Supplementary Materials

Practical Synthesis of C-1 Deuterated Aldehydes Enabled by NHC Catalysis

Huihui Geng,^{1,†} Xiaobei Chen,^{1,†,*} Jingjing Gui,² Yueteng Zhang,³ Zuyuan Shen,¹ Pengfei Qian,¹ Junwei Chen,¹ Shilei Zhang,^{2,*} Wei Wang^{1,3,*}

¹State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China

 ²Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
³Department of Pharmacology and Toxicology, College of Pharmacy, and BIO5 Institute, University of Arizona, 1703 E. Mabel Street, P. O. Box 210207, Tucson, AZ 85721-0207

Table of Contents

1. Supplemnetary methods: General information
2. The cost calculation for the preparation of deuterated benzaldehyde using the protocol
developed in this work (Supplementary Table 1)
3. Optimization of the reaction conditions4
4. Supplemnetary methods: Experiment procedures and product characterization
4.1 General procedure for deuteration of aldehydes catalyzed by NHC9
4.2 Preparation of catalysts 5ah and 5p 44
4.3 Preparation of substrates45
5. Synthetic applications
5.1 Recovery of hydrogen from deuterium at α-position of aldehyde48
5.2 Gram-scale synthesis of deuterated aldehyde49
5.3 Preparation of deuterated benzyl alcohol through Cannizzaro reaction49
5.4 Preparation of deuterated pharmaceutical compounds
6. Supplementary References
7. NMR Spectrum

1. Supplemnetary methods: General information

Commercial reagents and solvents were used as received, unless otherwise stated. Organic solution was concentrated under reduced pressure on a Büchi rotary evaporator. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel plates (Qingdao Haiyang Chemical China), and the compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine. Flash chromatography was performed on silica gel 200-300 mesh (purchased from Qingdao Haiyang Chemical China) with commercial solvents (purchased from Adamas-beta®). The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM 400 Spectrometer (400 and 100 MHz for ¹H NMR and ¹³C NMR, respectively) and are internally referenced to residual solvent signals (note: CDCl₃ referenced at 7.26 ppm in ¹H NMR; DMSO-d⁶ referenced at 2.50 ppm in ¹H NMR, respectively). Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (double of doublet), and m (multiplets). Coupling constants were reported in Hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was recorded on Waters LCT Premier XE spectrometer. The NHC catalysts 5d, 5e and 5s were purchased from Adamas-beta, and 5a¹, 5b², 5c³, 5f⁴, 5g⁵, 5h⁶, 5i⁷, 5j, 5k⁸, 5l⁹, 5m¹⁰, 5n¹⁰, 5o¹¹, 5q^{11, 12}, 5r⁹, 5t¹³, 5u, 5v¹⁴, 5w¹⁵, 5x, 5y⁹, 5z¹⁶, 5aa, 5ab¹⁷, 5ac, 5ad⁹, 5ae¹⁸, 5af⁹, $5ag^{19}$, $5ai^{20}$, $5ai^{21}$, $5ak^{11}$, $5al^{22, 23}$ were prepared according to literature procedures.

The level of deuterium incorporation in the product was determined by ¹H NMR (**Supplementary Equation 1**) or ²H NMR (**Supplementary Equation 2**) spectroscopy. The integrals were calibrated against a peak corresponding to a position not expected to be labelled.^[24]

Supplementary Equation 1 was based on ¹H NMR and used to calculate the extent of labelling for most of the deuterated products:

% Deuteration = 100 - $\left[\left(\frac{\text{residual integral}}{\text{number of labelling sites}} \right) \times 100 \right]$

Supplementary Equation 1

Supplementary Equation 2 was based on ²H NMR and used to calculate the extent of labelling for the deuterated products containing some special sites where only slight deuterium incorporation occurred (7h, 7j, 7z, 7ao, 7au, 10a, 10b, 10d, 10e, 10f, 12f, 12i, 12r):

% Deuteration = integral of the needed peak

Supplementary Equation 2

2. *Supplementary Table 1.* The cost calculation for the preparation of deuterated benzaldehyde using the protocol developed in this work.

	Gd O H	cat. 5o (10 mol%) K ₂ CO ₃ (1 equiv.) D ₂ O/toluene (4/1, v/v) 40 °C, 12 h 70% yield, 97% D		O D 7d	
Compound	Vendor	Cost/g	MW	Quantity for producing 1 g product 7d	Price for producing 1 g product 7d
ОН	Sigma-Aldrich	\$29.80/100g	106	$0.01335 \text{ mol} \times 106$ = 1.42 g	\$0.298/g × 1.42 g = \$0.42
Dipp ⁻ N-Dipp Br 50	Self preparation	\$40/g	427.1	0.01335×10 mol% × 427.1= 0.57 g	$40/g \times 0.57 g$ = \$22.8
D ₂ O	Sigma-Aldrich	\$1,160/1kg	20	1000 × 1.1/(107 × 70%) =14.7 g	$1.16/g \times 14.7$ = \$17.05
K ₂ CO ₃	Fisher	\$24.66/500g	138	0.01335 × 138 = 1.84 g	$0.049/g \times$ 1.84 = 0.09
Toluene (anhydrous)	Sigma-Aldrich	\$45/2L	92	3.3 mL	$0.0225/mL \times$ 3.3 = \$0.074
D D	Sigma-Aldrich	\$570/g	107		
	Our method	\$40.43/g ^a	107		

^a If calculated based the cost of regents from China, the cost for 1g is ca. 88 RMB (ca. \$13).

3. Optimization of the reaction conditions

Supplementary Figure 1. Structures of NHC catalysts.

		H Catalyst 5 (x mol%) K ₂ CO ₃ (1 equ	iv.)	D	
	6a	D ₂ O, solvent,	12h 7a		
Entry	Catalyst	Solvent	T (°C)	Yield $(\%)^b$	D (%) ^c
1	-	THF	60	98	0
2	5a	THF	60	40	99
3	5b-i	THF	60	0-99	5-80
4	5ј	THF	60	40	11
5	5k	THF	60	26	98
6	51	THF	60	15	90
7	5m	THF	60	50	94
8	5n	THF	60	26	99
9	50	THF	60	48	98
10	50	THF	40	58	97
11	50	THF	25	96	8
12	50	CH_2Cl_2	40	80	98
13	50	toluene	40	81	98
14^d	50	toluene	40	73	98
15^e	50	toluene	40	40	98
16 ^f	50	toluene	40	82	97
17^{g}	50	toluene	40	81	91

Supplementary Table 2. Optimization of reaction conditions for aromatic aldehyde^a

^{*a*}Reaction conditions unless otherwise stated: **6a** (0.5 mmol), catalysts **5** (10 mol%) and K₂CO₃ (1.0 equiv) in D₂O (1 mL) and solvent (0.25 mL) was vigorously stirred for 12 hours. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR. ^{*d*}5% catalyst was used. ^{*e*}20% catalyst was used. ^{*f*}0.5 mL D₂O was used. ^{*g*}10 eq D₂O was used.

			Catalyst		Ph 0	=0
		9a	Base (1 equiv.) D ₂ O, DCM	10a	Ph 7 D 11	
Entry	Catalyst	Base	T(°C)	Yield $(\%)^b$	% \mathbf{D}^d	Yield $(\%)^c$
1	5a	K ₂ CO ₃	40	-	-	50
2	5b	K_2CO_3	40	-	-	50
3	5m	K_2CO_3	40	60	0	10
4	50	K_2CO_3	40	80	0	0
5	5r	K_2CO_3	40	-	-	-
6	51	KOAc	40	-	-	-
7	51	DIPEA	40	20	20	-
8	5s	KOAc	40	92	0	-
9	5t	KOAc	40	80	0	-
10	5u	KOAc	40	87	7	-
11	5v	KOAc	40	60	15	-
12	5w	KOAc	40	87	4	-
13	5x	KOAc	40	65	0	-
14	5y	KOAc	40	55	4	-
15	5z	KOAc	40	33	12	-
16	5aa	KOAc	40	80	0	-
17	5ab	KOAc	40	20	18	-
18	5ac	KOAc	40	40	40	-
19	5ad	KOAc	40	43	22	-
20	5ae	KOAc	40	72	0	-
21	5af	KOAc	40	50	32	-
22	5ag	KOAc	40	86	58	-
23	5ag	KOAc	60	95	45	-
24	5ah	KOAc	60	67	95	-
25	5p	KOAc	60	63	97	-

Supplementary Table 3. Optimization of reaction conditions for cinnamaldehyde^a

^{*a*}Reaction conditions unless otherwise stated: **9a** (0.25 mmol), catalyst **5** (10 mol%) and KOAc (1.0 equiv) in D₂O (1 mL) and DCM (0.25 mL) was vigorously stirred at 40 °C for 12 hours. ^{*b*}Yield of isolated product of **10a**. ^{*c*}Yield of isolated product of **11**. ^{*d*}Deuterium incorporations (%) were determined by ¹H NMR spectroscopy.

		9g Catalyst (KOAc (* D ₂ O, Dt	10 mol%) I equiv) CM, 12h 10g	`D
Entry	Catalyst	T (°C)	Yield $(\%)^b$	% D ^c
1	5a	25	98	0
2	5b	25	96	0
3	5m	25	92	0
4	50	25	95	0
5	5r	25	94	15
6	5ag	25	89	67
7	51	25	96	94
8	51	40	95	98

Supplementary Table 4. Optimization of reaction conditions for other enals^a

^{*a*}Reaction conditions unless otherwise stated: **9g** (0.25 mmol), catalyst **5** (10 mol%) and KOAc (1.0 equiv) in D₂O (1 mL) and DCM (0.25 m) was vigorously stirred at 25 °C for 12 hours. ^{*b*}Yield of isolated product. ^{*c*}Deuterium incorporations (%) were determined by ¹H NMR spectroscopy.

			Catalyst (10 mol%) NaHCO ₃ (1 equiv.) D ₂ O, DCM,12 h		
Entry	Catalyst	T (°C)	Yield $(\%)^b$	% D ^{1c}	% D ^{2c}
1	5a	40	35	12	37
2	5b	40	55	35	41
3	5c	40	71	30	84
4	5g	40	-	-	-
5	5h	40	65	0	76
6	5i	40	44	11	48
7	5ј	40	52	40	97
8	5k	40	64	73	95
9	51	40	39	60	97
10	5m	40	32	98	98
11	5n	40	33	95	98
12	50	40	35	95	81
13	5ai	40	70	10	95
14	5aj	40	85	7	15
15	5ak	40	40	83	82
16	5al	40	65	18	45
17	5q	40	64	98	92
18	5q	30	73	99	97

Supplementary Table 5. Optimization of reaction conditions for aliphatic aldehydes^a

^{*a*}Reaction conditions unless otherwise stated **111** (0.5 mmol), catalysts **5** (10 mol%) and NaHCO₃ (1.0 equiv) in D₂O (1 mL) and DCM (0.25 mL) was vigorously stirred at 40 °C for 12 hours. ^{*b*}Yield of isolated product. ^{*c*}Deuterium incorporations (%) were determined by ¹H NMR spectroscopy.

4. Supplementary methods: Experiment procedures and product characterization4.1 General procedure for deuteration of aldehydes catalyzed by NHC

Aldehyde (1 equiv), NHC catalyst (x mol%) and base (1 equiv) were dissolved in a mixture of D_2O (1 mL) and organic solvent (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at specified temperature for 12 hours. After cooling to room temperature, the reaction was extracted with DCM, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography to afford the deuterated product. The level of deuterium incorporation of the product was determined by ¹H NMR spectroscopy. The integrals were calibrated against **Supplementary Equation 1** or **Supplementary Equation 2** (see page 2).

2-Naphthaldehyde- α - d_1 (7a)

2-Naphthaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7c** was obtained as a white solid in 81% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 0.02H), 8.30 (s, 1H), 7.99-7.87 (m, 4H), 7.65-7.55(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0 (t, *J* = 26.6 Hz), 136.4 (s), 134.6 (s), 134.0 (t, *J* = 3.5 Hz), 132.6 (s), 129.5 (s), 129.1 (s), 128.1 (s), 127.1 (s), 122.7 (s); ²H NMR (77 MHz, CHCl₃) δ 10.19 (s, 1D); HRMS (EI): m/z caled for C₁₁H₇DO [(M)⁺]: 157.0638, found: 157.0639.

4-Methoxybenzaldehyde- α - d_1 (7b)

4-Methoxybenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7a** was obtained as a colorless oil in 93% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 0.02H), 7.82 (dt, *J* = 8.8, 2.4 Hz, 2H), 6.98 (dt, *J* = 8.8, 2.4 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 26.3 Hz), 164.6 (s), 132.0 (s), 129.9 (t, *J* = 3.5 Hz), 114.3 (s), 55.6 (s); ²H NMR (77 MHz, CHCl₃) δ 9.93 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO₂ [(M)⁺]: 137.0587, found: 137.0588.

4-Bromobenzaldehyde- α - d_1 (7c)

4-Bromobenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D_2O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7b** was obtained as a

yellow solid in 86% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 0.02H), 7.73 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.66 (dt, *J* = 8.4, 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8 (t, *J* = 26.8 Hz), 135.0 (t, *J* = 3.7 Hz), 132.4 (s), 131.0 (s), 129.8 (s); ²H NMR (77 MHz, CHCl₃) δ 10.00 (s, 1D); HRMS (EI): m/z caled for C₇H₄DBrO [(M)⁺]: 184.9587, found: 184.9589.

Benzaldehyde- α - d_1 (7d)

Benzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7d** was obtained as a colorless oil in 70% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 0.01H), 7.90-7.87 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1 (t, J = 26.5 Hz), 136.3 (t, J = 3.6 Hz), 134.5 (s), 129.8 (s), 129.0 (s); ²H NMR (77 MHz, CHCl₃) δ 10.08 (s, 1D); HRMS (EI): m/z caled for C₇H₅DO [(M)⁺]: 107.0481, found: 107.0482.

4-Methylbenzaldehyde-α-d₁ (7e)

4-Methylbenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7e** was obtained as a colorless oil in 74% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 0.02H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.32 (dd, *J* = 7.9 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7 (t, *J* = 26.3 Hz), 145.6 (s), 134.1 (t, *J* = 3.6 Hz), 129.9 (s), 129.7 (s), 21.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.95 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO [(M)⁺]: 121.0638, found: 121.0639.

4-Benzyloxybenzaldehyde-α-d₁ (7f)

4-Benzyloxybenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7f** was obtained as a yellow solid in 98% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 0.02H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.46-7.36 (m, 5H), 7.08 (d, *J* = 8.8 Hz, 2H), 5.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 26.2 Hz), 163.8 (s), 136.0 (s), 132.0 (s), 130.1 (t, *J* = 3.5Hz), 128.8 (s), 128.4 (s), 127.5 (s), 115.2 (s), 70.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.92 (s, 1D); HRMS (EI): m/z caled for C₁₄H₁₁DO₂ [(M)⁺]: 213.0900, found: 213.0904.

[1,1'-Biphenyl]-4-carbaldehyde-α-d₁ (7g)

[1,1'-biphenyl]-4-carbaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7g** was obtained as a white solid in 95% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.06 (s, 0.02H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.45-7.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7 (t, *J* = 26.5 Hz), 147.2 (s), 139.7 (s), 135.1 (t, *J* = 3.5 Hz), 130.3 (s), 129.1 (s), 128.5 (s), 127.7 (s), 127.4 (s); ²H NMR (77 MHz, CHCl₃) δ 10.11 (s, 1D); HRMS (EI): m/z caled for C₁₃H₉DO [(M)⁺]: 183.0794, found: 183.0796.

4-Acetoxybenzaldehyde-1,2-d₁,d₃ (7h)

4-Acetoxybenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7h** was obtained colorless as a oil in 47% yield with 97% D-incorporation at position 1 and 4% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 0.03H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 2.34 (s, 2.87H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6 (t, *J* = 26.6 Hz), 168.7 (s), 155.4 (s), 133.9 (t, *J* = 3.6 Hz), 131.2 (s), 122.4 (s), 21.2 (s); ²H NMR (77 MHz, CHCl₃) δ 10.3 (s, 1D), 2.34 (s, 0.13D); HRMS (EI): m/z caled for C₉H₇DO₃[(M)⁺]: 165.0536, found: 165.0537.

4-Dimethylaminobenzaldehyde- α - d_1 (7i)

4-Dimethylaminobenzaldehyde (0.5 mmol), **5ag** (30 mol%) and AcOK (1 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7i** was obtained as a white solid in 83% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 0.02H), 7.73 (d, *J* = 9.0 Hz, 2H), 6.69 (d, *J* = 9.0 Hz, 2H), 3.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1 (t, *J* = 25.8 Hz), 154.4 (s), 132.0 (s), 125.0 (t, *J* = 3.4 Hz), 111.0 (s), 40.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.78 (s, 1D); HRMS (EI): m/z caled for C₉H₁₀DNO [(M)⁺]: 150.0903, found: 150.0903.

4-Acetamidobenzaldehyde-1,2-d₁,d₃ (7j)

4-Acetamidobenzaldehyde (0.5 mmol), **5m** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7j** was obtained as a white solid in 64% yield with 99% D-incorporation at position 1 and 9% D-incorporation at position 2. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.38 (s, 1H), 9.86 (s, 0.01H), 7.85 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 8.8 Hz, 2H), 2.13-2.05 (m, 2.77H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.2 (t, *J* = 26.7 Hz), 169.1 (s), 144.8 (s), 131.0 (s), 130.8 (s), 118.5 (s), 24.2-23.7 (m); ²H NMR (77 MHz, CHCl₃) δ 9.86 (s, 1D), 2.05 (s, 0.28D); HRMS (EI): m/z caled for C₉H₈DNO₂ [(M)⁺]: 164.0696 Found: 164.0696; C₉H₇D₂NO₂ [(M)⁺]: 165.0759, found: 165.0758.

4-Fluorobenzaldehyde- α - d_I (7k)

4-Fluorobenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7k** was obtained as a colorless oil in 50% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 0.01H), 7.87-7.83 (m, 2H), 7.14 (t, *J* = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.2 (t, *J* = 26.6 Hz), 166.6 (d, *J* = 256.7 Hz), 132.9 (t, *J* = 3.3 Hz), 132.3 (d, *J* = 9.7 Hz), 116.4 (d, *J* = 22.3 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.95 (s, 1D); HRMS (EI): m/z caled for C₇H₄DFO [(M)⁺]: 125.0387, found: 125.0386.

4-Chlorobenzaldehyde-α-d₁ (7l)

4-Chlorobenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **71** was obtained as a shite solid in 79% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 0.02H), 7.81 (d, *J* = 8.6 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 190.6 (t, *J* = 26.7 Hz), 141.0 (s), 134.6 (t, *J* = 3.7 Hz), 130.9 (s), 129.5 (s); ²H NMR (77 MHz, CHCl₃) δ 10.02 (s, 1D); HRMS (EI): m/z caled for C₇H₄DClO [(M)⁺]: 141.0092, found: 141.0091.

4-Formylbenzonitrile- α - d_1 (7m)

4-formylbenzonitrile (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7m** was obtained as a yellow solid in 75% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.02H), 7.99 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (t, J = 27.2 Hz),138.7 (t, J = 3.7 Hz), 132.9 (s), 129.9 (s), 117.76 (s), 117.6(s); ²H NMR (77 MHz, CHCl₃) δ 10.13 (s, 1D); HRMS (EI): m/z caled for C₈H₄DNO [(M)⁺]: 132.0434, found: 132.0436.

4-(Trifluoromethyl)benzaldehyde- α - d_1 (7n)

4-(Trifluoromethyl)benzaldehyde (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7n** was obtained as a yellow oil in 44% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.03H), 8.00 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8 (t, *J* = 27.0 Hz), 138.6 (s), 135.6 (q, *J* = 32.6 Hz), 129.9 (s), 126.1 (q, *J* = 3.8 Hz), 123.4 (d, *J* = 272.9 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.15 (s, 1D); HRMS (EI): m/z caled for C₈H₄DF₃O [(M)⁺]: 175.0355, found: 175.0356.

Methyl 4-formylbenzoate- α - d_1 (70)

Methyl 4-formylbenzoate (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **70** was obtained as a white solid in 68% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.01H), 8.18 (d, *J* = 8.4, 2H), 7.94 (d, *J* = 8.4, 2H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4 (t, *J* = 26.9 Hz), 166.1 (s), 139.1 (t, *J* = 3.6 Hz), 135.1 (s), 130.2 (s), 129.5 (s), 52.6 (s); ²H NMR (77 MHz, CHCl₃) δ 10.13 (s, 1D); HRMS (EI): m/z caled for C₇H₉DO₃: 165.0536, found: 165.0538.

4-Formyl-N-isopropylbenzamide-α-d₁ (7p)

4-Formyl-N-isopropylbenzamide (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7p** was obtained as a white solid in 75% yield with 99% D-incorporation. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 0.01H), 8.45 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 2H), 4.15-4.07 (m, 1H), 1.17 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 192.6 (t, *J* = 26.9 Hz), 164.5 (s), 139.8 (s), 137.5 (s), 129.3 (s), 127.9 (s), 41.2 (s), 22.2(s); ²H NMR (77 MHz, CHCl₃) δ 10.07 (s, 1D); HRMS (EI): m/z caled for C₁₁H₁₂DNO₂ [(M)⁺]: 192.1009, found: 192.1011.

3-Methoxybenzaldehyde-*α***-***d*₁ (7q)

3-methoxybenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7q** was obtained as a yellow oil in 92% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 0.03H), 7.46-7.40 (m, 2H), 7.37 (d, *J* = 2.0 Hz, 1H), 7.18-7.14 (m, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8 (t, *J* = 26.6 Hz), 160.2 (s), 137.7 (t, *J* = 3.6 Hz), 130.0 (s), 123.5 (s), 121.5 (s), 112.0 (s), 55.5 (d, *J* = 1.1 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.00 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO₂ [(M)⁺]: 137.0587, found: 137.0588.

m-Tolualdehyde- α - d_1 (7r)

M-Tolualdehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7r** was obtained as a colorless oil in 91% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 0.02H), 7.70-7.67 (m, 2H), 7.46-7.39 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3 (t, *J* = 26.5 Hz), 138.9 (s), 136.4 (t, *J* = 3.5 Hz), 135.3 (s), 130.0 (s), 128.9 (s), 127.2 (s), 21.2 (s); ²H NMR (77 MHz, CHCl₃) δ 10.01 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO [(M)⁺]: 121.0638, found: 121.0639.

3-Chlorobenzaldehyde-*α***-***d*₁ (7s)

3-Chlorobenzaldehyde (0.5 mmol), **50** (5 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D_2O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7s** was obtained as a

colorless oil in 71% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 0.02H), 7.85 (t, *J* = 1.8 Hz, 1H), 7.76 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.62-7.58 (m, 1H), 7.48 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 27 Hz), 137.8 (t, *J* = 3.7 Hz), 135.5 (s), 134.4 (s), 130.4 (s), 129.3 (s), 128.0 (s); ²H NMR (77 MHz, CHCl₃) δ 9.98 (s, 1D); HRMS (EI): m/z caled for C₇H₄DClO [(M)⁺]: 141.0092, found: 141.0091.

3-Bromobenzaldehyde- α - d_1 (7t)

3-Bromobenzaldehyde (0.5 mmol), **50** (5 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7t** was obtained as a colorless oil in 86% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.95 (s, 0.01H), 8.00 (t, *J* = 1.7 Hz, 1H), 7.80 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.76-7.72 (m, 1H), 7.42 (t, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (t, *J* = 26.9 Hz), 137.9 (t, *J* = 3.7 Hz), 137.3 (s), 132.4 (s), 130.6 (s), 128.4 (s), 123.4 (s); ²H NMR (77 MHz, CHCl₃) δ 10.02 (s, 1D); HRMS (EI): m/z caled for C₇H₄DBrO [(M)⁺]: 184.9587, found: 184.9588.

3-Formylbenzonitrile- α - d_1 (7u)

3-Formylbenzonitrile (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. 3-formylbenzonitrile- α - d_1 was obtained as a yellow solid in 81% yield with 95% D-incorporation.

3-Formylbenzonitrile- α - d_1 (deuteration 95%, 0.40 mmol), **50** (10 mol%) and KOAc (0.40 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours again. **7u** was obtained as a colorless solid in 59 % yield (for two steps) with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.03 (s, 0.01H), 8.16 (s, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 188.7 (t, *J* = 27.2 Hz), 136.2 (s), 135.8 (t, *J* = 3.8 Hz), 132.3 (s), 132.1 (s), 129.1 (s), 116.6 (s), 112.7 (s); ²H NMR (77 MHz, CHCl₃) δ 10.06 (s, 1D); HRMS (EI): m/z caled for C₈H₄DNO [(M)⁺]: 132.0434, found: 132.0435.

Methyl 3-formylbenzoate- α - d_1 (7v)

Methyl 3-formylbenzoate (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D_2O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL).

Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7v** was obtained as a yellow oil in 59% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 0.01H), 8.54-8.52 (m, 1H), 8.29 (dt, *J* = 7.6, 1.6 Hz, 1H), 8.08 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.63 (t, *J* = 11.4, 1H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.1 (t, *J* = 26.8 Hz), 166.0 (s), 136.5 (d, *J* = 3.5 Hz), 135.2 (s), 133.1 (s), 131.3 (d, *J* = 7.1 Hz), 129.3 (s), 52.5 (s); ²H NMR (77 MHz, CHCl₃) δ 10.10 (s, 1D); HRMS (EI): m/z caled for C₇H₉DO₃[(M)⁺]: 165.0536, found: 165.0538.

3-Nitrobenzaldehyde- α - d_1 (7w)

3-Nitrobenzaldehyde (0.5 mmol), **50** (5 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7w** was obtained as a yellow solid in 55% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 0.01H), 8.72 (s, 1H), 8.51-8.48 (m, 1H), 8.24 (d, *J* = 7.6, 1H), 7.77 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5 (t, *J* = 27.3 Hz), 148.8 (s), 137.3 (t, *J* = 3.8 Hz), 134.7 (s), 130.4 (s), 128.6 (s), 124.5 (s); ²H NMR (77 MHz, CHCl₃) δ 10.16 (s, 1D); HRMS (EI): m/z caled for C₇H₄NDO₃ [(M)⁺]: 152.0332, found: 152.0333.

2-Methoxybenzaldehyde- α - d_1 (7x)

2-Methoxybenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7x** was obtained as a yellow oil in 95% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 0.02H), 7.79 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.54-7.49 (m, 1H), 7.00-6.93 (m, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5 (t, *J* = 27.5 Hz), 161.9 (s), 136.0 (s), 128.4 (s), 124.7 (t, *J* = 3.3 Hz), 120.6 (s), 111.6 (s), 55.6 (s); ²H NMR (77 MHz, CHCl₃) δ 10.43 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO₂ [(M)⁺]: 137.0587, found: 137.0588.

Salicylaldehyde- α - d_1 (7y)

Salicylaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7y** was obtained as a colorless oil in 47% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 11.04 (s, 1H), 9.89 (s, 0.01H), 7.57-7.50 (m, 2H), 7.04-6.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3 (t, *J* = 26.9 Hz), 161.7 (s), 137.0 (s), 133.7 (s), 120.6 (t. *J* = 3.0 Hz), 119.9 (s), 117.6 (s); ²H NMR (77 MHz, CHCl₃) δ 9.94 (s, 1D); HRMS (EI): m/z caled for C₇H₅DO₂ [(M)⁺]: 123.0431, found: 123.0432.

N-(2-Formylphenyl)acetamide-1,2-d₁,d₃ (7z)

N-(2-Formylphenyl)acetamide (0.5 mmol), **5m** (10 mol%) and K₂CO₃ (0.5mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7z** was obtained as a yellow solid in 90% yield with 99% D-incorporation at position 1 and 1% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 11.15 (s, 1H), 9.92 (s, 0.01H), 8.74 (d, *J* = 8.5 Hz, 1H), 7.68 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.61 (dt, *J* = 8.5, 1.5 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 1H), 2.26 (s, 2.97H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2 (t, *J* = 27.0), 169.6 (s), 140.9 (s), 136.2 (s), 136.0 (s), 122.8 (s), 121.3 (t, *J* = 3.0 Hz), 119.7 (s), 25.4 (s); ²H NMR (77 MHz, CHCl₃) δ 9.92 (s, 1D), 2.26-2.20 (m, 0.03D); HRMS (EI): m/z caled for C₉H₈DNO₂ [(M)⁺]: 164.0696, found: 164.0697.

2-Chloorbenzaldehyde-α-d₁ (7aa)

2-chloorbenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7aa** was obtained as a yellow oil in 79% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 0.03H), 7.91 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.52 (dt, *J* = 8.1, 1.7 Hz, 1H), 7.44 (d, *J* = 7.3 Hz, 1H), 7.40-7.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.5 (t, *J* = 27.8 Hz), 138.0 (s), 135.1 (s), 132.4 (t, *J* = 3.5 Hz), 130.6 (s), 129.4 (s), 127.3 (s); ²H NMR (77 MHz, CHCl₃) δ 10.52 (s, 1D); HRMS (EI): m/z caled for C₇H₄DClO [(M)⁺]: 141.0092, found: 141.0090.

2-Bromobenzaldehyde-α-d₁ (7ab)

2-Bromobenzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ab** was obtained as a yellow oil in 93% yield with 99% D-incorporation. ¹H NMR (400 MHz, DMSO) δ 10.33 (s, 0.01H), 7.90-7.87 (m, 1H), 7.63-7.60 (m, 1H), 7.45-7.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.4 (t, *J* = 27.9 Hz), 134.3 (s), 132.8 (s), 132.4 (t, *J* = 3.5 Hz), 128.8 (s), 126.9 (s), 126.1 (s); ²H NMR (77 MHz, CHCl₃) δ 10.40 (s, 1D); HRMS (EI): m/z caled for C₇H₄DBrO [(M)⁺]: 184.9587, found: 184.9586.

2,3-Dimethylbenzalde- α - d_1 (7ac)

2,3-Dimethylbenzalde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ac** was obtained as a colorless oil in 83% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 0.02H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 7.4 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 2.58 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9 (t, *J* = 26.4 Hz), 139.2 (s), 138.3 (s), 135.3 (s), 134.3(t, *J* = 3.4 Hz), 129.8 (s), 125.8 (s), 20.0 (s), 14.4 (s); ²H NMR (77 MHz, CHCl₃) δ 10.29 (s, 1D); HRMS (EI): m/z caled for C₉H₉DO [(M)⁺]: 135.0794, found: 135.0795.

2,4-DiMethylbenzaldehyde- α - d_1 (7ad)

2,4-DiMethylbenzaldehyde (0.5 mmol), **5m** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ad** was obtained as a colorless oil in 88% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 0.02H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 1H), 7.05 (s, 1H), 2.62 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1 (t, *J* = 26.3 Hz), 144.6 (s), 140.6 (s), 132.6 (s), 132.4 (s), 132.06-131.9 (t, *J* = 3.4 Hz), 127.1 (s), 21.7 (s), 19.6 (s); ²H NMR (77 MHz, CHCl₃) δ 10.23 (s, 1D); HRMS (EI): m/z caled for C₉H₉DO [(M)⁺]: 135.0794, found: 135.0795.

2-Chloro-3-fluorobenzaldehyde- α - d_1 (7ae)

2-Chloro-3-fluorobenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ae** was obtained as a white solid in 86% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.44 (s, 0.02H), 7.74-7.71 (m, 1H), 7.42-7.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 188.2 (td, *J* = 28.1, 3.8 Hz), 158.4 (d, *J* = 250.8 Hz), 133.9 (t, *J* = 3.5), 128.0 (d, *J* = 7.4 Hz), 124.9 (d, *J* = 18.5 Hz), 124.7 (d, *J* = 3.5 Hz), 121.8 (d, *J* = 21.4 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.49 (s, 1D); HRMS (EI): m/z caled for C₇H₃DClFO [(M)⁺]: 158.9997, found: 158.9998.

4-Formyl-3-methoxybenzonitrile-α-d₁ (7af)

4-Formyl-3-methoxybenzonitrile (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7af** was obtained as a yellow solid in 81% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.49 (s, 0.01H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 1H), 7.29 (s, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.0 (t, *J* = 28.2 Hz), 161.3 (s), 129.2 (s), 127.5 (t, *J* = 3.4 Hz), 124.4 (s), 118.5 (s), 117.8 (s), 115.4 (s), 56.2 (s); ²H NMR (77 MHz, CHCl₃) δ 10.52 (s, 1D); HRMS (EI): m/z caled for C₉H₆DNO₂ [(M)⁺]: 162.0540, found: 162.0541.

Isophthalaldehyde-1,3-d₁,d₁ (7ag)

Isophthalaldehyde (0.5 mmol), **50** (20 mol%) and KOAc (1 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ag** was obtained as a white solid in 68% yield with 97.5% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.05H), 8.36 (s, 1H), 8.14 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.72 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8 (t, *J* = 27 Hz), 135.9 (t, J = 3.7 Hz), 133.6 (s), 129.9 (s), 128.9 (s); ²H NMR (77 MHz, CHCl₃) δ 10.11 (s, 1D); HRMS (EI): m/z caled for C₈H₄D₂O₂ [(M)⁺]: 136.0493, found: 136.0494.

Piperonal- α - d_1 (7ah)

Piperonal (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ah** was obtained as a colorless solid in 98% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 0.01H), 7.39 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.31 (d, *J* = 1.5 Hz, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.06 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.0 (t, *J* = 26.5 Hz), 153.1 (s), 148.7 (s), 131.8 (t, *J* = 3.6 Hz), 128.7 (s), 108.4(s), 106.9 (s), 102.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.82 (s, 1D); HRMS (EI): m/z caled for C₈H₅DO₃ [(M)⁺]: 151.0380, found: 151.0381.

1,4-Benzodioxin-6-carboxaldehyde-α-d₁ (7ai)

1,4-Benzodioxin-6-carboxaldehyde (0.5 mmol), **50** (10 mol%) and K_2CO_3 (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ai** was obtained as a

yellow solid in 99% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 0.02H), 7.40-7.37 (m, 2H), 6.98-6.95 (m, 1H), 4.34-4.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 26.4 Hz), 149.3 (s), 143.9 (s), 130.6 (t, *J* = 3.6 Hz), 124.2 (s), 118.4 (s), 117.8 (s), 64.7 (s), 64.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.84 (s, 1D); HRMS (EI): m/z caled for C₉H₇DO₃ [(M)⁺]: 165.0536, found: 165.0537.

2,3-(Methylenedioxy)benzaldehyde- α - d_1 (7aj)

2,3-(Methylenedioxy)benzaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7aj** was obtained as a colorless solid in 81% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.03H), 7.25 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.99 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.90 (t, *J* = 7.9 Hz, 1H), 6.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7 (t, *J* = 27.1 Hz), 148.2 (s), 147.9 (s), 120.7 (s), 120.1 (s), 118.3 (t, *J* = 3.6 Hz), 112.4 (s), 101.5 (s); ²H NMR (77 MHz, CHCl₃) δ 10.15 (s, 1D);HRMS (EI): m/z caled for C₈H₅DO₃[(M)⁺]: 151.0380, found: 151.0381.

3,4,5-Trimethoxybenzaldehyde- α - d_1 (7ak)

3,4,5-Trimethoxybenzaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ak** was obtained as a white solid in 88% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 0.01 H), 7.06 (s, 2H), 3.87 (s, 3H), 3.86 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7 (t, *J* = 26.6 Hz), 153.6 (s), 143.5 (s), 131.6 (t, *J* = 3.2 Hz), 106.6 (s), 60.9 (d, *J* = 2.6 Hz), 56.2 (d, *J* = 2.5 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.82 (s, 1D); HRMS (EI): m/z caled for C₁₁H₁₁DO₄ [(M)⁺]: 197.0798, found: 197.0796.

2,2-Dimethyl-4H-benzo[d][1,3]dioxine-6-carbaldehyde- α -d₁(7al)

2,2-Dimethyl-4H-benzo[d][1,3]dioxine-6-carbaldehyde (0.5 mmol), **50** (10 mol%), K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7al** was obtained as a in 88% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 0.02H), 7.66 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.51 (t, *J* = 0.8 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 4.86 (s, 2H), 1.53 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 26.3 Hz),

156.8 (s), 130.4 (s), 129.3 (t, J = 3.4 Hz), 126.9 (s), 119.7 (s), 117.7 (s), 100.76 (s), 60.6 (s), 24.8 (s); ²H NMR (77 MHz, CHCl₃) δ 9.86 (s, 1D); HRMS (EI): m/z caled for C₁₁H₁₁DO₃ [(M)⁺]: 193.0849, found: 193.0850.

1-Naphthaldehyde- α - d_1 (7am)

1-Naphthaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7am** was obtained as a colorless oil in 88% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 0.01H), 9.23 (d, *J* = 8.6 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.83-7.80 (m, 2H), 7.63-7.59 (m, 1H), 7.53-7.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (t, *J* = 26.5 Hz), 136.7 (s), 135.2 (s), 133.7 (s), 131.4-131.1 (m), 130.4 (s), 129.0 (s), 128.5 (s), 126.9 (s), 124.9 (s); ²H NMR (77 MHz, CHCl₃) δ 10.30 (s, 1D); HRMS (EI): m/z caled for C₁₁H₇DO [(M)⁺]: 157.0638, found: 157.0638.

2-Hydroxy-1-naphthaldehyde- α - d_1 (7an)

2-Hydroxy-1-naphthaldehyde (0.5 mmol), **50** (20 mol%) and NaHCO₃ (1 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7an** was obtained as a white solid in 65% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 13.18 (s, 1H), 10.73 (s, 0.02H), 8.26 (d, *J* = 8.5 Hz, 1H), 7.92 (d, *J* = 9.1 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.62-7.55 (m, 1H), 7.44-7.38 (m, 1H), 7.10 (d, *J* = 9.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 182.9 (t, *J* = 26.8 Hz), 165.0 (s), 139.1 (s), 132.9 (s), 129.5 (s), 129.1 (s), 127.8 (s), 124.5 (s), 119.2 (s), 118.6 (s), 111.2 (t, *J* = 2.5 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.70 (s, 1D); HRMS (EI): m/z caled for C₁₁H₇DO₂ [(M)⁺]: 173.0587, found: 173.0588.

9-Anthraldehyde- α - d_1 (7ao)

9-Anthraldehyde (0.5mmol), **5m** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ao** was obtained as a yellow solid in 88% yield with 99% D-incorporation at position 1 and 1% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 11.40 (s, 0.01H), 8.89 (d, *J* = 9.0 Hz, 2H), 8.51 (s, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.63-7.59 (m, 2H), 7.50-7.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 191.4 (t, *J* = 26.5 Hz), 134.0 (s), 130.9 (s), 129.8 (s), 128.1 (s), 127.9 (s), 124.5 (s), 123.2 (t, *J* = 3.2

Hz), 122.3 (s); ²H NMR (77 MHz, CHCl₃) δ 10.41 (s, 1D); HRMS (EI): m/z caled for C₁₅H₉DO [(M)⁺]: 207.0794, found: 207.0796.

Thiophene-3-carboxaldehyde- α - d_1 (7ap)

Thiophene-3-carboxaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ap** was obtained as a yellow oil in 67% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 0.02H), 8.11 (dd, J = 2.8, 1.0 Hz, 1H), 7.53 (dd, J = 5.1, 1.0 Hz, 1H), 7.36 (dd, J = 5.1, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 184.7 (t, J = 26.8 Hz), 143.0 (t, J = 3.8 Hz), 136.8 (s), 127.4 (s), 125.4 (s); ²H NMR (77 MHz, CHCl₃) δ 9.94 (s, 1D); HRMS (EI): m/z caled for C₅H₃DOS [(M)⁺]: 113.0046, found: 113.0047.

5-Methylthiophene-2-carboxaldehyde-*α-d*₁ (7aq)

5-Methylthiophene-2-carboxaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7aq** was obtained as a yellow oil in 84% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 0.03H), 7.57 (d, *J* = 3.6 Hz, 1H), 6.86 (d, *J* = 3.6 Hz, 1H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.4 (t, *J* = 26.9 Hz), 151.7 (s), 141.9 (t, *J* = 4.9 Hz), 137.4 (s), 127.1 (s), 16.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.78 (s, 1D); HRMS (EI): m/z caled for C₆H₅DOS [(M)⁺]: 127.0202, found: 127.0203.

5-Methyl furfural- α - d_1 (7ar)

5-Methyl furfural (0.5 mmol), **50** (20 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ar** was obtained as a yellow oil in 50% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 0.02H), 7.16 (d, *J* = 3.5 Hz, 1H), 6.22 (d, *J* = 3.5 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6 (t, *J* = 27.9 Hz), 159.8 (s), 151.9 (t, *J* = 4.7 Hz), 123.9 (s), 109.5 (s), 14.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.53 (s, 1D); HRMS (EI): m/z caled for C₆H₅DO₂: 111.0431, found: 111.0432.

4-Methoxy-3-pyridinecarboxaldehyde- α - d_1 (7as)

4-Methoxy-3-pyridinecarboxaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7as** was obtained as a yellow solid in 98% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.39 (s, 0.02H), 8.82 (s, 1H), 8.58 (d, *J* = 5.9 Hz, 1H), 6.90 (d, *J* = 5.9 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.4 (t, *J* = 27.8 Hz), 165.7 (s), 155.1 (s), 149.9 (s), 119.5 (t, *J* = 3.4 Hz), 106.3 (s), 54.9 (d, *J* = 1.3 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.42 (s, 1D); HRMS (EI): m/z caled for C₇H₆DNO₂ [(M)⁺]: 138.0540, found: 138.0541.

2,6-Dichloro-3-pyridinecarbaldehyde- α - d_1 (7at)

2,6-Dichloro-3-pyridinecarbaldehyde (0.5 mmol), **50** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7at** was obtained as a white solid in 93% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.38 (d, *J* = 0.7 Hz, 0.02H), 8.18 (d, *J* = 8.1 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 187.7 (t, *J* = 28.6 Hz), 155.4 (s), 152.9 (s), 140.0 (s), 127.6 (t, *J* = 3.7 Hz), 124.2 (s); ²H NMR (77 MHz, CHCl₃) δ 10.41 (s, 1D); HRMS (EI): m/z caled for C₆H₂DCl₂NO [(M)⁺]: 175.9654, found: 175.9656.

Benzothiophene-2-carboxaldehyde- $1, 2-d_1, d_1$ (7au)

Benzothiophene-2-carboxaldehyde (0.5 mmol), **50** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7au** was obtained as a yellow solid in 58% yield with 98% D-incorporation at position 1 and 3% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 0.02H), 8.0 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.51-7.45 (m, 1H), 7.44-7.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (t, *J* = 27.4 Hz), 143.3 (t, *J* = 5.0 Hz), 142.7 (s), 138.6 (s), 134.6 (s), 128.2 (s), 126.3 (s), 125.3 (s), 123.3 (s); ²H NMR (77 MHz, CHCl₃) δ 10.10 (s, 1D), 8.03 (s, 0.03D); HRMS (EI): m/z caled for C₉H₅DOS [(M)⁺]: 163.0202, found: 163.0203.

Tosyl-1H-indole-5-carboxaldehyde-α-d₁ (7av)

Tosyl-1H-indole-5-carboxaldehyde (0.5 mmol), **5m** (10 mol%) and K_2CO_3 (0.5 mmol, 1 equiv) was dissolved in a mixture of D_2O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7av** was obtained as a yellow solid in 85% yield with 99% D-incorporation. ¹H NMR (400 MHz,

CDCl₃) δ 10.01 (s, 0.01H), 8.10 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 1.0 Hz, 1H), 7.85 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 3.7 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 6.77 (dd, *J* = 3.7, 0.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (t, *J* = 26.4 Hz), 145.6 (s), 138.1 (s), 134.9 (s), 132.1 (t, *J* = 2.9 Hz), 130.9 (s), 130.1 (s), 128.0 (s), 126.9 (s), 125.2 (s), 124.8 (s), 113.9 (s), 109.4 (s), 21.6 (s); ²H NMR (77 MHz, CHCl₃) δ 10.01 (s, 1D); HRMS (EI): m/z caled for C₁₆H₁₂DNO₃S [(M)⁺]: 300.0679, found: 300.0681.

Tosyl-1H-indole-3-carboxaldehyde- α - d_1 (7aw)

Tosyl-1H-indole-3-carboxaldehyde (0.5 mmol), **5m** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7aw** was obtained yellow solid in 62% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 0.01H), 8.25 (d, *J* = 9.1 Hz, 1H), 8.24 (s, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.44-7.33 (m, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2 (t, *J* = 26.6), 146.2 (s), 136.3 (s), 135.2 (s), 134.3 (s), 130.4 (s), 127.3 (s), 126.3 (s), 125.1 (s), 122.6(s), 122.2 (t, *J* = 3.4), 113.3 (s), 21.7 (s); ²H NMR (77 MHz, CHCl₃) δ 10.09 (s, 1D); HRMS (EI): m/z caled for C₁₆H₁₂DNO₃S [(M)⁺]: 300.0679, found: 300.0681.

3-Benzofurancarboxaldehyde- α - d_1 (7ax)

3-Benzofurancarboxaldehyde (0.5 mmol), **5m** (10 mol%) and K₂CO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7ax** was obtained as a white solid in 56% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 0.01H), 8.28 (s, 1H), 8.22-8.18 (m, 1H), 7.58-7.54 (m, 1H), 7.45-7.37 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (t, *J* = 26.7 Hz), 156.0 (s), 155.4 (s), 126.3 (s), 124.9 (s), 123.6 (t, *J* = 3.9 Hz), 122.9 (s), 122.6 (s), 111.7 (s); ²H NMR (77 MHz, CHCl₃) δ 10.20 (s, 1D); HRMS (EI): m/z caled for C₉H₅DO₂ [(M)⁺]: 147.0431, found: 147.0432.

4-Quinoline carboxaldehyde- α - d_1 (7ay)

4-Quinoline carboxaldehyde (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7ay** was obtained as a white solid in 69% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s,

0.02H), 9.20 (d, J = 4.2 Hz, 1H), 9.03-9.01 (m, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.84-7.79 (m, 2H), 7.76-7.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.6 (t, J = 27.2 Hz), 150.5 (s), 149.3 (s), 136.7 (t, J = 3.7 Hz), 130.2 (s), 130.0 (s), 129.4 (s), 125.8 (s), 124.4 (s), 123.9 (s); ²H NMR (77 MHz, CHCl₃) δ 10.50 (s, 1D); HRMS (EI): m/z caled for C₁₀H₆DNO [(M)⁺]: 158.0590, found: 158.0591.

2-Chloroqinoline-3-carboxaldehyde-α-d₁ (7az)

2-Chloroqinoline-3-carboxaldehyde (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (2 mL) and toluene (0.5 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7az** was obtained as a yellow solid in 73% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.53 (s, 0.01H), 8.73 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.90-7.84 (m, 1H), 7.63 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8 (t, *J* = 28.3 Hz), 150.1 (s), 149.6 (s), 140.3 (s), 133.6 (s), 129.7 (s), 128.6 (s), 128.2 (s), 126.5 (s), 126.3 (t, *J* = 3.4 Hz); ²H NMR (77 MHz, CHCl₃) δ 10.58 (s, 1D); HRMS (EI): m/z caled for C₁₀H₅DClNO [(M)⁺]: 192.0201, found: 192.0202.

6-Methoxy2-Chloroqinoline-3-carboxaldehyde-α-d₁ (7ba)

6-Methoxy2-Chloroqinoline-3-carboxaldehyde (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (2 mL) and toluene (0.5 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. 6-Methoxy-2-chloroqinoline-3-carboxaldehyde- α - d_1 was obtained as a white solid in 93% yield with 94% D-incorporation.

6-Methoxy-2-Chloroqinoline-3-carboxaldehyde-*α*-*d*₁ (deuteration 94%, 0.46 mmol), **5o** (10 mol%) and KOAc (0.46 mmol, 1 equiv) was dissolved in a mixture of D₂O (2 mL) and toluene (0.5 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours.**7ba** was obtained as a yellow solid in 69 % yield (for two steps) with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 0.02H), 8.58 (s, 1H), 7.91 (d, *J* = 9.2 Hz, 1H), 7.47 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.14 (d, *J* = 2.7 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.1 (t, *J* = 27.8 Hz), 158.8 (s), 147.6 (s), 145.8 (s), 138.6 (s), 129.9 (s), 127.7 (s), 126.6 (s), 126.3 (t, *J* = 3.3 Hz), 106.4 (s), 55.8 (s); ²H NMR (77 MHz, CHCl₃) δ 10.56 (s, 1D); HRMS (EI): m/z caled for C₁₁H₇DClNO₂ [(M)⁺]: 222.0306, found: 222.0308.

Isoquinoline-4-carbaldehyde- α - d_1 (7bb)

Isoquinoline-4-carbaldehyde (0.5 mmol), **50** (10 mol%) and KOAc (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7bb** was obtained as a yellow solid in 84% yield with 96% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 0.04H), 9.32 (s, 1H), 9.08 (d, *J* = 8.4 Hz, 1H), 8.84 (s, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.83-7.77 (m, 1H), 7.67-7.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5 (t, *J* = 26.8 Hz), 158.3 (s), 152.8 (s), 133.5 (s), 132.2 (s), 128.4 (s), 128.3 (s), 128.3 (s), 124.7 (t, *J* = 3.5 Hz), 124.3 (s); ²H NMR (77 MHz, CHCl₃) δ 10.30 (s, 1D); HRMS (EI): m/z caled for C₁₀H₆DNO [(M)⁺]: 158.0590, found: 158.0591.

N-Ethyl-3-carbazolecarboxaldehyde- α - d_1 (7bc)

N-Ethyl-3-carbazolecarboxaldehyde (0.5 mmol), **50** (30 mol%) and K₂CO₃ (1 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **7bc** was obtained as a white solid in 88% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 0.03H), 8.58 (d, *J* = 1.2 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 8.00 (dd, *J* = 8.5, 1.4 Hz,1H), 7.56-7.51 (m, 1H), 7.46-7.43 (m, 2H), 7.35-7.30 (m, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (t, *J* = 26.1 Hz), 143.6 (s), 140.7 (s), 128.4 (s), 127.2 (s), 126.8 (s), 124.0 (s), 123.1 (s), 123.1 (s), 120.8 (s), 120.3 (s), 109.2 (s), 108.7 (s), 37.9 (s), 13.8 (s); ²H NMR (77 MHz, CHCl₃) δ 10.10 (s, 1D); HRMS (EI): m/z caled for C₁₅H₁₂DNO [(M)⁺]: 224.1060, found: 224.1062.

N-(**2**-(**Diethylamino**)ethyl)-5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxamide-*α*-*d*₁ (7bd) *N*-(2-(Diethylamino)ethyl)-5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxamide (0.5 mmol), **5m** (30 mol%) and K₂CO₃ (1.5 mmol, 3 equiv) was dissolved in a mixture of D₂O (2 mL) and DCM (0.5 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **7be** was obtained as a yellow solid in 88% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.43 (s, 1H), 9.44 (s, 0.02H), 7.45 (s, 1H), 3.70-3.68 (m, 2H), 3.10 (s, 2H), 3.02 (q, *J* = 7.1 Hz, 4H), 2.52 (s, 3H), 2.49 (s, 3H), 1.24 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 177.5-176.8 (m), 164.7 (s), 138.2 (s), 130.8 (t, *J* = 7.1 Hz), 127.7 (s), 118.8 (s), 50.6 (s), 46.7 (s), 35.1 (s), 12.6 (s), 9.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.49 (s, 1D); HRMS (EI): m/z caled for C₁₄H₂₂DN₃O₂ [(M)⁺]: 266.1853, found: 266.1854.

4-(4-Formylphenyl)-1,4-dihydro-2,6-dimethyl-,3,5-diethyl ester- α - d_1 (7be)

4-(4-Formylphenyl)-1,4-dihydro-2,6-dimethyl-,3,5-diethyl ester **6be** (0.25 mmol), **5o** (20 mol%) and K₂CO₃ (0.5 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 ml). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7be** was obtained as a yellow solid in 73% yield with 96% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 0.04H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 6.35-6.32 (m, 1H), 5.06 (s, 1H), 4.11-4.02 (m, 4H), 2.32 (s, 6H), 1.20 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.2 (t, *J* = 29.4 Hz), 167.4 (s), 155.1 (s), 144.9 (s), 134.4 (s), 129.7 (s), 128.8 (s), 103.1 (s), 59.9 (s), 40.3 (s), 19.4 (s), 14.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.94 (s, 1D); HRMS (ESI): m/z caled for C₂₂H₂₃DNO₅ [(M+H)⁺]: 359.1717, found: 359.1717.

4-(4-(2-(Dimethylamino)-1-(1-hydroxycyclohexyl)ethyl)phenoxy)benzaldehyde- α - d_1 (7bf)

4-(4-(2-(Dimethylamino)-1-(1-hydroxycyclohexyl)ethyl)phenoxy)benzaldehyde **6bf** (0.1 mmol), **5m** (15 mol%) and K₂CO₃ (0.1 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7bf** was obtained as a yellow oil in 55% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 0.02H), 7.83 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.05 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 8.5 Hz, 2H), 3.81 (dd, *J* = 12.4, 6.6 Hz, 1H), 3.28 (t, *J* = 5.8 Hz, 1H), 2.95 (d, *J* = 8.3 Hz, 1H), 2.62 (s, 6H), 1.73-0.81 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5 (t, *J* = 26.4 Hz), 162.7 (s), 154.4 (s), 136.2 (s), 132.0 (s), 131.4 (s), 130.9 (s), 120.1 (s), 117.9 (s), 73.7 (s), 60.5 (s), 52.4 (s), 44.5 (s), 37.2 (s), 31.5 (s), 25.5 (s), 21.5 (s), 21.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.88 (s, 1D); HRMS (ESI): m/z caled for C₂₃H₂₉DNO₃ [(M+H)⁺]: 369.2288, found: 369.2289.

 $\label{eq:2-(2-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl)ethoxy) benzaldehyde -a-d_1 (7bg)$

2-(2-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1-yl)ethoxy)ethoxy)benzaldehyde **6bg** (0.1 mmol), **5ag** (15 mol%) and AcOK (0.1 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7bg** was obtained as a yellow oil in 52% yield with 96% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 10.51 (s, 0.04H), 7.84 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.56-7.52 (m, 1H), 7.38-7.36 (m, 4H), 7.31-7.18 (m, 5H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 4.26-4.23 (m, 3H), 3.89-3.87 (m, 2H), 3.76 (t, *J* = 5.6 Hz, 2H), 2.72-2.48 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 189.4 (t, *J* = 29.5Hz), 161.1 (s), 141.7 (s), 140.9 (s), 135.9 (s), 132.8 (s), 129.1 (s), 128.8 (s), 128.8 (s), 128.5 (s), 127.7 (s), 127.4 (s), 125.0 (s), 121.1 (s), 112.8 (s), 75.1 (s), 69.4 (s), 68.1 (s), 68.0 (s), 57.4 (s), 53.7 (s), 50.5 (s); ²H NMR (77 MHz, CHCl₃) δ 10.50 (s, 1D); HRMS (ESI): m/z caled for C₂₈H₃₁DClN₂O₃ [(M+H)⁺]: 480.2164, found: 480.2162.

3-Formyl rifamycin- α - d_1 (7bh)

3-Formyl rifamycin (0.05 mmol), 5l (20 mol%) and KOAc (0.1 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. 7bh was obtained as a red solid in 60% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) & 13.75 (s, 1H), 13.19 (s, 1H), 12.66 (s, 1H), 12.33 (s, 1H), 10.67 (s, 0.03H), 6.62-6.49 (m, 2H), 6.24 (d, J = 12.7Hz, 1H), 6.07 (dd, J = 15.0, 5.0 Hz, 1H), 5.16-5.09 (m, 1H), 4.94 (d, J = 10.6 Hz, 1H), 3.78 (d, J = 9.6 Hz, 1H), 3.62 (d, J = 4.8 Hz, 1H), 3.52-3.48 (m, 2H), 3.05 (s, 4H), 2.45-2.39 (m, 2H), 3.05 (s, 4H), 3.52-3.48 (m, 2H), 3.05 (s, 4H), 3.52-3.48 (m, 2H), 3.05 (s, 4H), 3.52-3.48 (m, 2H), 31H), 2.27 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 1.82 (s, 3H), 1.76-1.79 (m, 1H), 1.55 (dd, *J* = 9.8, 7.2 Hz, 1H), 1.36-1.41 (m, 1H), 1.03 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.67 (d, J = 6.9 Hz, 3H), -0.29 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.6 (s), 192.9-192.5 (m), 173.3 (s), 171.1 (s), 169.4 (s), 167.5 (s), 155.5 (s), 142.7 (s), 141.8 (s), 136.7 (s), 135.9 (s), 126.8 (s), 121.5 (s), 119.6 (s), 118.4 (s), 117.9 (s), 116.3 (s), 109.8 (s), 108.5 (s), 108.2 (s), 104.5 (s), 75.9 (s), 75.5 (s), 73.2 (s), 69.6 (s), 56.1 (s), 38.6 (s), 37.6 (s), 36.6 (s), 32.2 (s), 20.5 (s), 19.7 (s), 19.6 (s), 15.9 (s), 9.8 (s), 8.1 (s), 7.6 (s), 6.8 (s); ²H NMR (77 MHz, CHCl₃) δ 10.67 (s, 1D); HRMS (ESI): m/z caled for C₃₈H₄₆DNNaO₁₃ [(M+Na)⁺]: 749.3008, found:749.3009.

2'-(2H-Tetrazol-5-yl)biphenyl-4-yl)methyl)-2-butyl-4-chloro-1H-imidazole-5-carbaldehy de- α - d_1 (7bi)

2'-(2H-Tetrazol-5-yl)biphenyl-4-yl)methyl)-2-butyl-4-chloro-1H-imidazole-5-carbaldehyde (0.1 mmol), **5l** (20 mol%) and KOAc (0.2 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **7bi** was obtained as a white solid in 53% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 0.01H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 5.47 (s, 2H), 2.56 (t, *J* = 7.6 Hz, 2H), 1.63-1.55 (m, 2H), 1.34-1.24 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2-177.4 (m), 155.3 (s), 154.9 (s), 143.2 (s), 140.7 (s), 139.2 (s), 135.3 (s), 131.3 (s), 130.8 (s), 129.6 (s), 128.2 (s), 126.7 (s), 122.9 (s), 48.0(s), 29.2 (s), 26.4 (s), 22.3 (s), 13.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.64 (s, 1D); HRMS (ESI): m/z caled for C₂₂H₂₁DClN₆O [(M+H)⁺]: 422.1606, found: 422.1605.

(E)-Cinnamaldehyde- $1, 2-d_{1}, d_{2}$ (10a)

(*E*)-Cinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10a** was obtained as a yellow oil in 63% yield with 98% D-incorporation at position 1 and 5% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (d, *J* = 7.7 Hz,0.02H), 7.59-7.56 (m, 2H), 7.49 (d, *J* = 16.0 Hz, 1H), 7.46-7.43 (m, 3H), 6.73 (d, *J* = 16.0 Hz, 0.95H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5 (t, *J* = 26.3), 152.8 (s), 134.0 (s), 131.3 (s), 129.1 (s), 128.5(s), 127.2 (s); ²H NMR (77 MHz, CHCl₃) δ 9.75 (s, 1D), 6.79 (s, 0.05D); HRMS (EI): m/z caled for C₉H₇DO [(M)⁺]: 133.0638, found: 133.0639.

(E)-4-Acetoxy-3-methoxycinnamaldehyde- $1, 2-d_1, d_2$ (10b)

(*E*)-4-Acetoxy-3-methoxycinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10b** was obtained as a brown solid in 40% yield with 95% D-incorporation at position 1 and 2% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (d, *J* = 7.7 Hz, 0.05H), 7.44 (d, *J* = 15.9 Hz, 1H), 7.18-7.12 (m, 2H), 7.09 (d, *J* = 8.1 Hz, 1H), 6.66 (d, *J* = 15.9 Hz, 0.98H), 3.87 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (t, *J* = 26.2 Hz), 168.7 (s), 151.9 (s), 151.6 (s), 142.2 (s), 133.0 (s), 128.7 (t, *J* = 3.6 Hz), 123.5 (s), 121.9 (s), 111.4 (s), 56.0 (d, *J* = 2.9 Hz), 20.7 (d, *J* = 2.1 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.73 (s, 1D), 6.72 (s, 0.02D); HRMS (EI): m/z caled for C₁₂H₁₁DO₄ [(M)⁺]: 221.0798, found: 221.0780.

(*E*)-4-Chlorocinnamaldehyde- α - d_1 (10c)

(*E*)-4-Chlorocinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **10c** was obtained as a yellow solid in 40% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, *J* = 7.6 Hz, 0.03H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 13.5 Hz, 1H), 7.41 (d, *J* = 6.2 Hz, 2H), 6.69 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (t, *J* = 26.4 Hz), 151.1 (s), 137.3 (s), 132.5 (s), 129.6 (s), 129.5 (s), 128.9 (t, *J* = 3.8 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.75 (s, 1D); HRMS (EI): m/z caled for C₉H₆DClO [(M)⁺]: 167.0248, found: 167.0246.

(E)-4-Bromocinnamaldehyde- $1, 2-d_{1,d_2}$ (10d)

(*E*)-4-Bromocinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10d** was obtained as a brown solid in 33% yield with 97% D-incorporation at position 1 and 1% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (d, *J* = 7.1 Hz, 0.03H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.45-7.37 (m, 3H), 6.70 (d, *J* = 16.0 Hz, 0.99H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1 (t, *J* = 27.2 Hz), 151.1 (s), 132.9 (s), 132.4 (s), 129.8 (s), 129.0 (s), 125.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.76 (s, 1D), 6.76 (s, 0.01D); HRMS (EI): m/z caled for C₉H₆DBrO [(M)⁺]: 210.9743, found: 210.9744.

(E)-4-Methoxycinnamaldehyde- $1, 2-d_1, d_2$ (10e)

(E)-4-Methoxycinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10e** was obtained yellow oil in 41% yield with 99% D-incorporation at position 1 and 2% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (d, *J* = 7.8 Hz, 0.01H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 15.9 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 15.9 Hz, 0.98H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5 (t, *J* = 26.1 Hz), 162.2 (s), 152.7 (s), 130.4 (s), 126.8 (s), 126.5 (t, *J* = 3.7 Hz), 114.6 (s), 55.5 (d, *J* = 4.2 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.68 (s, 1D), 6.65 (s, 0.02D); HRMS (EI): m/z caled for C₁₀H₉DO₂ [(M)⁺]: 163.0744, found: 163.0743.

(*E*)-4-Methylcinnamaldehyde- α - d_1 (10f)

(*E*)-4-Methylcinnamaldehyde (0.25 mmol), **5p** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10f** was obtained as a yellow oil in 57% yield with 98% D-incorporation at position 1 and 3% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (d, *J* = 7.8 Hz, 0.02H), 7.48-7.43 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 15.9 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6 (t, *J* = 26.2 Hz), 153.0 (s), 142.0 (s), 131.3 (s), 129.9 (s), 128.6 (s), 127.7 (t, *J* = 3.8 Hz), 21.6 (d, *J* = 1.7 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.72 (s, 1D), 6.72 (s, 0.03D); HRMS (EI): m/z caled for C₁₀H₉DO [(M)⁺]: 147.0794, found: 147.0795.

alpha-Methylcinnamaldehyde-*a*-*d*₁(10g)

alpha-Methylcinnamaldehyde (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **10g** was obtained as a colorless oil in 95% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.48 (s, 0.02H), 7.43 (d, *J* = 7.4 Hz, 2H), 7.38-7.27 (m, 3H), 7.16 (s, 1H), 1.98 (d, *J* = 1.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2 (t, *J* = 26.5 Hz), 149.8 (s), 138.3 (t, *J* = 3.5 Hz), 135.2 (s), 130.1 (s), 129.6 (s), 128.7 (s), 10.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.55 (s, 1D); HRMS (EI): m/z caled for C₁₀H₉DO [(M)⁺]: 147.0794, found: 147.0795.

(E)-2-Methyl-3-(3-nitrophenyl)acrylaldehyde- α - d_1 (10h)

(*E*)-2-Methyl-3-(3-nitrophenyl)acrylaldehyde (0.25 mmol), **51** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10h** was obtained as a white solid in 41% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 0.02H), 8.38 (s, 1H), 8.27-8.25 (m, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.65 (t, *J* = 8.0 Hz, 1H), 7.32 (s, 1H), 2.11 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4 (t, *J* = 26.7 Hz), 148.5 (s), 146.0 (s), 140.6 (t, *J* = 3.6 Hz), 136.7 (s), 135.3 (s), 129.8 (s), 124.3 (s), 123.9 (s), 10.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.67 (s, 1D); HRMS (EI): m/z caled for C₁₀H₈DNO₃ [(M)⁺]: 192.0645, found: 192.0646.

Me

(*E*)-4-Methoxy-2-methylcinamaldehyde- α - d_1 (10i)

(*E*)-4-Methoxy-2-methylcinamaldehyde (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D_2O (1 mL) and DCM (0.25 mL) in a reaction vessel (5

mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10i** was obtained as a yellow oil in 73% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 0.02H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.19 (s, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 2.07 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2 (t, *J* = 26.4 Hz), 160.8 (s), 149.9 (s), 136.1 (t, *J* = 3.5 Hz), 132.1 (s), 128.0 (s), 114.2 (s), 55.4 (d, *J* = 2.7 Hz), 10.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.57 (s, 1D); HRMS (EI): m/z caled for C₁₁H₁₁DO₂ [(M)⁺]: 177.0900, found: 177.0901.

(E)-2-Methyl-3-(naphthalen-2-yl)acrylaldehyde- α - d_1 (10j)

(*E*)-2-Methyl-3-(naphthalen-2-yl)acrylaldehyde (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10j** was obtained as a white solid in 85% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 0.01H), 8.00 (s, 1H), 7.90-7.84 (m, 3H), 7.63 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.58-7.52 (m, 2H), 7.41 (s, 1H), 2.18 (d, *J* = 1.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2 (t, *J* = 26.5 Hz), 149.8 (s), 138.4 (t, *J* = 3.5 Hz), 133.5 (s), 133.1 (s), 132.7 (s), 130.4 (s), 128.7 (s), 128.4 (s), 127.8 (s), 127.4 (s), 126.8 (s), 126.8 (s), 11.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.69 (s, 1D); HRMS (EI): m/z caled for C₁₄H₁₁DO [(M)⁺]: 197.0951, found: 197.0952.

2-Methyl-3-(2-furyl)propenal- α - d_1 (10k)

2-Methyl-3-(2-furyl)propenal (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **10k** was obtained as a yellow oil in 75% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 0.03H), 7.59 (d, *J* = 1.6 Hz, 1H), 7.00 (s, 1H), 6.75 (d, *J* = 3.5 Hz, 1H), 6.54 (dd, *J* = 3.5, 1.8 Hz, 1H), 2.07 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9 (t, *J* = 26.5 Hz), 151.6 (s), 145.3 (s), 135.4 (s), 134.9 (t, *J* = 3.6 Hz), 116.5 (s), 112.7 (s), 10.5 (s); ²H NMR (77 MHz, CHCl₃) δ 9.48 (s, 1D); HRMS (EI): m/z caled for C₈H₇DO₂ [(M)⁺]: 137.0587, found: 137.0589.

α -Amylcinnamaldehyde- α - d_1 (10l)

 α -Amylcinnamaldehyde (0.25 mmol), **5l** (20 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **10l** was obtained as a

colorless oil in 96% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 0.01H), 7.51-7.36 (m, 5H), 7.20 (s, 1H), 2.54-2.50 (m, 2H), 1.54-1.45 (m, 2H), 1.39-1.30 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3 (t, *J* = 26.4 Hz), 149.7 (s), 143.3 (t, *J* = 3.2 Hz), 135.0 (s), 129.7 (s), 129.5 (s), 128.8 (s), 32.1 (s), 28.0 (s), 24.7 (s), 22.4 (s), 14.0 (s); ²H NMR (77 MHz, CHCl₃) δ 9.52 (s, 1D); HRMS (EI): m/z caled for C₁₄H₁₇DO [(M)⁺]: 203.1420, found: 203.1421.

α -Hexylcinnamaldehyde- α - d_1 (10m)

Hexylcinnamaldehyde (0.25 mmol), **5l** (20 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **10m** was obtained as a colorless oil in 92% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 0.01H), 7.51-7.36 (m, 5H), 7.20 (s, 1H), 2.55-2.50 (m, 2H), 1.53-1.44 (m, 2H), 1.42-1.25 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3 (t, *J* = 26.4), 149.7 (s), 143.3 (t, *J* = 2.9 Hz), 135.0 (s), 129.7 (s), 129.5 (s), 128.8 (s), 31.5 (s), 29.6 (s), 28.3 (s), 24.8 (s), 22.6 (s), 14.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.57 (s, 1D); HRMS (EI): m/z caled for C₁₅H₁₉DO [(M)⁺]: 217.1577, found: 217.1578.

(E)-Dimethyl 2-(3-oxo-1-phenylprop-1-en-2-yl)malonate-*a*-*d*₁(10n)

(*E*)-Dimethyl 2-(3-oxo-1-phenylprop-1-en-2-yl)malonate (0.25 mmol), **5l** (20 mol%), and KOAc (0.25 mmol, 1equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10n** was obtained as a yellow oil in 61% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 0.01H), 7.66 (s, 1H), 7.47-7.41 (m, 5H), 4.75 (s, 1H), 3.70 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3 (t, *J* = 27.0 Hz), 167.6 (s), 152.7 (s), 135.0 (t, *J* = 3.0 Hz), 133.4 (s), 130.4 (s), 129.2 (s), 129.0 (s), 52.9 (d, *J* = 1.7 Hz), 49.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.65 (s, 1D); HRMS (EI): m/z caled for C₁₄H₁₃DO₅ [(M)⁺]: 263.0904, found: 263.0903.

5-Methyl-2-phenyl-2-hexenal- α - d_1 (100)

5-Methyl-2-phenyl-2-hexenal (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **100** was obtained as a colorless oil in 80% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 0.02H), 7.46-7.38 (m, 2H), 7.37-7.31 (m, 1H), 7.18-7.14 (m, 2H), 6.77 (t, *J* = 7.5 Hz, 1H),

2.30-2.24 (m, 2H), 1.90-1.78 (m, 1H), 0.93 (d, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4 (t, J = 26.6 Hz), 155.6 (s), 144.6 (t, J = 3.4 Hz), 132.8 (s), 129.5 (s), 128.2 (s), 127.9 (s), 38.6 (s), 28.5 (s), 22.5 (s); ²H NMR (77 MHz, CHCl₃) δ 9.67 (s, 1D); HRMS (EI): m/z caled for C₁₃H₁₅DO [(M)⁺]: 189.1264, found: 189.1265.

(-)-Perillaldehyde- α - d_1 (10p)

(-)-Perialdehyde (0.25 mmol), **51** (20 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **10p** was obtained as a colorless oil in 75% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (s, 0.02H), 6.82-6.81 (m, 1H), 4.77-4.76 (m, 1H), 4.72 (s, 1H), 2.49-2.37 (m, 2H), 2.26-2.18 (m, 2H), 2.13-2.06 (m, 1H), 1.92-1.87 (m, 1H), 1.74 (s, 3H), 1.48-1.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6 (t, *J* = 26.2 Hz), 150.6 (s), 148.3 (s), 141.2 (t, *J* =3.5 Hz), 109.5 (s), 40.7 (s), 31.7 (s), 26.3 (s), 21.5 (s), 20.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.42 (s, 1D); HRMS (EI): m/z caled for C₁₀H₁₃DO [(M)⁺]: 151.1107, found: 151.1109.

(1R)-Myrtenal- α - d_1 (10q)

(*IR*)-Myrtenal (0.25 mmol), **51** (20 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10q** was obtained as a colorless oil in 67% yield with 97% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 0.03H), 6.72-6.70 (m, 1H), 2.86 (t, *J* = 5.6 Hz, 1H), 2.62-2.46 (m, 3H), 2.20-2.17 (m, 1H), 1.33 (s, 3H), 1.05 (d, *J* = 9.2 Hz, 1H), 0.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9 (t, *J* = 26.3 Hz), 151.5 (t, *J* = 3.6 Hz), 147.7 (s), 40.7 (s), 38.0 (s), 37.6 (s), 33.0 (s), 31.1 (s), 25.7 (s), 20.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.41 (s, 1D); HRMS (EI): m/z caled for C₁₀H₁₃DO [(M)⁺]: 151.1107, found: 151.1109.

2-Benzylacrylaldehyde- α - d_1 (10r)

2-Benzylacrylaldehyde (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **10r** was obtained as a yellow oil in 50% yield with 96% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 0.04H), 7.33-7.17 (m, 5H), 6.11 (s, 1H), 6.07 (s, 1H), 3.57 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7 (t, *J* = 26.7 Hz), 149.7 (t, *J* = 3.7 Hz), 138.1 (s), 135.2 (s), 129.2 (s), 128.6 (s),

126.5 (s), 34.1 (s); ²H NMR (77 MHz, CHCl₃) δ 9.65 (s, 1D); HRMS (EI): m/z caled for C₁₀H₉DO [(M)⁺]: 147.0794, found: 147.0796.

2-Methylene-3-(5-methylfuran-2-yl)butanal- α - d_1 (10s)

2-Methylene-3-(5-methylfuran-2-yl)butanal (0.25 mmol), **5l** (10 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10s** was obtained as a yellow oil in 50% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 0.02H), 6.18 (s, 1H), 6.05 (s, 1H), 5.94 (d, *J* = 2.9 Hz, 1H), 5.86-5.85 (m, 1H), 4.04 (q, *J* = 7.1 Hz, 1H), 2.24 (s, 3H), 1.37 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (t, *J* = 26.7 Hz), 154.7 (s), 152.4 (t, *J* = 3.7 Hz), 151.0 (s), 134.3 (s), 106.1 (s), 105.8 (s), 31.2 (s), 18.3 (s), 13.5 (s); ²H NMR (77 MHz, CHCl₃) δ 9.62 (s, 1D); HRMS (EI): m/z caled for C₁₀H₁₁DO₂ [(M)⁺]: 165.0900, found: 165.0902.

Benzyl (2-formylallyl)carbamate-α-d₁ (10t)

Benzyl (2-formylallyl)carbamate (0.25 mmol), **5l** (20 mol%) and KOAc (0.25 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **10t** was obtained as a yellow solid in 42% yield with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 0.01H), 7.38-7.30 (m, 5H), 6.44 (s, 1H), 6.12 (s, 1H), 5.21 (s, 1H), 5.10 (s, 2H), 4.00 (d, *J* = 6.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7 (t, *J* = 24.5 Hz), 156.3 (s), 146.0 (s), 136.3 (s), 135.0 (s), 128.6 (s), 128.2 (s), 128.1 (s), 66.9 (s), 39.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.60 (s, 1D); HRMS (EI): m/z caled for C₁₂H₁₂DNO₃ [(M)⁺]: 220.0958, found: 220.0959.

Phenylacetaldehyde- $1, 2-d_1, d_2$ (12a)

Phenylacetaldehyde (0.5 mmol), **5q** (20 mol%) and KOAc (1.0 mmol, 2 equiv)was dis solved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12a** was ob tained as a colorless oil in 48% yield with 98% D-incorporation at position 1 and 9 4% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 0.02H), 7.3 8 (t, J = 7.2 Hz, 2H), 7.34-7.29 (m, 1H), 7.25-7.21 (m, 2H), 3.68-3.66 (m, 0.12H); ¹ ³C NMR (100 MHz, CDCl₃) δ 199.3 (t, J = 26.9 Hz), 131.8 (s), 129.6 (s), 129.0 (s) 127.4 (s), 49.9 (d, J = 12.6 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.74 (s, 1D), 3.62 (s, 2D); HRMS (EI): m/z caled for C₈H₅D₃O [(M)⁺]: 123.0763, found: 123.0764.

3-Phenylpropionaldehyde-*1*,*2*,*3*-*d*₁,*d*₂,*d*₂ (12b)

3-Phenylpropionaldehyde (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12b** was obtained as a colorless oil in 51% yield with 98% D-incorporation at position 1, 41% D-incorporation at position 2 and 16% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.83 (d, *J* = 1.2 Hz, 0.02H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.29-7.21 (m, 3H), 2.99 (t, *J* = 7.4 Hz, 1.67H), 2.83-2.75 (m, 1.18H); ¹³C NMR (100 MHz, CDCl₃) δ 201.3 (t, *J* = 26.2 Hz), 140.5 (s), 128.7 (s), 128.4 (s), 126.3 (s), 45.1 (t, *J* = 3.7 Hz), 28.1 (d, *J* = 5.7 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.78 (s, 1D), 2.86 (s, 0.35D), 2.67 (s, 0.82D); HRMS (EI): m/z caled for C₉H₉DO [(M)⁺]: 135.0794, Found: 135.0799; C₉H₈D₂O [(M)⁺]: 136.0857, found: 136.0858; C₉H₅D₅O [(M)⁺]: 139.1045, found: 139.1049.

Benzenebutanal- $1, 2, 3-d_1, d_2, d_2$ (12c)

Benzenebutanal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12c** was obtained as a colorless oil in 67% yield with 99% D-incorporation at position 1, 95% D-incorporation at position 2 and 16% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 0.01H), 7.30 (t, J = 7.3 Hz, 2H), 7.24-7.16 (m, 3H), 2.67 (t, J = 7.5 Hz, 2H), 2.45-2.42 (m, 0.09H), 1.96 (t, J = 7.5 Hz, 1.68H); ¹³C NMR (100 MHz, CDCl₃) δ 202.2 (t, J = 25.8 Hz), 141.3 (s), 128.5 (s), 126.1 (s), 42.2 (s), 34.9 (d, J = 9.1 Hz), 23.5 (s); ²H NMR (77 MHz, CHCl₃) δ 9.80 (s, 1D), 2.43 (s, 1.92D), 1.94 (s, 0.37D); HRMS (EI): m/z caled for C₁₀H₉D₃O [(M)⁺]: 151.1076, Found: 151.1090; C₁₀H₈D₄O [(M)⁺]: 152.1139, Found: 152.1140; C₁₀H₇D₅O [(M)⁺]: 153.1202, found: 153.1190.

3-Thienylpropionaldehyde-1,2-d₁,d₂ (12d)

3-Thienylpropionaldehyde (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12d** was obtained as a colorless oil in 69% yield with 98% D-incorporation at position 1, 21% D-incorporation at position 2 and 7% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 0.02H), 7.13 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.92 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.82 (d, *J* = 3.3 Hz, 1H), 3.18 (t, *J* = 7.2 Hz, 1.86H), 2.84 (t, *J* = 7.3 Hz, 1.50H); ¹³C NMR (100 MHz, CDCl₃) δ 200.7 (t, *J* = 26.4), 143.0 (s), 127.0 (s), 124.8 (s), 123.6 (s), 45.2 (t, *J* = 3.7), 22.3 (d, *J* = 6.0 Hz); ²H
NMR (77 MHz, CHCl₃) δ 9.87 (s, 1D), 3.15 (s, 0.08D), 2.82 (s, 0.38D); HRMS (EI): m/z caled for C₇H₇DOS [(M)⁺]: 141.0359, found:141.0360.

3-(1-Methyl-1H-3-indolyl)propanal-*1,2,3-d*₁,*d*₂,*d*₂(12e)

3-(1-Methyl-1H-3-indolyl)propanal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12e** was obtained as a yellow solid in 48% yield with 95% D-incorporation at position 1, 89% D-incorporation at position 2 and 80% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 0.05H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.27 (d, *J* = 8.2 Hz, 1H), 7.23-7.19 (m, 1H), 7.13-7.07 (m, 1H), 6.81 (s, 1H), 3.70 (s, 3H), 3.06 (t, *J* = 6.5 Hz, 0.42H), 2.80-2.75 (m, 0.24H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6 (t, *J* = 26.2 Hz), 137.1 (s), 127.5 (s), 126.4 (s), 121.8 (s), 118.9 (s), 118.7 (s), 113.0 (s), 109.3 (s), 43.4 (m), 32.6 (s), 17.4 (m); ²H NMR (77 MHz, CHCl₃) δ 9.88 (s, 1D), 3.07 (s, 1.78D), 2.80 (s, 1.73D); HRMS (EI): m/z caled for C₁₂H₈D₅NO [(M)⁺]: 192.1311, found: 192.1310.

3-(5-Methyl-2-furanyl)butanal-*1,2,3,4-d*₁,*d*₂,*d*₁,*d*₃ (12f)

3-(5-Methyl-2-furanyl)butanal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12f** was obtained as a colorless oil in 73% yield with 97% D-incorporation at position 1, 71% and 78% D-incorporation at position 2, 3% D-incorporation at position 3 and 1% D-incorporation at position 4. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 0.03H), 5.87 (d, *J* = 2.9 Hz, 1H), 5.85-5.84 (m, 1H), 3.40-3.33 (m, 1H), 2.79-2.73 (m, 0.32H), 2.58-2.52 (m, 0.24H), 2.24 (s, 3H), 1.29 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9-201.1 (m), 156.4 (s), 150.8 (s), 105.8 (s), 104.8 (s), 49.2-45.8 (m), 27.8 (d, *J* = 5.1 Hz), 19.0 (s), 13.5 (d, *J* = 1.3 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.81 (s, 1D), 3.34 (s, 0.03D), 2.75 (s, 0.67D), 2.55 (s, 0.84D), 1.28 (s, 0.04D); HRMS (EI): m/z caled for C₉H₉D₃O₂: 155.1026, found: 155.1028.

Octanal- $1, 2, 3-d_1, d_2, d_2$ (12g)

Octanal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D_2O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12g** was obtained as a colorless oil in 71% yield with 96% D-incorporation at position 1, 95% D-incorporation at position 2 and

23% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 0.04 H), 2.41-2.20 (m, 0.1H), 1.58 (d, *J* = 6.5 Hz, 1.54 H), 1.35-1.22 (m, 8H), 0.86 (dd, *J* = 8.8, 4.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.9 (t, *J* = 26.6 Hz), 43.1 (m), 31.6 (s), 29.1(s), 29.0 (s), 22.6 (s), 21.9 (s), 14.0 (s); ²H NMR (77 MHz, CHCl₃) δ 9.74 (s, 1D), 2.34 (s, 2.00D), 1.54 (s, 0.34D); HRMS (EI): m/z caled for C₈H₁₃D₃O [(M)⁺]: 131.1389, found: 131.1385.

6-Heptynal-1,2,3,4-d₁,d₂,d₂,d₁ (12h)

6-Heptynal (0.5 mmol), **5q** (10 mol%), NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. **12h** was obtained as a colorless oil in 64% yield with 98% D-incorporation at position 1, 89% D-incorporation at position 2, 16% D-incorporation at position 3 and 23% D-incorporation at position 4. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 0.02H), 2.48-2.41 (m, 0.21H), 2.26-2.18 (m, 2H), 1.95 (t, *J* = 2.6 Hz, 0.64H), 1.78-1.70 (m, 1.74H), 1.61-1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1 (t, *J* = 23.5 Hz), 83.8 (s), 68.8 (s), 27.7 (s), 22.7 (s), 20.9 (s), 18.2 (s); ²H NMR (77 MHz, CHCl₃) δ 9.76 (s, 1D), 2.39 (s, 2.00D), 1.91 (s, 0.12D), 1.69 (s, 0.29D); HRMS (EI): m/z caled for C₇H₉DO [(M)⁺]: 111.0794, Found: 111.0793; C₇H₇D₃O [(M)⁺]: 113.0920, found: 113.0922.

Cis-6-Nonenal-1,2- d_1 , d_2 (12i)

Cis-6-Nonenal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **12i** was obtained as a colorless oil in 72% yield with 96% D-incorporation at position 1, 73% D-incorporation at position 2 and 4% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 0.04H), 5.41-5.34 (m, 1H), 5.33-5.26 (m, 1H), 2.42 (t, *J* = 7.4 Hz, 0.5H), 2.09-1.96 (m, 4H), 1.67-1.58 (m, 2H), 1.42-1.33 (m, 2H), 0.94 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6 (d, *J* = 52.2 Hz), 132.2 (s), 128.4 (s), 43.6 (s), 29.1 (t, *J* = 7.6 Hz), 26.8 (s), 21.6-21.4 (m), 20.5 (s), 14.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.73 (s, 1D), 2.33 (s, 1.62D), 1.55 (s, 0.09D); HRMS (EI): m/z caled for C₉H₁₄D₂O [(M)⁺]: 142.1327, Found: 142.1322; C₉H₁₃D₃O [(M)⁺]: 143.1389, found: 143.1393.

Citronellal-1,2-d₁,d₂ (12j)

Citronellal (0.5 mmol), 5q (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **12j** was obtained as a colorless oil in

78% yield with 96% D-incorporation at position 1 and 50% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 0.04H), 5.10-5.04 (m, 1H), 2.38 (dd, *J* = 15.9, 5.5 Hz, 0.50H), 2.21 (dd, *J* = 16.1, 8.0 Hz, 0.50H), 2.07-1.92 (m, 3H), 1.67 (s, 3H), 1.59 (s, 3H), 1.40-1.21 (m, 2H), 0.96 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.8 (t, *J* = 25.8 Hz), 131.8 (s), 124.0 (s), 50.8 (t, *J* = 3.5 Hz), 36.9 (d, *J* = 4.3 Hz), 27.7 (d, *J* = 9.8 Hz), 25.7 (s), 25.4 (s), 19.8 (d, *J* = 6.5 Hz), 17.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.74 (s, 1D), 2.33 (s, 0.54D), 2.15 (s, 0.55D); HRMS (EI): m/z caled for C₁₀H₁₇DO [(M)⁺]: 155.1420, Found: 155.1424; C₁₀H₁₆D₂O [(M)⁺]: 156.1483, Found: 156.1474; C₁₀H₁₅D₃O [(M)⁺]: 157.1546, found: 157.1547.

CbzHN ______ 2 ____ 1

Benzyl-4-oxobutanoate- $1, 2-d_1, d_2$ (12k)

Benzyl-4-oxobutanoate (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv), was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **12k** was obtained yellow solid in 55% yield with 99% D-incorporation at position 1 and 96% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 0.01H), 7.38-7.31 (m, 5H), 5.17 (s, 1H), 5.08 (s, 2H), 3.47 (d, *J* = 6.1 Hz, 2H), 2.70 (s, 0.08H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4-200.7 (m), 156.4 (s), 136.4 (s), 128.6 (s), 128.2 (s), 128.1 (s), 66.8 (s), 43.9 (s), 34.4 (s), 29.7 (s); ²H NMR (77 MHz, CHCl₃) δ 9.84 (s, 1D), 2.72 (s, 1.91D), 1.55 (s, 0.09D); HRMS (EI): m/z caled for C₁₁H₁₀D₃NO₃ [(M)⁺]: 210.1084, found: 210.1085.

2-Phenylpropionaldehyde-1,2-d₁,d₁ (12l)

2-Phenylpropionaldehyde (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12l** was obtained as a colorless oil in 73% yield with 98% D-incorporation at position 1 and 92% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 0.02H), 7.41-7.30 (m, 3H), 7.23-7.20 (m, 2H), 3.63 (q, *J* = 7.0 Hz, 0.08H), 1.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.9 (t, *J* = 26.6 Hz), 137.7 (s), 129.1 (s), 128.3 (s), 127.6 (s), 52.7-52.1 (m), 14.5 (s); ²H NMR (77 MHz, CHCl₃) δ 9.71 (s, 1D), 3.61 (s, 0.93D); HRMS (EI): m/z caled for C₉H₈D₂O [(M)⁺]: 136.0857, found: 136.0856.

2-Methyl-3-phenylpropionaldehyde-*1*,2-*d*₁,*d*₁ (12m)

2-Methyl-3-phenylpropionaldehyde (0.5 mmol), 5q (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12m** was

obtained as a colorless oil in 82% yield with 99% D-incorporation at position 1 and 69% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (d, *J* = 1.3 Hz, 0.01H), 7.34-7.28 (m, 2H), 7.25-7.16 (m, 3H), 3.12-3.06 (m, 1H), 2.72-2.65 (m, 0.31H), 2.65-2.58 (m, 1H), 1.10 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.1 (td, *J* = 25.8, 9.1 Hz), 138.9 (d, *J* = 1.2 Hz), 129.1 (s), 128.6 (s), 126.4 (s), 47.9 (t, *J* = 3.5 Hz), 36.6 (d, *J* = 6.8 Hz), 13.2 (d, *J* = 7.5 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.76 (s, 1D), 2.68 (s, 0.75D); HRMS (EI): m/z caled for C₁₀H₁₀D₂O [(M)⁺]: 150.1014, found: 150.1018.

2-Methyl-5-oxo-5-phenylpentanal- $1, 2, 4-d_1, d_2$ (12n)

2-Methyl-5-oxo-5-phenylpentanal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **12n** was obtained as a colorless oil in 72% yield with 98% D-incorporation at position 1, 83% D-incorporation at position 2 and 80% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 0.02H), 7.93-7.91 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 3.04-2.94 (m, 0.40H), 2.48-2.43 (m, 0.17H), 2.10 (dd, *J* = 14.2, 7.0 Hz, 1H), 1.85-1.78 (m, 1H), 1.14 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.5-203.9 (m), 199.4 (t, *J* = 6.2 Hz), 136.7 (s), 133.2 (s), 128.6 (s), 128.0 (s), 45.5 (t, *J* = 3.3 Hz), 35.5 (s), 24.6 (s), 13.5 (d, *J* = 7.9 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.63 (s, 1D), 2.94 (s, 1.68D), 2.41 (s, 0.84D); HRMS (EI): m/z caled for C₁₂H₁₀D₄O₂ [(M)⁺]: 194.1245, found: 194.1275.

2,6-Dimethyl-5-heptenal-1,2-d₁,d₁ (120)

2,6-Dimethyl-5-heptenal (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 50 °C for 12 hours. **120** was obtained as a colorless oil in 64% yield with 98% D-incorporation at position 1 and 34% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, *J* = 1.8 Hz, 0.02H), 5.08-5.04 (m, 1H), 2.43 (t, *J* = 7.4 Hz, 0.24H), 2.36-2.29 (m, 0.57H), 2.23 (dd, *J* = 14.6, 7.3 Hz, 0.25H), 2.01 (dd, *J* = 14.7, 7.4 Hz, 2H), 1.78-1.69 (m, 1H), 1.66 (s, 3H), 1.57 (s, 3H), 1.42-1.33 (m, 1H) 1.07 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.9 (t, *J* = 25.8 Hz), 132.7 (s), 123.4 (s), 45.6 (t, *J* = 3.3 Hz), 30.6 (s), 25.7 (s), 25.3 (s), 17.7 (s), 13.2 (s); ²H NMR (77 MHz, CHCl₃) δ 9.62 (s, 1D), 2.31 (s, 0.33D); HRMS (EI): m/z caled for C₉H₁₅DO [(M)⁺]: 141.1264, found: 141.1243.

Cyclohexanaldehyde-1,2-d₁,d₁ (12p)

Cyclohexanaldehyde (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12p** was obtained as a colorless oil in 70% yield with 99% D-incorporation at position 1 and 12% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 0.01H), 2.24-2.18 (m, 0.80H), 1.89-1.84 (m, 2H), 1.74-1.70 (m, 2H), 1.65-1.60 (m, 1H), 1.39-1.21 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 204.7 ((t, *J* = 25.8 Hz), 49.8 (t, *J* = 3.3 Hz), 25.9 (s), 25.9 (s), 25.0 (s); ²H NMR (77 MHz, CHCl₃) δ 9.64 (s, 1D), 2.22 (s, 0.03D); HRMS (EI): m/z caled for C₇H₁₁DO [(M)⁺]: 113.0951, found C₇H₁₁DO: 113.0952.

1-(*tert*-Butoxycarbonyl)-4-formylpiperidine-1,2-d₁,d₁(12q)

1-(*tert*-butoxycarbonyl)-4-formylpiperidine (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 30 °C for 12 hours. **12q** was obtained as a white solid in 76% yield with 99% D-incorporation at position 1, and 80% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 0.01H), 3.97 (d, *J* = 8.2 Hz, 2H), 2.91 (t, *J* = 11.5 Hz, 2H), 2.42-2.37 (m, 0.19H), 1.86 (d, *J* = 10.7 Hz, 2H), 1.57-1.50 (m, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 202.7 (t, *J* = 26.0 Hz), 154.7 (s), 79.7 (s), 47.8 (t, *J* = 3.5 Hz), 42.8 (m), 28.40 (s), 25.1 (d, *J* = 10.1 Hz); ²H NMR (77 MHz, CHCl₃) δ 9.69 (s, 1D), 2.39 (s, 0.90D); HRMS (EI): m/z caled for C₁₁H₁₇D₂NO₃ [(M)⁺]: 215.1490, found: 215.1489.

tert-Butyl N-(1-benzyl-2-oxoethyl)carbamate-1,2,3-d₁,d₁,d₂ (12r)

tert-Butyl N-(1-benzyl-2-oxoethyl)carbamate (0.5 mmol), **5q** (10 mol%) and NaHCO₃ (0.5 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 40 °C for 12 hours. Compound **12r** was obtained as a colorless oil in 86% yield with 98% D-incorporation at position 1, 82% D-incorporation at position 2. and 2% D-incorporation at position 3. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 0.02H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.31-7.27 (m, 1H), 7.21 (d, *J* = 6.9 Hz, 2H), 5.13 (s, 1H), 4.46 (d, *J* = 6.7 Hz, 0.15H), 3.15 (s, 2H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2 (t, *J* = 27.5 Hz), 155.4 (s), 135.8 (s), 129.3 (s), 128.8 (s), 127.1 (s), 80.2 (s), 60.7 (m), 35.4 (s), 28.3 (s); ²H NMR (77 MHz, CHCl₃) δ 9.66 (s, 1D), 4.40 (s, 0.83D), 3.09 (s, 0.04D); HRMS (EI): m/z caled for C₁₃H₁₇DNO₂ [(M-CDO)⁺]: 221.1400, found: 221.1401.

2-(1-(4-Chlorobenzoyl)-5-methoxy-2-Methyl-1H-indol-3-yl)acetaldehyde-*1*,*2-d*₁,*d*₂ (12s) 2-(1-(4-Chlorobenzoyl)-5-methoxy-2-Methyl-1H-indol-3-yl)acetaldehyde **11s** (0.1 mmol), **5q** (20 mol%) and AcOK (0.1 mmol, 1 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 ml) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **12s** was obtained as a tan solid in 60% yield with 99% D-incorporation at position 1 and 93% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 0.01H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 6.87-6.84 (m, 2H), 6.69 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 0.14H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.8 (t, *J* = 26.8 Hz), 168.3 (s), 156.2 (s), 139.5 (s), 136.5 (s), 133.7 (s), 131.2 (s), 130.9 (s), 130.6 (s), 129.2 (s), 115.1 (s), 111.9 (s), 109.9 (s), 100.8 (s), 55.7 (s), 38.8 (m), 13.4 (s); ²H NMR (77 MHz, CHCl₃) δ 9.72 (s, 1D), 3.68 (s, 1.78D); HRMS (ESI): m/z caled for C₁₉H₁₄D₃CINO₃ [(M+H)⁺]: 345.1085, found: 345.1089.

2-(1,7-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-yl)acetaldehyde-*1,2-d*₁,*d*₂ (12t)

2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-yl)acetaldehyde **11t** (0.1 mmol), **5q** (20 mol%) and AcOK (0.2 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **12t** was obtained liquid in 52% yield with 99% D-incorporation at position 1 and 86% D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 0.01H), 8.37 (s,1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 6.8 Hz, 1H), 4.08-3.96 (m, 2H), 3.03 (s, 0.23H), 2.91-2.79 (m, 4H), 2.13-2.08 (m, 1H), 2.00-1.91 (m, 1H), 1.37 (t, *J* = 7.6 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5 (t, *J* = 26.5 Hz), 135.3 (s), 134.7 (s), 126.8 (s), 126.3 (s), 120.7 (s), 119.9 (s), 116.1 (s), 108.9 (s), 74.9 (s), 60.7 (s), 51.0 (d, *J* = 14.7 Hz), 31.2 (s), 24.1 (s), 22.4 (s), 13.9 (s), 7.8 (s); ²H NMR (77 MHz, CHCl₃) δ 9.79 (s, 1D), 3.03 (s, 1.61D); HRMS (ESI): m/z caled for C₁₇H₁₈D₃NO₂ [(M+H)⁺]: 275.1839, found: 275.1841.

2,3,5-Tri-O-benzyl- α , β -D-ribofuranose-*1*- d_1 (12u)

2,3,5-tri-O-benzyl- α , β -D-ribofuranose **11u** (0.1 mmol), **5af** (20 mol%), AcOK (0.1 mmol, 1 equiv) and CD₃COOD (0.4 mmol, 4 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 80 °C for 12 hours. **12u** was obtained as a yellow oil in 55% yield with 95%

D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.21 (m, 15H), 5.34 (t, J = 9.7 Hz, 0.05H), 4.73-4.39 (m, 6H), 4.38-4.34 (m, 1H), 4.33-4.28 (m, 1H), 4.22 (dd, J = 6.7, 4.7 Hz, 1H), 4.18 (s, 1H), 4.00-3.95 (m, 2H), 3.85 (d, J = 4.6 Hz, 1H), 3.66 (dd, J = 10.3, 2.7 Hz, 1H), 3.51-3.43 (m, 2H), 3.36 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): **iso1**: δ 137.9 (s), 137.5 (s), 137.5 (s), 128.5 (s), 128.5 (s), 128.5 (s), 128.4 (s), 128.0 (s), 128.0 (s), 128.0 (s), 127.9 (s), 127.9 (s), 127.9 (s), 127.8 (s), 127.7 (s), 127.6 (s), 96.0 (t, J = 26.4 Hz,), 81.0 (s), 77.7 (s), 73.5 (s), 72.8 (s), 72.5 (s), 70.0 (s); **iso2**: δ 137.8 (s), 137.7 (s), 137.3 (s), 128.5 (s), 128.5 (s), 128.0 (s), 128.0 (s), 127.9 (s), 127.9 (s), 127.9 (s), 127.9 (s), 127.8 (s), 127.6 (s), 100.0 (t, J = 25.8 Hz), 80.9 (s), 80.7 (s), 77.2 (s), 72.5 (s), 72.3 (s), 69.4 (s); ²H NMR (77 MHz, CHCl₃) δ 5.33 (s, 1D); HRMS (ESI): m/z caled for C₂₆H₂₇DNaO₅ [(M+Na)⁺]: 444.1897, found: 444.1898.

2,3,4,6-*tetra*-O-Benzyl- α , β -D-glucopyranose-1- $d_1(12v)$

2,3,4,6-*tetra*-O-benzyl- α , β -D-glucopyranose **11v** (0.1 mmol), **5af** (40 mol%), AcOK (0.2 mmol, 2 equiv) and CD₃COOD (0.8 mmol, 8 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 120 °C for 12 hours. **12v** was obtained as a white solid in 83% yield with 91% D-incorporation.

2,3,4,6-*tetra*-*O*-benzyl-α,β-D-glucopyranose-*1*-*d*₁ (deuteration 91%, 0.083 mmol), **5af** (40 mol%) AcOK (0.17 mmol, 2 equiv) and CD₃COOD (0.67 mmol, 8 equiv) was dissolved in a mixture of D₂O (1 mL) and toluene (0.25 ml) in a reaction vessel (5 ml). Then the reaction mixture was vigorously stirred at 120 °C for 12 hours. **12v** was obtained as a white solid in 77% yield (for two steps) with 99% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.11 (m, 20H), 5.22 (s, 0.01H), 4.97-4.45 (m, 9H), 4.05-3.95 (m, 2H), 3.71-3.50 (m, 4H), 3.39 (d, J = 9.1 Hz, 1H), 3.25 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) **iso1:** δ 138.5 (s), 138.4 (s), 138.0 (s), 137.70 (s), 128.5 (s), 128.4 (s), 128.4 (s), 128.4 (s), 128.1 (s), 128.0 (s), 128.0 (s), 127.9 (s), 127.7 (s), 127.7 (s), 127.7 (s), 127.6 (s), 97.1 (t, J = 24.5 Hz), 84.6 (s), 83.0 (s), 77.8 (s), 75.7 (s), 75.0 (s), 74.70 (s), 74.60 (s), 73.5 (s), 73.2 (s), 68.9 (s); **iso2:** δ 138.8 (s), 138.2 (s), 137.9 (s), 127.9 (s), 127.9 (s), 127.7 (s), 127.9 (s), 127.9 (s), 127.9 (s), 127.7 (s), 75.0 (s), 73.5 (s), 73.2 (s), 70.2 (s), 68.6 (s); ²H NMR (77 MHz, CHCl₃) δ 5.24 (s, 1D, β anomer), 4.71 (s, 1D, α anomer); HRMS (ESI): m/z c

Midecamycin- $1, 2-d_1, d_2$ (12w)

Midecamycin (0.1 mmol), **5l** (20 mol%) and AcOK (0.2 mmol, 2 equiv) was dissolved in a mixture of D_2O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. **12w** was obtained as a white solid in 80% yield with 90% D-incorporation.

Midecamycin (deuteration 90%, 0.08 mmol), **51** (20 mol%) and AcOK (0.16 mmol, 2 equiv) was dissolved in a mixture of D₂O (1 mL) and DCM (0.25 mL) in a reaction vessel (5 mL). Then the reaction mixture was vigorously stirred at 60 °C for 12 hours. 12w was obtained as a white solid in 62% yield with 99% D-incorporation at position 1 and uncertain D-incorporation at position 2. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 0.01H), 6.61 (dd, J = 15.0, 10.7 Hz, 1H), 6.04 (dd, J = 14.9, 10.6 Hz, 1H), 6.08-6.00 (m, 1H), 5.75 (t, J = 13.0 Hz, 1H), 5.59 (dd, J = 15.1, 9.4 Hz, 1H), 5.13-5.00 (m, 3H), 4.60 (d, J = 10.0 Hz, 1H), 4.43 (d, J = 7.1 Hz, 1H), 4.31 (s, 1H), 4.06 (dd, *J* = 9.4, 3.8 Hz, 1H), 3.84 (d, *J* = 9.2 Hz, 1H), 3.55-3.50 (m, 4H), 3.28-3.21 (m, 3H), 2.78-2.38 (m, 14-16H), 2.24 (d, J = 13.0 Hz, 1H), 2.12 (dd, J = 13.0 Hz, 1H), 2.12 24.6, 11.5 Hz, 2H), 2.00 (d, J = 14.3 Hz, 1H), 1.84 (dd, J = 15.9, 12.0 Hz, 2H), 1.49-1.34 (m, 2H), 1.28-1.06 (m,17H), 1.02-0.84 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 202.5-200.1 (m), 174.4 (s), 173.9 (s), 169.9 (s), 135.8 (s), 132.9 (s), 131.9 (s), 127.5 (s), 103.6 (s), 96.9 (s), 84.8 (s), 77.6 (s), 75.9 (s), 73.2 (s), 72.9 (s), 71.6 (s), 69.4 (s), 69.0 (s), 68.7 (s), 63.5 (s), 62.5 (s), 42.2 (s), 41.9 (s), 41.6 (s), 41.0 (s), 37.1 (s), 33.5 (s), 30.4 (s), 28.7 (s), 27.6 (s), 27.6 (s), 25.4 (s), 20.4 (s), 18.8 (s), 17.7 (s), 14.7 (s), 9.3 (s), 8.9 (s); ²H NMR (77 MHz, CHCl₃) δ 9.66 (s, 1D), 2.37 (s, 1.60D); HRMS (ESI): m/z caled for $C_{41}H_{65}D_3NO_{15}$ [(M+H)⁺]: 817.4777, found: 817.4795.

4.2 Preparation of catalysts 5ah and 5p

Following the modified procedure of reported literature,⁹ a flame-dried round bottom flask was charged with 6-bromo-4,4a,9,9a-tetrahydroindeno[2,1-b][1,4]oxazin-3(2H) -one (1.0 g, 3.73 mmol) and CH₂Cl₂ (18 mL). Trimethyloxonium tetrafluoroborate (549 mg, 3.73 mmol) added. and the reaction mixture stirred for 12 hours at 23 was °C. 3,5-Bis(trifluoromethyl)phenylhydrazine (904 mg, 3.73 mmol) was then added and allowed to stir for 12 hours at ambient temperature. The solvent was evaporated and chlorobenzene (34 mL) was added, followed by triethyl orthoformate (1.55 ml, 9.26 mmol). The flask was equipped with a reflux condenser and heated to 110 °C and stirred at this temperature for 12 hours. At this time, additional triethylorthoformate (1.55 mL, 9.26 mmol) was added and stirring at 110 °C was continued for additional 12 hours. Upon cooling, concentrated in vacuo. The product was purified by flash column chromatography to get the title compound 5ah as a tan solid (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 13.30 (s, 1H), 8.85 (s, 2H), 8.21 (s, 1H), 7.92 (s, 1H), 7.35-7.29 (m, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.56 (d, J = 3.9 Hz, 1H), 5.10 (s, 2H), 5.02 (t, J = 4.4 Hz, 1H), 3.27 (dd, J = 17.3, 4.7 Hz, 1H), 3.11 (d, J = 17.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1 (s), 144.6-142.7 (m), 139.1 (s), 137.2 (s), 136.3 (s), 133.7

(q, J = 34.8 Hz), 130.2 (d, J = 493.9 Hz), 126.8 (s), 124.0 (dd, J = 7.9, 4.2 Hz), 123.6 (s), 121.4 (d, J = 3.2 Hz), 121.2 (s), 120.9 (s), 77.7 (s), 62.2 (s), 60.4 (s), 37.2 (s); HRMS (EI): m/z caled for C₂₀H₁₂BrF₆N₃O [(M-H)⁺]: 503.0068, found: 503.0063.

Following the modified procedure of reported literature,⁹ a flame-dried round bottom flask was charged with 6-nitro-4,4a,9,9a-tetrahydroindeno[2,1-b][1,4]oxazin-3(2H) -one (1.0 g, 4.27 mmol) and CH₂Cl₂ (21 mL). Trimethyloxonium tetrafluoroborate (769 mg, 4.27 mmol) was added, and thereaction mixture stirred for 12 hours at 23 °C. 3,5-bis(trifluoromethyl)phenylhydrazine (1,042 mg, 4.27 mmol) was then added and allowed to stir for 12 hours at ambient temperature. The solvent was evaporated and chlorobenzene (41 mL) was added, followed by triethyl orthoformate (1.78 mL, 10.69 mmol). The flask was equipped with a reflux condenser and heated to 110 °C and stirred at this temperature for 12 hours. At this time, additional triethylorthoformate (1.78 mL, 10.69 mmol) was added and stirring at 110 °C was continued for 12 more hours. Upon cooling, concentrated in vacuo. The product was purified by flash column chromatography to get the title compound **5p** as a tan solid (31% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 11.85 (s, 1H), 8.70 (s, 2H), 8.59 (d, J = 9.9 Hz, 2H), 8.32 (dd, J = 8.3, 1.8 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 3.9 Hz, 1H), 5.39 (d, J = 16.5 Hz, 1H), 5.17 (d, J = 16.5 Hz, 1H), 5.05 (t, J = 4.3 Hz, 1H), 3.60 (dd, J= 17.8, 4.6 Hz, 1H), 3.32 (d, J = 17.9 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 149.7 (s), 149.0 (s), 147.2 (s), 143.7 (s), 137.4 (s), 136.4 (s), 132.0 (d, J = 34.2 Hz), 125.9 (d, J = 171.6 Hz), 124.5 (m), 123.9 (s), 122.2 (m), 121.2 (s), 120.3 (s), 77.2 (s), 60.8 (s), 59.7 (s), 37.1 (s); HRMS (EI): m/z caled for $C_{20}H_{12}F_6N_4O_3$ [(M-H)⁺]: 470.0814, found: 470.0815.

4.3 Preparation of substrates

Following the modified procedure of reported literature,²⁵ 1,4-phthalaldehyde (470 mg, 3.5 mmol), ethylacetoacetate (910 mg, 7 mmol), and ammonium hydroxide solution (364 μ L, 2.6 mmol) in ethanol (2 mL) was stirred at reflux for 6 h. After completion of the reaction, as indicated by TLC, the reaction mixture was concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc/petroleum ether = 1/4). The title compound **6be** was obtained as a yellow solid (378 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 6.29 (s, 1H), 5.05 (s, 1H), 4.11-4.03 (m, 4H), 2.32 (s, 6H), 1.20 (t, *J* = 7.1 Hz, 6H).

Following the modified procedure reported in literature,²⁶ In a flask were introduced *O*-desmethylvenlafaxine (670 mg, 2.55 mmol), DMF (3 mL), potassium carbonate (690 mg, 5 mmol) and 4-fluorobenzaldehyde (310 mg, 2.5 mmol). The resulting mixture was stirred at 120 °C overnight. The reaction mixture was diluted with water (30 mL) and the product was extracted with EtOAc (3×30 mL). The combined organic layers were washed sequentially with 0.5 M aqueous NaOH solution (30 mL) and saturated aqueous NaHCO₃ solution (2×30 mL), and dried over anhydrous MgSO₄. The organic layer was filtered and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography using MeOH/DCM (1/50 - 1/10) as eluent to give the product **6bf** as a yellow oil (693 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.3 Hz, 2H), 3.24 (t, J = 12.5 Hz, 1H), 2.96 (dd, J = 12.3, 3.1 Hz, 1H), 2.33-2.23 (m, 7H), 1.73-1.64 (m, 3H), 1.48 (t, J = 15.9 Hz, 3H), 1.33-1.21 (m, 2H), 0.95-0.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.6 (s), 163.1 (s), 153.7 (s), 137.4 (s), 131.9 (s), 131.2 (s), 21.6 (s), 21.3 (s).

Following the modified procedure reported in literature,²⁷ hydroxyzine hydrochloride (1.12 g, 2.5 mmol) was diluted with toluene (10 mL), then 2-fluorobenzaldehyde (340 mg, 2.75 mmol), tetrabutylammonium bromide (TBAB) (200 mg, 0.66 mmol) and a solution of potassium hydroxide (560 mg, 10 mmol) in water (570 µL) were added. The reaction mixture was vigorously stirred at 90 °C under nitrogen overnight. When the reaction was completed, the solution was concentrated in vacuo. The crude residue was purified by silica gel chromatography to give product **6bg** (677 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.49 (d, J = 0.5 Hz, 1H), 7.81 (dd, J = 7.7, 1.8 Hz, 1H), 7.54-7.50 (m, 1H), 7.37-7.32 (m, 4H), 7.28-7.15 (m, 5H), 7.01 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 4.22 (m, 3H), 3.88-3.84 (m, 2H), 3.74 (t, J = 5.5 Hz, 2H), 2.72-2.44 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8 (s), 161.2 (s), 142.0 (s), 141.2 (s), 135.9 (s), 132.6 (s), 129.2 (s), 128.7 (s), 128.6 (s), 128.4 (s), 127.8 (s), 57.6 (s), 53.8 (s), 51.3 (s).

(2'-(2H-Tetrazol-5-yl)biphenyl-4-yl)methyl)-2-butyl-4-chloro-1H-imidazole-5-carbaldeh yde (6bi): Losartan (1.7 g, 4 mmol) and IBX (2-iodoxybenzoic acid, 1.345 g, 4.8 mmol) were added in DMSO (20 mL) and stirred at room temperature for 6 h. CH₂Cl₂ (120 mL) was added and the solution was washed with water (3 × 120 mL), saturated NaHCO₃ solution (3 × 120 mL), and brine (1 × 120 mL). The solvent was removed after drying (Na₂SO₄) in vacuo to yield the product **6bi** (888 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.90 (dd, J = 7.7, 1.1 Hz, 1H), 7.62-7.54 (m, 1H), 7.54-7.46 (m, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.08 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 5.49 (s, 2H), 2.79-2.48 (m, 2H), 1.67-1.65 (m, 2H), 1.41-1.21 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H).

Step 1: Following the modified procedure reported in literature,²⁸ to a stirred solution of indometacin (1.0 g, 2.86 mmol) in THF (15 mL) was added a 1M solution of borane tetrahydrofuran complex (3 mL, 3.0 mmol) at 0 °C. The mixture was allowed to warm up to room temperature and stirred for 18 h. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (DCM/MeOH = 50/1) to give **11s-a** (734 mg, 74%) as a yellow solid.

Step 2: Following the modified procedure reported in literature,²⁸ To a stirred solution of **11s-a** (734 mg, 2.15 mmol) in EtOAc (7.34 mL) was added IBX (1.5 g, 5.3 mmol) at room temperature and the resulting mixture was heated at 80 °C for 2 h. The mixture was filtered and filtrate was concentrated under reduced pressure to give **11s** (490 mg, 66%) as a powder. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (t, *J* = 2.1 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 6.87-6.84 (m, 2H), 6.69 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.82 (s, 3H), 3.72 (d, *J* = 2.0 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.1 (s), 168.3 (s), 156.2 (s), 139.5 (s), 136.5 (s), 133.7 (s), 131.2 (s), 130.9 (s), 130.6 (s), 129.2 (s), 115.1 (s), 111.9 (s), 110.0 (s), 100.8 (s), 55.7 (s), 39.4 (s), 13.4 (s).

Step 1: Following the modified procedure reported in literature,²⁸ to a stirred solution of Etodolac (2.0 g, 6.97 mmol) in dry THF (15.5 mL) under nitrogen was added a solution of LiAlH₄ (800 mg, 21 mmol) in dry THF (10.5 mL) dropwise and the resulting mixture was warmed to room temperature and stirred overnight. The reaction was slowly quenched with EtOAc (30 mL) and poured into water. The resulting emulsion was filtered and the flitrate was extrated with EtOAc. The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The organic layer was filtered and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography to give **11t-a** (1.14 g, 59%) as a yellow oil.

Step 2: Following the modified procedure reported in literature,²⁸ to a stirred solution of **11t-a** (1.14 g, 4.17 mmol) in CH₃CN (5.38 mL), DMSO (5.38 mL) and Et₃N (5.38 mL) was added pyridine sulfur trioxide (3.96 g, 24.8 mmol) and the resulting mixture was stirred at room temperature for 40 min. The mixture was poured into water and extracted with EtOAc. The combined organic layers were washed sequentially with 3% aquenes HCl solution, saturated aqueous NaHCO₃ solution and brine, and dried over anhydrous MgSO₄. The organic layer was filtered and concentrated under reduced pressure. The crude residue was purified by silica gel chromatography to give product **11t** (720 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 9.77 (t, *J* = 1.6 Hz, 1H), 8.43 (s, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 6.7 Hz, 1H), 4.08-3.99 (m, 2H), 3.06 (d, *J* = 1.6 Hz, 2H), 2.91-2.81 (m, 4H), 2.16-2.08 (m, 1H), 1.99-1.94 (m, 1H), 1.38 (t, *J* = 7.6 Hz, 3H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4 (s), 135.2 (s), 134.6 (s), 126.6 (s), 126. 3 (s), 120.7 (s), 119.9 (s), 116.1 (s), 108.9 (s), 75.0 (s), 60.6 (s), 51.9 (s), 31.2 (s), 24.1 (s), 22.4 (s), 13.8 (s), 7.8 (s).

5. Synthetic applications

5.1 Recovery of hydrogen from deuterium at α-position of aldehyde (Figure 3)

Compound **12l** (0.5 mmol, 68 mg, $D^1 = 98\%$; $D^2 = 97\%$) and organocatalyst **13** (16.3 mg, 10 mol%) was dissolved in a mixture H₂O (1 mL) and DCM (0.25 ml). Then the reaction was vigorously stirred at 30 °C for 12 hours. After purification, compound **14** was obtained as a colorless oil in 81% yield with 98% D-incorporation. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (d, J = 1.4 Hz, 0.02H), 7.41-7.37 (m, 2H), 7.35-7.28 (m, 1H), 7.24-7.21 (m, 2H), 3.64 (q, J = 7.1 Hz, 1H), 1.45 (d, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 200.8 (t, J = 26.6 Hz), 137.7 (s), 129.1 (s), 128.3 (s), 127.5 (s), 52.8 (t, J = 4.1 Hz,), 14.6 (s).

5.2 Gram-scale synthesis of deuterated aldehyde and recycling and subsequent use of recoved D₂O (Figure 4)

Cycle 1: A mixture of 4-Bromobenzaldehyde **6b** (30 mmol, 5.55 g), **5o** (10 mol%, 1.41 g) and NaHCO₃ (30 mmol, 2.52 g) in D₂O (60 mL) and toluene (15 mL) was vigorously stirred at 40 °C for 12 hours. After cooling to room temperature, the reaction mixture was extracted with DCM for three time. The organic layers were combined and dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography. Deuterated aldehyde **7b** was obtained as a yellow solid in 86% yield with 98% D-incorporation.

Cycle 2: 4-Bromobenzaldehyde **6b** (30 mmol, 5.55 g) and **5o** (10 mol%, 1.41 g) were added to D_2O (separated from **Cycle 1**) and toluene (15 mL). The reaction was vigorously stirred at 40 °C for 12 hours. After cooling to room temperature, the reaction was extracted with DCM for three time. The organic layers were combined and dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography. Deuterated aldehyde **7b** was obtained as a yellow solid in 90% yield with 98% D-incorporation.

Cycle 3: The same operation was carried out as **Cycle 2**. Deuterated aldehyde **7b** was obtained as a yellow solid in 91% yield with 95% D-incorporation.

Ar-CD₂OH Ar-COOH 30 °C 2 h .C<mark>D</mark>2OH O_2N .CD₂OH CD₂OH .C<mark>D</mark>₂OH Br 15a, Y/D 37/98 15b. Y/D 38/98 15e, Y/D 41/97 15x. Y/D 30/98 D₂OH с₽₂он 15an, Y/D 44/98 15aq, Y/D 44/98

5.3 Preparation of deuterated benzyl alcohols through Cannizzaro reaction (Figure 4)

General procedure: According to the literature method,²⁹ the aromatic aldehyde (1.0 mmol) was added to a saturated solution of potassium hydroxide (4.0 mmol), and the mixture was stirred at room temperature for 1–2 hours. The thick slurry was diluted with water (10 mL), and the resulting mixture was extracted with CH_2Cl_2 (20 mL). The extracts were washed with water and dried over MgSO₄, and the solvent was removed under reduced pressure to obtain the crude benzyl alcohol product. The crude products were purified by chromatography to obtain the pure product.

4-Methoxybenzenemethan-*d*₂**-ol** (**15a**): ¹H NMR (400 MHz, CDCl₃) δ 7.25 (dt, *J* = 8.8, 2.8 Hz, 2H), 6.87 (dt, *J* = 8.8, 2.8 Hz, 2H), 4.54 (s, 0.03H), 3.78 (s, 3H), 2.19 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (s), 133.1 (s), 128.7 (s), 113.9 (s), 64.2 (quint, *J* = 21.7 Hz), 55.3 (s).

4-Bromobenzenemethan- d_2 -ol (15b): ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.60 (s, 0.04H), 2.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6 (s), 131.6 (s), 128.7 (s), 121.5 (s), 63.8 (quint, J = 21.8 Hz).

Benzenemethan-*d***2-ol** (**15e**): ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.27 (m, 5H), 4.64-4.62 (m, 0.03H), 2.27 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8 (s), 128.6 (s), 127.7 (s), 127.1 (s), 64.6 (quint, *J* = 21.8 Hz).

3-Nitrobenzenemethan- d_2 -ol (15X): ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.12 (d, J = 8.2 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.52 (t, J = 7.9 Hz, 1H), 4.79 (s, 0.03H), 2.27 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3 (s), 142.8 (s), 132.8 (s), 129.5 (s), 122.5 (s), 121.5 (s), 63.7-62.7 (m).

1-Naphthalenemethan- α , α - d_2 -ol (15an): ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.06 (m, 1H), 7.89 (dd, J = 5.9, 3.6 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.57-7.50 (m, 2H), 7.49-7.41 (m, 2H), 5.03 (s, 0.04H), 2.41 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.2 (s), 133.8 (s), 131.8 (s), 128.7 (s), 128.6 (s), 126.4 (s), 125.9 (s), 125.5 (s), 125.4 (s), 123.7 (s), 62.8 (quint, J = 21.9 Hz).

1-Thiophenemethan-*d*₂-ol (15aq): ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.25 (dd, *J* = 2.9, 1.2 Hz, 1H), 7.10 (dd, *J* = 5.0, 1.2 Hz, 1H), 4.68 (s, 0.03H), 1.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1 (s), 126.8 (s), 126.3 (s), 122.1 (s), 60.5-59.5 (m).

5.4 Preparation of deuterated pharmaceutical compounds

5.4.1 Procedure for the synthesis of nitrendipine

According to literature method,³⁰ a solution of the deuterated 3-nitrobenzaldehyde **7w** (76 mg, 0.5 mmol, 99% D), 3-amino-2-butanoate (0.5 mmol) and ethyl acetoacetate (0.5 mmol) in EtOH (1 mL) was stirred at reflux for 6 hours. After completion of the reaction, as indicated by TLC, the reaction mixture was cooled to room temperature and concentrated in vacuo. The crude product was purified by flash column chromatography (EtOAc/petroleum ether = 1:4). The title compound was obtained as a yellow solid (144 mg, 78%), D-incorporation: 99%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (t, *J* = 1.9 Hz, 1H), 8.01-7.97 (m, 1H), 7.65-7.60 (m, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 6.10 (s, 1H), **5.08 (s, 0.01H**), 4.12-4.04 (m, 2H), 3.63 (s, 3H), 2.35 (d, *J* = 2.3 Hz, 6H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7 (s), 167.2 (s), 149.8 (s), 148.2 (s), 145.2 (s), 145.0 (s), 134.4 (s), 128.7 (s), 122.9 (s), 121.4 (s), 103.2 (s), 102.9 (s), 60.1 (s), 51.2 (s), 39.5 (t, *J* = 19.2 Hz), 19.6 (s), 19.5 (s), 14.3 (s); HRMS (ESI): m/z caled for C₁₈H₂₀DN₂O₆ [(M+H)⁺]: 362.1462, found: 362.1461.

5.4.2 Procedure for the synthesis of salbutamol

Step 1: According to the literature method,³¹ a solution of trimethylsulfonium bromide (518 mg, 1.1 equiv) and KOH powder (219 mg, 1.3 equiv) in CH₃CN (3 mL) was stirred at 50 °C for 10 min. Then aldehyde **7al** (579 mg, 3 mmol, 98% D) were added and stirred at 60 °C for another three hours. The reaction mixture then was cooled to room temperature, filtered and concentrated in vacuo. The crude product **16** was used without purification in the next step.

Step 2: According to the literature method,³¹ compound **16** (400 mg) was dissolved in *tert*-butylamine (2 mL) and stirred at 110 °C for 15 hours. The reaction mixture was cooled to room temperature, concentrated in vacuo and added solvent (EtOAc/petroleum ether = 1/2). Then the reaction was refluxed until became clear, cooled to 30 °C for 1h, then cooled to 4 °C overnight, filtered and dried, **17** was obtained in 75% yield for two steps.

Step 3: According to the literature method,³¹ compound **17** (60 mg) in 50% EtOH (0.8 mL) was added concentrated hydrochloric acid until the pH was adjusted to 5. The reaction mixture was stirred at 25 °C for 50 hours. NaOH (10%) was added until pH value was about 9-10. The reaction mixture was concentrated in vacuo, and the product was separated by preparative TLC. Salbutamol was obtained in 95% yield with 98% D-incorporation.) ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.32 (d, *J* = 2.2 Hz, 1H), 7.06 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.79

(d, J = 8.2 Hz, 1H), 4.46 (s, 2H), **4.28** (s, **0.02H**), 2.84 (dd, J = 26.4, 12.2 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (100 MHz, DMSO- d_6) δ 153.7 (s), 131.9 (s), 128.3 (s), 125.0 (s), 124.9 (s), 114.2 (s), 68.5 (m), 58.1 (s), 55.5 (s), 48.6 (s), 25.3 (s); HRMS (ESI): m/z caled for C₁₃H₂₀DNO₃ [(M+H)⁺]: 241.1662, found: 241.1663.

5.4.3 Procedure for the synthesis of cloperastine

Step 1: According to the literature method,³² a solution of deuterated 4-chlorobenzaldehyde **71** (140 mg, 1 mmol, 98% D) in dry THF (4 mL) was added dropwise phenyl magnesium bromide solution (1 M, 1.3 mL, 1.3 equiv) at 0 °C. After the addition was complete, the mixture was allowed to stir at room temperature for 4 hours. The reaction was quenched with 1 M HCl and extracted with EtOAc. The organic layer was washed with water followed by brine. The organic layer was dried with MgSO₄ and concentrated. The product was purified by flash chromatography with EtOAc/petroleum ether = 1:4, and **18** was obtained in 95% yield.

Step 2: According to the literature method,³³ to a solution of **18** (0.4 mmol) in CH₂Cl₂ (4 mL) was added 1-(2-chloroethyl) piperidine hydrochloride (120 mg, 0.6 mmol). The resulting solution was cooled at 0 °C followed by the addition of NaOH (48 mg, 1.2 mmol). After the mixture had been stirred for 20 min at 0 °C and then overnight at room temperature, it was quenched with H₂O and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography to get cloperastine (98 mg, 75% yield, 98% D-incorporation). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.22 (m, 9H), **5.34** (**s**, **0.02H**), 3.57 (t, *J* = 5.9 Hz, 2H), 2.63 (t, *J* = 5.9 Hz, 2H), 2.42 (s, 4H), 1.59-1.53 (m, 4H), 1.43-1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4 (s), 140.6 (s), 132.7 (s), 128.1 (s), 128.1 (s), 128.0 (s), 127.3 (s), 126.6 (s), 82.9-82.7 (m), 66.7 (s), 58.2 (s), 54.7 (s), 25.6 (s), 23.9 (s); HRMS (ESI): m/z caled for C₂₀H₂₄DClNO [(M+H)⁺]: 331.1687, Found: 331.1690.

5.4.4 Procedure for the synthesis of tadalafil

Step 1: According to the literature method,³⁴ D-tryptophan methyl ester hydrochloride **19** (400 mg, 1.57 mmol) was suspended in CH₃CN (4 mL) and added deuterated piperonal **7ah** (284 mg, 1.87 mmol, 98% D) at room temperature. The mixture was stirred at 80 °C for 15

hours. The reaction mixture then was cooled to ambient temperature, filtered, and the solid washed with cold CH₃CN. The product was dried under vacuum at less than 60 °C to obtain compound **20** (308 mg, 80% yield).

Step 2: According to the literature method,³⁴ Compound **20** (270 mg, 0.7 mmol) were suspended in DCM (2.5 mL). The mixture was cooled to 0-5 °C, and triethylamine (194 mg, 1.82 mmol) were added. Subsequently, chloroacetyl chloride (108 mg, 0.95 mmol) in DCM (0.42 mL) were added dropwise, keeping the temperature under 10 °C. Then the reaction was stirred at 0-10 °C for 10 min. After completion of the reaction as monitered by TLC, water (0.4 mL) were added to quench the reaction. The mixture was stirred for 2 min and organic layer was separated, concentrated in vacuo. The resulting solid was washed with methanol to give the title compound **21** as a pale yellow solid (341 mg, 80% yield).

Step 3: According to the literature method,³⁴ a solution of **21** (214 mg, 0.5 mmol) and 25-30% CH₃NH₂ (a solution in water, 155.3 mg, 1.25 mmol, 2.5 equiv) in EtOH (1.5 mL) was heated to reflux for 45 min. The reaction mixture was cooled to room temperature, filtered, and the resulting solid was washed with water and methanol and dried to give deuterated tadalafil as a pale white solid (284 mg, 73% yield, 98% D-incorporation). ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.05 (s, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 7.0 Hz, 1H), 7.00 (t, *J* = 7.1 Hz, 1H), 6.88 (s, 1H), 6.79 (s, 2H), **6.14** (s, **0.02H**), 5.93 (s, 2H), 4.40 (dd, *J* = 11.5, 4.1 Hz, 1H), 4.22-4.10 (m, 1H), 3.95 (d, *J* = 17.2 Hz, 1H), 3.53 (dd, *J* = 15.8, 4.5 Hz, 1H), 3.08-2.82 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.9 (s), 166.6 (s), 147.0 (s), 146.1 (s), 136.9 (s), 136.2 (s), 133.9 (s), 125.7 (s), 121.2 (s), 119.3 (s), 118.8 (s), 118.1 (s), 111.3 (s), 108.1 (s), 106.9 (s), 104.7 (s), 100.9 (s), 55.5 (s), 54.96 (m), 51.4 (s), 32.8 (s), 23.1 (s). HRMS (ESI): m/z caled for C₂₂H₁₉DN₃O₄ [(M+H)⁺]: 391.1517, found: 391.1521.

5.4.5 Procedure for the synthesis of diltiazem hydrochloride

Step 1: According to the literature method,³⁵ sodium (126 mg, 5.48 mmol) was dissolved in methanol (1.32 mL), then *p*-anisaldehyde **7a** (450 mg, 3.31 mol, 98% D) and methyl chloroacetate (534 mg, 4.92 mmol) was added over 4.5 hours at 0 °C and stirring was continued for further 4 hours. The reaction mixture was poured into a solution of AcOH (60 mg) in water (7.5 mL) over 20 min at 0 °C. The reaction was stired for 1h, then the crystals were collected by filtration and washed with cold water and cold MeOH to give a crude product, which was recrystallized from hot MeOH to give **22** (922 mg, 67% yield).

Step 2: According to the literature method,³⁵ a solution of **22** (520 mg, 2.5 mmol) and 28% aqueous FeCl₃•6H₂O (1 drop) in chlorobenzene (2.64 mL) was heated to 80-85 °C. 2-Aminothiophenol (328.6 mg, 2.62 mmol) was added over 30 min, and the resulting mixture was stirred at 115 °C for 45 min. H₂O (1 drop) in MeOH (90 μ L) were added and stirred at reflux for 30 min. Methanesulfonic acid (9.6 mg, 0.1 mmol) was then added and the reflux was maintained for an additional 18 hours. After cooling to room temperature, the solvent was concentrated under reduced pressure to give the crude benzothiazepinone **23** as a yellow powder. The residue was purified by column chromatography (cyclohexane : EtOAc = 8:2, v/v) to afford 20 mg white powder (yield: 69%).

Step 3: According to the literature method,³⁵ to a solution of benzothiazepinone **23** (414 mg, 1.41 mmol) in EtOAc (3.5 mL) was added 2-(dimethylamino) ethyl chloride hydrochloride (224 mg, 1.56 mmol). Under vigorous stirring were then added potassium carbonate (419 mg, 3.03 mmol) and H₂O (64 mg). The resulting mixture was heated at reflux for 12 h. After cooling, the mixture was filtered to remove salts, and the filtrate was concentrated under reduced pressure to give the crude benzothiazepinone **24**. The residue was purified by column chromatography (CH₂Cl₂:MeOH = 98:2) to afford 366 mg of yellow oil (yield: 70%).

Step 4: According to the literature method,³⁶ a solution of **24** (0.317 mmol), Ac₂O (1 mmol), Et₃N (2 mmol) and DMAP (0.03 mmol) in CH₂Cl₂ (5 mL) was heated at reflux under N₂ for 5 hours. The solution was poured into a mixture of ice and brine. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL). The combined organic layers were washed with 5% NH₄OH (5 mL) solution, dried over Na₂SO₄ and evaporated. The residue was dissolved in MeOH (2 mL) and treated with a HCl solution in dioxane till pH was around 2. Ether (3 mL) was added to the resulting solution. The precipitate was collected by filtration and washed with 10% MeOH-ether to afford diltiazem hydrochloride (128 mg, 90% yield, 98% D). ¹H NMR (400 MHz, CD₃OD) δ 7.82-7.79 (m, 1H), 7.65 (dd, *J* = 5.5, 1.9 Hz, 2H), 7.46-7.39 (m, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), **5.12 (s, 0.01H)**, 5.09 (s, 1H), 4.53-4.44 (m, 1H), 4.27-4.18 (m, 1H), 3.81 (s, 3H), 3.69-3.61 (m, 1H), 3.43-3.31 (m, 1H), 2.98 (d, *J* = 24.6 Hz, 6H), 1.87 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 170.1 (s), 169.1 (s), 160.1 (s), 144.4 (s), 135.5 (s), 131.5 (s), 130.6 (s), 129.2 (s), 128.4 (s), 128.2 (s), 126.3 (s), 113.3 (s), 71.1 (s), 54.5 (s), 54.4 (s), 44.6 (s), 42.6 (s), 18.8 (s); HRMS (ESI): m/z caled for C₂₂H₂₆DN₂O₄S [(M+H)⁺]: 416.1754, found: 416.1759.

6. Supplementary References

- 1. Kyan, R., Sato, K., Mase, N., Watanabe, N. Narumi, T. Org. Lett. 19, 2750–2753 (2017).
- 2. Tang, P., Wang, W., Ritter, T. J. Am. Chem. Soc. 133, 11482–11484 (2011).
- 3. Zheng, Y. et al. J. Am. Chem. Soc. 139, 4322–4325 (2017).
- 4. Hirano, K., Urban, S., Wang, C., Glorius, F. Org. Lett. 11, 1019–1022 (2009).
- 5. Fang, W., Jiang, J., Xu, Y., Zhou, J., Tu, T. Tetrahedron, 69, 673–679 (2013).
- 6. Valdés, H., Poyatos, M., Ujaque, G., Peris, E. Chem. Eur. J. 21, 1578–1588 (2015).
- 7. Cao, C. et al. Synth. Commun. 42, 380–387 (2012).
- 8. Piel, I., Pawelczyk, M. D., Hirano, K., Fröhlich, R., Glorius, F. *Eur. J. Org. Chem.* 28, 5475–5484 (2011).
- 9. Kerr, M. S., Alaniz, J. R., Rovis, T. J. Org. Chem. 70, 5725-5728 (2005).
- 10. Türkmen, H., Çtinkaya, B. J. Organomet. Chem. 691, 3749-3759 (2006).

- 11. Iglesias, M. et al. Organometallics 27, 3279–3289 (2008).
- 12. Hagiya, K. WO patent 2012105667, 2012.
- 13. Romanov-Michailidis, F., Besnard, C., Alexakis, A. Org. Lett. 14, 4906-4909 (2012).
- 14. Baragwanath, L.; Christopher, A., Rose, C. A., Zeitler, K., Connon, S. J. J. Org. Chem. 74, 9214–9217 (2009).
- 15. Liu, F., Bugaut, X., Schedler, M., Fröhlich, R., Glorius, F. Angew. Chem. Int. Ed. 50, 12626–12630 (2011).
- 16. Liu, Q., Perreault, S., Rovis, T. J. Am. Chem. Soc. 130, 14066-14067 (2008).
- 17. DiRocco, D. A., Oberg, K. M., Dalton, D. M., Rovis, T. J. Am. Chem. Soc. 131, 10872–10874 (2009).
- 18. Rovis, T. Harit, Vora, H. U. US patent 2011224431, 2011.
- 19. Takikawa, H., Suzuki, K. Org. Lett. 9, 2713-2716 (2007).
- 20. Roche, S. P.; Teyssot, M. -L., Gautier, A. Tetrahedron Lett. 51, 1265-1268 (2010).
- 21. Aidouni, A., Bendahou, S., Demonceau, A., Delaude, L. J. Comb. Chem. 10, 886–892 (2008).
- 22. Leuthäußer, S., Schmidts, V., Thiele, C. M., Plenio, H. Chem. Eur. J. 14, 5465–481 (2008).
- 23. Lane, T. K.; D'Souza, B. R., Louie, J. J. Org. Chem. 77, 7555-7563 (2012).
- 24. Kerr, W. J., Reid, M., Tuttle, T. Angew. Chem. Int. Ed. 56, 7808-7812 (2017).
- 25. Ghosh, S., Saikh, F., Das, J., Pramanik, A. KTetrahedron Lett. 54, 58-62 (2013).
- 26. Dubost, E.; Babin, V.; Benoist, F et al. Org. Lett. 20, 6302-6305 (2018).
- 27. Laszio, C et al. WO patent 2007148141, 2007.
- 28. Craighead, M et al. WO patent 2012063085, 2012.
- 29. Chandrasekhar, S., Srimannarayana, M. Synth. Commun. 39, 4473–4478 (2009).
- 30. Chang, C.-C. et al. Bioorg. Med. Chem. 18, 3147-3158 (2010).
- 31. Yang, Q. CN patent 103951568, 2014.
- 32. Cheng C. -H., Karthikeyan, J., Huang, P. -L. US Patent 20120142934, 2012.
- 33. Lee, J., Oh, Y., Choi, Y. K., Choi, E., Kim, K., Park, J., Kim, M. J. ACS Cat. 5, 683–689 (2014).
- 34. Shi, X. X., Liu, S. L., Xu, W., Xu, Y. L. Tetrahedron: Asymmetry, 19, 435–442 (2008).
- 35. Yamada, S.; Yoshioka, R., Shibatani, T. Chem. Pharm. Bull. 45, 1922–1927 (1997).
- 36. Choudary, B. M., Chowdari, N. S., Madhi, S., Kantam, M. L. J. Org. Chem. 68, 1736–1746 (2003).

7. NMR Spectra

¹H NMR of deuterated aldehyde **7a**

²H NMR of deuterated aldehyde **7a**

¹³C NMR of deuterated aldehyde **7a**

^1H NMR of deuterated aldehyde 7b

 ^2H NMR of deuterated aldehyde 7b

--9.93

¹³C NMR of deuterated aldehyde **7b**

^1H NMR of deuterated aldehyde 7c

 ^2H NMR of deuterated aldehyde 7c

-10.00

^{13}C NMR of deuterated aldehyde 7c

^1H NMR of deuterated aldehyde 7d

²H NMR of deuterated aldehyde **7d**

-10.08

^{13}C NMR of deuterated aldehyde 7d

¹H NMR of deuterated aldehyde 7e

²H NMR of deuterated aldehyde **7e**

--9.95

¹³C NMR of deuterated aldehyde 7e

^1H NMR of deuterated aldehyde $\mathbf{7f}$

 $^2\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7f}$

--9.92

¹³C NMR of deuterated aldehyde **7f**

¹H NMR of deuterated aldehyde 7g

 2 H NMR of deuterated aldehyde **7g**

-10.11

^{13}C NMR of deuterated aldehyde $\mathbf{7g}$

^1H NMR of deuterated aldehyde 7h

¹³C NMR of deuterated aldehyde **7h**

¹H NMR of deuterated aldehyde 7i

²H NMR of deuterated aldehyde 7i

-9.78

¹³C NMR of deuterated aldehyde **7i**

¹H NMR of deuterated aldehyde **7**j

²H NMR of deuterated aldehyde **7j** (The peak in δ 2.5 is the residue of DMSO-*d*₆)

¹³C NMR of deuterated aldehyde **7**j

 ^1H NMR of deuterated aldehyde 7k

 ^2H NMR of deuterated aldehyde 7k

--9.95

 ^{13}C NMR of deuterated aldehyde 7k

¹H NMR of deuterated aldehyde **7**l

²H NMR of deuterated aldehyde **7**l

^{13}C NMR of deuterated aldehyde **7**l

¹H NMR of deuterated aldehyde 7m

²H NMR of deuterated aldehyde **7m**

¹³C NMR of deuterated aldehyde **7m**

¹H NMR of deuterated aldehyde 7n

²H NMR of deuterated aldehyde **7n**

¹³C NMR of deuterated aldehyde **7n**

1 H NMR of deuterated aldehyde **70**

²H NMR of deuterated aldehyde **70**

¹³C NMR of deuterated aldehyde **70**

¹H NMR of deuterated aldehyde **7p**

²H NMR of deuterated aldehyde **7p** (The peak in δ 2.5 is the residue of DMSO-*d*₆)

^{13}C NMR of deuterated aldehyde $\mathbf{7p}$

 1 H NMR of deuterated aldehyde **7**q

 $^2\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7q}$

^{13}C NMR of deuterated aldehyde $\mathbf{7q}$

¹H NMR of deuterated aldehyde 7r

 ^2H NMR of deuterated aldehyde 7r

^{13}C NMR of deuterated aldehyde 7r

 $^1\mathrm{H}$ NMR of deuterated aldehyde $7\mathrm{s}$

 ^2H NMR of deuterated aldehyde 7s

--9.98

¹³C NMR of deuterated aldehyde **7s**

 1 H NMR of deuterated aldehyde **7**t

 ^2H NMR of deuterated aldehyde 7t

¹³C NMR of deuterated aldehyde **7**t

^1H NMR of deuterated aldehyde 7u

²H NMR of deuterated aldehyde 7u

¹³C NMR of deuterated aldehyde **7u**

 ^1H NMR of deuterated aldehyde 7v

 ^2H NMR of deuterated aldehyde 7v

^{13}C NMR of deuterated aldehyde 7v

^1H NMR of deuterated aldehyde 7w

 ^2H NMR of deuterated aldehyde 7w

^{13}C NMR of deuterated aldehyde 7w

¹H NMR of deuterated aldehyde 7x

²H NMR of deuterated aldehyde 7x

¹³C NMR of deuterated aldehyde 7x

^1H NMR of deuterated aldehyde 7y

 ^2H NMR of deuterated aldehyde 7y

--9.94

^{13}C NMR of deuterated aldehyde 7y

 1 H NMR of deuterated aldehyde **7**z

 ^2H NMR of deuterated aldehyde 7z

^{13}C NMR of deuterated aldehyde 7z

¹H NMR of deuterated aldehyde 7aa

²H NMR of deuterated aldehyde 7aa

-10.52

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)
¹³C NMR of deuterated aldehyde **7aa**

 1 H NMR of deuterated aldehyde **7ab**

 ^2H NMR of deuterated aldehyde 7ab

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

¹³C NMR of deuterated aldehyde **7ab**

$^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7ac}$

 $^2\mathrm{H}$ NMR of deuterated aldehyde 7ac

-10.29

¹³C NMR of deuterated aldehyde **7ac**

$^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7ad}$

²H NMR of deuterated aldehyde **7ad**

-10.23

¹³C NMR of deuterated aldehyde **7ad**

¹H NMR of deuterated aldehyde 7ae

²H NMR of deuterated aldehyde 7ae

-10.49

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

¹³C NMR of deuterated aldehyde **7ae**

$^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7af}$

 $^2\mathrm{H}$ NMR of deuterated aldehyde $7\mathrm{af}$

-10.52

¹³C NMR of deuterated aldehyde **7af**

¹H NMR of deuterated aldehyde **7ag**

 ^2H NMR of deuterated aldehyde 7ag

¹³C NMR of deuterated aldehyde **7ag**

^1H NMR of deuterated aldehyde 7ah

²H NMR of deuterated aldehyde **7ah**

-9.82

¹³C NMR of deuterated aldehyde **7ah**

¹H NMR of deuterated aldehyde **7ai**

²H NMR of deuterated aldehyde **7ai**

--9.84

¹³C NMR of deuterated aldehyde 7ai

¹H NMR of deuterated aldehyde **7aj**

²H NMR of deuterated aldehyde **7aj**

-10.15

¹³C NMR of deuterated aldehyde 7aj

^1H NMR of deuterated aldehyde 7ak

 ^2H NMR of deuterated aldehyde 7ak

-9.82

^{13}C NMR of deuterated aldehyde 7ak

¹H NMR of deuterated aldehyde **7al**

²H NMR of deuterated aldehyde **7al**

--9.86

¹³C NMR of deuterated aldehyde **7al**

¹H NMR of deuterated aldehyde **7am**

²H NMR of deuterated aldehyde **7am**

-10.30

¹³C NMR of deuterated aldehyde **7am**

¹H NMR of deuterated aldehyde **7an**

²H NMR of deuterated aldehyde **7an**

-10.70

¹³C NMR of deuterated aldehyde **7an**

¹H NMR of deuterated aldehyde 7ao

²H NMR of deuterated aldehyde 7ao

¹³C NMR of deuterated aldehyde 7ao

$^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7ap}$

²H NMR of deuterated aldehyde **7ap**

--9.94

¹³C NMR of deuterated aldehyde **7ap**

¹H NMR of deuterated aldehyde **7aq**

 $^2\mathrm{H}$ NMR of deuterated aldehyde $7\mathrm{aq}$

--9.78

¹³C NMR of deuterated aldehyde **7aq**

¹H NMR of deuterated aldehyde **7ar**

²H NMR of deuterated aldehyde **7ar**

-9.53

¹³C NMR of deuterated aldehyde **7ar**

¹H NMR of deuterated aldehyde **7as**

²H NMR of deuterated aldehyde **7as**

-10.42

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)
¹³C NMR of deuterated aldehyde **7as**

¹H NMR of deuterated aldehyde **7at**

²H NMR of deuterated aldehyde **7at**

¹³C NMR of deuterated aldehyde **7at**

¹H NMR of deuterated aldehyde 7au

²H NMR of deuterated aldehyde **7au**

¹³C NMR of deuterated aldehyde **7au**

¹H NMR of deuterated aldehyde 7av

²H NMR of deuterated aldehyde **7av**

¹³C NMR of deuterated aldehyde **7av**

¹H NMR of deuterated aldehyde **7aw**

 ^2H NMR of deuterated aldehyde 7aw

¹³C NMR of deuterated aldehyde **7aw**

 ^1H NMR of deuterated aldehyde 7ax

 ^2H NMR of deuterated aldehyde 7ax

¹³C NMR of deuterated aldehyde **7ax**

^1H NMR of deuterated aldehyde 7ay

 ^2H NMR of deuterated aldehyde 7ay

¹³C NMR of deuterated aldehyde **7ay**

^1H NMR of deuterated aldehyde 7az

 ^2H NMR of deuterated aldehyde 7az

¹³C NMR of deuterated aldehyde **7az**

¹H NMR of deuterated aldehyde **7ba**

²H NMR of deuterated aldehyde **7ba**

¹³C NMR of deuterated aldehyde **7ba**

$^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7bb}$

²H NMR of deuterated aldehyde **7bb**

¹³C NMR of deuterated aldehyde **7bb**

¹H NMR of deuterated aldehyde **7bc**

²H NMR of deuterated aldehyde **7bc**

¹³C NMR of deuterated aldehyde **7bc**

 $^1\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7bd}$

²H NMR of deuterated aldehyde **7bd**

-9.49

¹³C NMR of deuterated aldehyde **7bd**

¹H NMR of aldehyde **6be**

¹H NMR of deuterated aldehyde **7be**

²H NMR of deuterated aldehyde **7be**

 1 H NMR of aldehyde **6bf**

¹H NMR of deuterated aldehyde **7bf**

 $^2\mathrm{H}$ NMR of deuterated aldehyde $\mathbf{7bf}$

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

¹³C NMR of aldehyde **6bf**

¹³C NMR of deuterated aldehyde **7bf**

¹H NMR of aldehyde **6bg**

¹H NMR of deuterated aldehyde **7bg**

²H NMR of deuterated aldehyde **7bg**

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ff (ppm)

¹³C NMR of aldehyde **6bg**

 $^{13}\mathrm{C}$ NMR of deuterated aldehyde $7\mathrm{bg}$

¹H NMR of 3-formyl rifamycin **6bh**

¹H NMR of deuterated 3-formyl rifamycin **7bh**

 $^2\mathrm{H}$ NMR of deuterated aldehyde 7bh

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f1 (ppm)																									
	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0 f1 (ppm	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

¹³C NMR of 3-formyl rifamycin **6bh**

¹³C NMR of deuterated 3-formyl rifamycin **7bh**

LRMS of 3-formyl rifamycin **6bh** and deuterated 3-formyl rifamycin **7bh**

6bh: m/z caled for C₃₈H₄₆NNa₂O₁₃ [(M-H+2Na)⁺]: 770.3, Found:770.4

7bh: m/z caled for $C_{38}H_{45}DNNa_2O_{13}$ [(M-H+2Na)⁺]: 771.3, Found:771.4

¹H NMR of aldehyde **6bi**

¹H NMR of deuterated aldehyde **7bi**

²H NMR of deuterated aldehyde **7bi**

¹³C NMR of deuterated aldehyde **7bi**

¹H NMR of deuterated aldehyde **10a**

²H NMR of deuterated aldehyde 10a

¹³C NMR of deuterated aldehyde **10a**

¹H NMR of deuterated aldehyde **10b**

²H NMR of deuterated aldehyde **10b**

¹³C NMR of deuterated aldehyde **10b**

1 H NMR of deuterated aldehyde **10c**

²H NMR of deuterated aldehyde **10c**

-9.75

¹³C NMR of deuterated aldehyde **10c**

1 H NMR of deuterated aldehyde **10d**

 ^{2}H NMR of deuterated aldehyde **10d**

¹³C NMR of deuterated aldehyde **10d**

¹H NMR of deuterated aldehyde **10e**

²H NMR of deuterated aldehyde **10e**

¹³C NMR of deuterated aldehyde **10e**

¹H NMR of deuterated aldehyde **10f**

 $^2\mathrm{H}$ NMR of deuterated aldehyde 10f

¹³C NMR of deuterated aldehyde **10f**

¹H NMR of deuterated aldehyde **10g**

 ^2H NMR of deuterated aldehyde 10g

--9.55

¹³C NMR of deuterated aldehyde **10g**

¹H NMR of deuterated aldehyde **10h**

²H NMR of deuterated aldehyde **10h**

-9.67

¹³C NMR of deuterated aldehyde **10h**

¹H NMR of deuterated aldehyde **10i**

²H NMR of deuterated aldehyde 10i

-9.57

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ft (ppm)

¹³C NMR of deuterated aldehyde **10i**

¹H NMR of deuterated aldehyde 10j

²H NMR of deuterated aldehyde **10j**

-9.69

¹³C NMR of deuterated aldehyde **10j**

 ^1H NMR of deuterated aldehyde 10k

 ^2H NMR of deuterated aldehyde 10K

--9.48

¹³C NMR of deuterated aldehyde **10k**

¹H NMR of deuterated aldehyde **10**l

²H NMR of deuterated aldehyde 10l

-9.52

¹³C NMR of deuterated aldehyde **10**

¹H NMR of deuterated aldehyde **10m**

²H NMR of deuterated aldehyde **10m**

--9.57

¹³C NMR of deuterated aldehyde **10m**

¹H NMR of deuterated aldehyde **10n**

²H NMR of deuterated aldehyde **10n**

-9.65

¹³C NMR of deuterated aldehyde **10n**

¹H NMR of deuterated aldehyde **100**

²H NMR of deuterated aldehyde **100**

--9.67

¹³C NMR of deuterated aldehyde **100**

¹H NMR of deuterated aldehyde **10p**

²H NMR of deuterated aldehyde **10p**

--9.42

¹³C NMR of deuterated aldehyde **10p**

¹H NMR of deuterated aldehyde 10q

²H NMR of deuterated aldehyde **10**q

--9.41

¹³C NMR of deuterated aldehyde **10**q

¹H NMR of deuterated aldehyde **10r**

²H NMR of deuterated aldehyde **10r**

--9.65

¹³C NMR of deuterated aldehyde **10r**

¹H NMR of deuterated aldehyde **10s**

²H NMR of deuterated aldehyde **10s**

--9.62

¹³C NMR of deuterated aldehyde **10s**

¹H NMR of deuterated aldehyde **10t**

²H NMR of deuterated aldehyde **10t**

-9.60

¹³C NMR of deuterated aldehyde **10t**

¹H NMR of aldehyde **11a**

¹H NMR of deuterated aldehyde **12a**

²H NMR of deuterated aldehyde **12a**

¹³C NMR of deuterated aldehyde **12a**

¹H NMR of aldehyde **11b**

¹H NMR of deuterated aldehyde **12b**

²H NMR of deuterated aldehyde **12b**

 ^{13}C NMR of deuterated aldehyde 12b

8,8,28	34 98	F 0 N	ည႕ စဝအ
222	8 8 8 9	7.6	8.0 5.0
200	1 55	22	444 00

¹H NMR of aldehyde **11c**

 $^1\mathrm{H}$ NMR of deuterated aldehyde 12c

 ^2H NMR of deuterated aldehyde 12c

¹³C NMR of deuterated aldehyde **12c**

¹H NMR of deuterated aldehyde **12d**

²H NMR of deuterated aldehyde **12d**

 ^{13}C NMR of deuterated aldehyde 12d

33 85 82	96 62 76 62	000	- 0 4	90
888	24.0	7.0 6.7	5.15	2.3
5 5 5	7 775		444	୍ର୍ମ

¹H NMR of aldehyde **11e**

¹H NMR of deuterated aldehyde 12e

²H NMR of deuterated aldehyde **12e**

¹³C NMR of deuterated aldehyde **12e**

31 83	382458283	405	8	4	6 0
888	2 2 2 2 2 3 3 3 2 3 3 2 3 3 3 3 3 3 3 3	7.4	3.3	2.6	7.6
222		~~~~	4	Ϋ́	5

¹H NMR of aldehyde **11f**

 ^1H NMR of deuterated aldehyde 12f

²H NMR of deuterated aldehyde **12f**

¹³C NMR of deuterated aldehyde **12f**

201.86 -201.59 -201.34	-156.41 -150.77	-105.82 -104.81	77.40 77.08 76.76	49.05 48.72 48.55	<pre>27.86 27.81 19.01 13.46 13.46</pre>
------------------------------	--------------------	--------------------	-------------------------	-------------------------	--

¹H NMR of aldehyde **11g**

 1 H NMR of deuterated aldehyde **12g**

 2 H NMR of deuterated aldehyde **12g**

 ^{13}C NMR of deuterated aldehyde 12g

8 8 3	3 2 4	с 2000004
ré ni ni	0 O M	- 000000
888	NN 9	0 - 0 0 V - 4
0 0 0 0	<u> </u>	4 000007
\rightarrow	\sim	

 1 H NMR of aldehyde **11h**

¹H NMR of deuterated aldehyde **12h**

²H NMR of deuterated aldehyde **12h**

¹³C NMR of deuterated aldehyde **12h**

¹H NMR of aldehyde **11i**

¹H NMR of deuterated aldehyde **12i**

²H NMR of deuterated aldehyde **12i**

¹³C NMR of deuterated aldehyde **12i**

202.38	132.20	77.36 77.04 76.73	43.61 29.19 29.14 21.62 21.56 21.56 21.56 21.56 21.56 21.56 21.56 21.56
00	<u>5</u> 5		400000000
\sim	\ /	<u> </u>	

¹H NMR of aldehyde **11j**

¹H NMR of deuterated aldehyde 12j

 ^2H NMR of deuterated aldehyde 12j

¹³C NMR of deuterated aldehyde **12j**

 ^2H NMR of deuterated aldehyde 12k

 ^{13}C NMR of deuterated aldehyde 12k

¹H NMR of aldehyde **111**

¹H NMR of deuterated aldehyde **12l**

²H NMR of deuterated aldehyde **12l**

¹³C NMR of deuterated aldehyde **12l**

¹H NMR of aldehyde **11m**

¹H NMR of deuterated aldehyde **12m**

²H NMR of deuterated aldehyde **12m**

¹³C NMR of deuterated aldehyde **12m**

8 6 6 8 8	8 8 8 8 8	21 - 1 08	1300N	o г
4 4 4 6 8	ක් ක් හ් හ් හ්	4.1.8	0.0.0.0.0	~~~~
ក្តតុតុតុត្តត		<u> </u>	44400	- 2 2
			\rightarrow \rightarrow	\sim

¹H NMR of aldehyde **11n**

¹H NMR of deuterated aldehyde **12n**

²H NMR of deuterated aldehyde **12n**

¹³C NMR of deuterated aldehyde **12n**

¹H NMR of aldehyde **110**

¹H NMR of deuterated aldehyde **120**

²H NMR of deuterated aldehyde **120**

¹H NMR of aldehyde **11p**

¹H NMR of deuterated aldehyde 12p

²H NMR of deuterated aldehyde 12p

¹³C NMR of deuterated aldehyde **12p**

¹H NMR of aldehyde **11**q

 1 H NMR of deuterated aldehyde **12**q

²H NMR of deuterated aldehyde **12q**

 ^{13}C NMR of deuterated aldehyde 12q

1 H NMR of aldehyde **11**r

¹H NMR of deuterated aldehyde **12r**

²H NMR of deuterated aldehyde **12r**

¹³C NMR of deuterated aldehyde **12r**

¹H NMR of aldehyde **11s**

¹H NMR of deuterated aldehyde 12s

 2 H NMR of deuterated aldehyde 12s

¹³C NMR of deuterated aldehyde **12s**

¹H NMR of aldehyde **11t**

 1 H NMR of deuterated aldehyde **12t**

 2 H NMR of deuterated aldehyde 12t

¹³C NMR of aldehyde **11t**

 ^{13}C NMR of deuterated aldehyde 12t

28,28	5.26 5.33 5.93 5.93 5.08 5.93 5.08 5.94 5.94 5.94 5.94 5.95 5.94 5.95 5.95	45 91 89 89 89	085430
222	11081126	77.77.76.	2.22.5
			71215

¹H NMR of ribofuranose **11u**

¹H NMR of deuterated ribofuranose **12u**

 $^2\mathrm{H}$ NMR of deuterated aldehyde 12u

¹³C NMR of ribofuranose **11u**

¹³C NMR of deuterated ribofuranose **12u**

¹H NMR of glucopyranose **11v**

¹H NMR of deuterated glucopyranose **12v**

 ^2H NMR of deuterated aldehyde 12v

¹³C NMR of glucopyranose **11v**

¹³C NMR of deuterated glucopyranose **12v**

¹H NMR of midecamycin **11w**

¹H NMR of deuterated midecamycin **12w**

 ^2H NMR of deuterated aldehyde 12w

¹³C NMR of midecamycin **11w**

¹³C NMR of deuterated midecamycin **12w**

HRMS (ESI) of midecamycin 11w:

HRMS (ESI) of deuterated midecamycin 12w:

¹H NMR of **14**

¹³C NMR of **14**

¹³C NMR of **5ah**

¹³C NMR of **5p**

¹H NMR of **15a**

¹³C NMR of **15a**

¹H NMR of **15b**

280

¹H NMR of **15e**

¹³C NMR of **15e**

¹H NMR of 15x

¹H NMR of **15an**

¹³C NMR of **15an**

¹H NMR of **15aq**

¹³C NMR of **15aq**

¹H NMR of deuterated Nitrendipine

¹³C NMR of deuterated Nitrendipine

<167.65 <167.15	∫149.75 ∫145.23 √144.95 √134.39 √121.39		77.39 76.76	60.05	-51.18 39.66 39.46 39.27	{19.58 {19.53 `14.26
--------------------	---	--	----------------	-------	-----------------------------------	----------------------------

¹H NMR of deuterated Salbutamol

¹³C NMR of deuterated Salbutamol

¹H NMR of deuterated Cloperastine

¹H NMR of deuterated Tadalafil

¹³C NMR of deuterated Tadalafil

¹H NMR of deuterated Diltiazem

¹³C NMR of deuterated Diltiazem

