the regulation

of gene expression. We found genes with mRNA-indepen-

dent pQTLs to be enriched in transepithelial transport and

neuron apoptotic processes but genes withmRNA-mediated

pQTLs tonotbeenriched inanyparticularbiologicalprocess.

The lackof enrichment inbiological processes for geneswith
406 The American Journal of Human Genetics 108, 400–410, March
mRNA-mediated pQTLs may suggest that mRNA typically

mediates protein abundance; however, we were only able

to find evidence of mediation for a small subset of genes

due to limited power. In contrast, the observation that genes

withmRNA-independentpQTLsare significantlyover-repre-

sented among genes involved in transepithelial transport

and neuron apoptotic processes may indicate a de-coupling

of mRNA and protein abundance in certain contexts of the

older human brain. Similar independence between mRNA

andprotein abundance has been observed innonreplicating

mouse muscle cells.69 On average, protein half-lives are re-

ported to be at least five times longer than that of mRNA,70

which could allow for de-coupling of mRNA and protein

abundance. These results are consistent with the mediation

of mRNA-independent pQTL effects through translational

orpost-translational regulation, suchasproteindegradation;

however, this investigation is unable to implicate any spe-

cific gene regulation step or mechanism.

Human blood pQTL analyses have reported results

similar to those presented here. These studies show anover-

lap between blood pQTLs and GWAS variants, as well as

evidence that blood pQTLs are often, but not always, also

eQTLs.14,16,17 This suggests that although QTLs may be tis-

sue specific or cell type specific, the relationships that we

observe between disease and the genetic control of gene

and protein expression are robust and generalizable.

A strength of our study was the ability to profile a total of

12,691 unique proteins from the human brain. This prote-

omic depthwas achieved via TMT isobaric labeling coupled

with high-pH offline fractionation following well-estab-

lished protocols.71 Those technical advantages enabled

analysis of 7,376 proteins to be tested for a pQTL and iden-

tificationof 2,474proteinswith aproximalpQTL.We tested

the genetic variation within 100 kb of each protein coding

geneanddidnot investigatemoredistal regulatoryvariants,

which is a limitation of our analysis. The protein data miss-

ingness structure and sample size also potentially limits our

ability draw inferences on low frequency SNVs and low

abundant proteins. Another possible limitation of the pro-

teomic data was the use of MS2 acquisition, which can suf-

fer from the presence of co-isolated and co-fragmented

interfering ions that can obscure quantification.72 How-

ever, high-pH offline fractionation largely mitigates this

issue.71 Finally, the mediation analyses were most likely

limited by power because of a small number of samples

with matched brain-derived transcriptomic and proteomic

data. Despite these limitations, our study provides a

comprehensive assessment of proximal human brain

pQTLs, a web-based resource for future investigations, and

insight into the relationship between the genetic control

of the human brain proteome and transcriptome.
Data and code availability

Phenotypic, proteomic, and genetic data used in this

manuscript are available via the AD Knowledge Portal
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(https://adknowledgeportal.org). The AD Knowledge Portal

is a platform for accessingdata, analyses, and tools generated

by the AcceleratingMedicines Partnership (AMP-AD) Target

Discovery Program and other National Institute on Aging

(NIA)-supported programs to enable open-science practices

and accelerate translational learning. The data, analyses,

andtoolsare sharedearly in the researchcyclewithoutapub-

lication embargo on secondary use. Data are available for

general research use according to the following require-

ments for data access and data attribution (https://

adknowledgeportal.synapse.org/DataAccess/Instructions).

For this study, thedataand results are availableathttps://doi.

org/10.7303/syn24172458. The accession number for the

data and results reported in this paper is Synapse:

syn24172458.
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Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.01.012.
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Figure S1. Distribution of the batch-specific correlation of GIS channels. Each TMT
proteomic experiment, or batch, contains two GIS channels (126 and 131). Here we show the
distribution of correlations of proteomic measurements between the batch-specific GIS channels.



Figure S2. Distribution of the sample sizes used in the pQTL analyses. Due to the highly
batch-specific nature of protein measurement in TMT proteomic experiments, each measured
protein has a different sample size. This histogram shows the distribution of sample sizes across
tested proteins.



Figure S3. Comparison of the distribution of average protein abundances for proteins
measured in all 330 participants (N = 3,843 proteins) vs. those with missing data (N = 4,173
proteins). The difference in distribution is significant by Kruskal-Wallis test (�2= 3378.7, p <
2.2x10-16).



Figure S4. Percentage of variance in protein abundance explained by genotype. For the
2,474 genes with a genetic variant that significantly predicts protein abundance, we used
stepwise linear regression to identify all independent pQTLs and assess the proportion of
variance in protein abundance explained. The median and mean percentage of variance in protein
abundance explained by pQTLs is 4.9% and 8.5% respectively.



Figure S5. Enrichment of pQTL identification by MAF. Each blue rectangle represents the
results of a Fisher’s exact test. Each test compared the set of SNVs with a MAF within the range
delineated by the blue rectangle and the set of SNVs identified as a pQTL. The height of the dot
in the center of each rectangle shows the odds ratio estimate, while the estimate’s 95%
confidence interval is shown as the height of the rectangle. Tests with blue rectangles below the
horizontal dashed line show significant depletion of pQTLs in SNVs with MAFs within the
denoted range. Tests with blue rectangles above the horizontal dashed line show significant
enrichment of pQTLs in SNVs with MAFs within the denoted range. Only proteins with
complete data were considered for this analysis.



Figure S6. Effect size of pQTLs by genomic annotation. (A) Boxplots showing the
distribution of pQTL effect sized by genic location. The shown effect size is the absolute value
of the pQTL t-statistic. (B) Boxplots showing the distribution of positive and negative exonic
pQTL effects for synonymous and non-synonymous variation.



Figure S7. Comparison of pQTL effects estimated using samples with no cognitive
impairment vs. all samples. Each point represents a test of a SNV against the protein
expression of a single gene. The y-axis shows the effect of a SNV on protein abundance
estimated by the main pQTL analysis that used 330 samples and adjusted for clinical diagnosis at
death. The x-axis shows the effect of a SNV on protein abundance estimated by a pQTL analysis
that used a subset of 139 samples with a clinical diagnosis of no cognitive impairment (NCI) at
death. The shown effects are t-statistics. A total of 776,507 tests were performed in both analyses
and were plotted here. The correlation between all estimated effects is 0.62 (p<2.2x10-16), while
the correlation between the estimated effects at sites identified as pQTLs in the main analysis is
0.92 (p<2.2x10-16, 37,569 tests at FDR < 0.05).



Figure S8. Comparison of pQTL effects estimated using Banner vs. ROS/MAP samples.
Each point represents a test of a SNV against the protein expression of a single gene. The y-axis
shows the effect of a SNV on protein abundance estimated by the Banner pQTL analysis, while
the x-axis shows the effect of a SNV on protein abundance estimated by the ROS/MAP pQTL
analysis. The shown effects are t-statistics. A total of 591,720 tests were performed in both
analyses and were plotted here. The correlation between all estimated effects is 0.57 (p<2.2x10-
16), while the correlation between the estimated effects at sites identified as pQTLs in the
ROS/MAP analysis is 0.90 (p<2.2x10-16, 32,679 tests at FDR < 0.05).



Figure S9. Relationship between pQTL effect size and minor allele frequency (MAF). For
this analysis, we considered only independent pQTLs with effects sizes (absolute value of pQTL
t-statistic) in the top 10%. The relationship between effect size and MAF was estimated based
on a linear regression that modeled the absolute value of the pQTL t-statistic as a function of
MAF. We found an increase in MAF to be associated with a decrease in the size of the genetic
effect on protein (� =- 2.5479, p = 0.000634).



Figure S10. Relationship between pQTL effect size and CADD score. For this analysis, we
considered only independent pQTLs with effect sizes (absolute value of pQTL t-statistic) in the
top 10% and a CADD score greater than 10. Variants with a CADD score above 10 are predicted
to be in the top 10% of deleterious variants in the human genome. The relationship between
effect size and CADD score was estimated based on a linear regression that modeled the absolute
value of the pQTL t-statistic as a function of CADD score. We found an increase in CADD score
to be associated with an increase in the size of the genetic effect on protein (�= 0.09692
, p = 0.0186).



Figure S11. Relationship between the effect size of the lead pQTL and the number of
protein-protein interactions. This analysis considered lead pQTLs for proteins with less than
500 protein-protein interactions. The relationship between effect size and number of protein-
protein interactions was estimated based on a linear regression that modeled the absolute value of
the pQTL t-statistic as a function of the number of protein-protein interactions. We found an
increase in the number of protein-protein interactions to be associated with a decrease in the size
of the genetic effect on protein (� = -0.001365, p = 1.09e-05).



Table S1. Demographics of analyzed subjects.

ROS/MAP Banner BBDP

Characteristic

Subjects with
protein and
genotype data

Subjects with
mRNA, protein,
and genotype

data

Subjects with
protein and
genotype data

Sample Size 330 173 149

Female sex (%) 69% 69% 56%

Age at death [years] (median, range) 89 [71 – 106.5] 89 [71 – 106.5] 86 [66 – 103]

Clinical diagnosis of dementia (N, %)

No cognitive impairment 139 (42%) 78 (45%) 64 (43%)

Mild cognitive impairment 90 (27%) 53 (31%) 20 (13%)

Alzheimer’s disease 101 (31%) 42 (24%) 65 (44%)



Table S2. Enrichment of genomic annotations among pQTLs. Enrichments were evaluated
with Fisher’s exact tests. With the exception of the synonymous and non-synonymous
annotations, the background for every test was the set of all SNVs tested in our pQTL study. The
background for the synonymous and non-synonymous annotations was the set of all tested
exonic SNVs.

Annotation # SNVs

pQTL enrichment

OR
95% CI

Lower limit,
upper limit

P

UTR3 6,654 1.85 1.70, 2.01 1.8e-42

Exonic
synonymous
non-synonymous

5,930
3,725
2,172

2.44
0.51
1.96

2.26, 2.64
0.45, 0.59
1.71, 2.25

5.3e-91
5.27e-22
1.08e-22

Intronic 218,202 0.88 0.86, 0.91 5.3e-20

UTR5 580 1.93 1.45, 2.52 8.4e-6

Intergenic 177,421 0.75 0.73, 0.77 6.1e-130



Table S3. Large GWASs of brain diseases used to assess the enrichment of disease variants
among pQTLs. Only GWAS result from individuals of European descent were analyzed. For
each GWAS we used a significance threshold of 5x10-8 to identify disease-associated variants
within 100 kb of genes with proteomic data. Enrichment was assessed for each disease
individually using Fischer exact tests.

Brain disease Study N
# of disease-
associated
variants

# of overlapping
pQTLs

Enrichment

OR p-value

Alzheimer’s disease Jansen et al. 2017 455,258 219 16 1.01 0.90
Parkinson’s disease Nalls et al. 2019 471,013 218 83 5.82 4.04e-31
Schizophrenia Lam et al. 2019 154,192 778 142 2.61 4.86e-21
Neuroticism Nagel et al. 2018 449,484 894 182 3.07 9.35e-34



Table S4. Comparison of pQTL identification using the ROS/MAP and Banner BBDP
cohorts.

Cohort Sample
size

Number of
tested SNVs

Number of
tested genes

Number of
pQTLs

Number of
pQTL genes

ROSMAP 163-330 501,414 7,376 35,601 2,474
Banner BBDP 75-149 460,954 6,526 23,945 1,803

Overlap 429,083 5,712 14,752 1,129



Table S5. List of genes with mRNA-mediated and mRNA-independent pQTLs. Genes in
bold are associated with the GO term “neuron apoptotic process”. Genes in italic are associated
with the GO term “transepithelial transport”

Chr Genes with mRNA-mediated pQTLs Genes with mRNA-independent pQTLs

1 RPA2, PADI2, AGL, CCBL2, KYAT3, DBT,
SLC25A24, GSTM5, GSTM3, PTGFRN, S100A13,
TDRKH, S100A4, TSTD1, DARS2, COA6, NTPCR

ARID1A, ENO1, NASP, ACOT7, SH3GLB1, USP24,
BOLA1, CA14, LYSMD1, PSMB4, FDPS, CDC73,

CACNA1E, GLUL, TROVE2, CNTN2, IARS2, CAPN2,
CCSAP, NID1

2 DPYSL5, RETSAT, GALM, CAPG, PLCL1, ATIC,
PPIL3, IDH1, SCRN3

BRE; BABAM2, HS1BP3, MRPL53, TGOLN2, INPP4A,
LONRF2, CNTNAP5, TMEFF2, ABCB6, DOCK10

3 PLSCR4, ATG7, MYLK, LARS2, CHL1, LZTFL1 APPL1, CPOX, TF, CDV3, ADCY5, IQSEC1, TFRC

4 DGKQ, TBC1D1, PGM2, GUF1, GPRIN3, SPARCL1,
HSD17B11, SCRG1, MMAA

PAICS, KIT

5 SGTB, ERAP1, DIAPH1, TBC1D9B, RUFY1 SLC1A3, SLC12A2, PPIP5K2, HINT1

6 ECI2, HDDC2, SIRT5, GOPC, RWDD1, CAP2,
AKAP12, ACAT2, BPHL

ME1, RIMS1, RAB23

7 AMPH, EGFR, ABHD11, PDIA4, ABCB8 GARS, PMPCB, AGFG2, CCDC132; VPS50, SLC25A13,
SSBP1, MKRN1

8 LY6H, ADHFE1, SNTB1 OXR1, RALYL, TATDN1, KHDRBS3, ATP6V1B2, GPT

9 AK3, ACO1, NUDT2, GLIPR2, PHYHD1, PTGR1,
AIF1L, CCBL1; KYAT1, HDHD3

PSIP1, GBA2

10 SNCG, ANXA11, COX15, PRTFDC1, SFXN3, PRKG1 SEC24C, FAM175B; ABRAXAS2

11 AMPD3, SLC17A6, LRP4, HSD17B12, AAMDC,
ASRGL1, C11orf54, MADD, SNX32

CEND1, TPP1, NUCB2, SPON1, SLC1A2, CAPRIN1,
CTNND1, INPPL1, CFL1, ZBTB16, SIK3, MCAM,

C2CD2L, DCPS

12 CPM, CORO1C, UHRF1BP1L, ESYT1, NT5DC3,
ARHGDIB, PIP4K2C, CSRP2, MGST1

ISCU, CS, ANO6, RPAP3, NUAK1, CIT, CALCOCO1

13 CAB39L DOCK9

14 L3HYPDH, PTGR2, DAAM1, ACOT1, STXBP6,
STON2, INF2, ACOT2

HNRNPC, GPHN, COQ6, RTN1, ACYP1, VIPAS39,
CDC42BPB

15 FAM82A2; RMDN3, RLBP1, LACTB, RGMA SQRDL; SQOR, ULK3, SCAMP5

16 LPCAT2, BAIAP3, SULT1A1, NECAB2 COG7, LCMT1, NAE1, ITGAM, SLC9A3R2

17 ASPA, C1QBP, TRPV2, C17orf59; BORCS6, SHMT1,
WBP2, TRIM25, FDXR, ACSF2, SEPT9, SPATA20

CAMKK1, TXNDC17, VAT1, DHRS11, SEPT4, GHDC,
FLOT2, ACACA, AARSD1; PTGES3L-AARSD1, ACTG1

18 LMAN1

19 PLIN4, LONP1, ATP13A1, PEPD, ALDH16A1 SH3GL1, BRD4, MAP1S, MEGF8, UBE2M

20 CPNE1, TGM2, ITPA PLCG1, AHCY, PHACTR3, ARFGAP1, RPS21, RPN2, GSS

21 JAM2, PCP4

22 ARVCF, APOL2, PACSIN2, SYN3 AIFM3
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