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ABSTRACT

This supplementary document includes supplementary notes, algorithms, figures, and tables that support the manuscript “A
deep learning framework for high-throughput mechanism-driven phenotype compound screening”.
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Supplementary Notes

Data processing
L1000 data processing for de novo chemical and imputation settings In this section, we present the method of construct-
ing training, development, and testing sets from Bayesian-based peak deconvolution L1000 dataset which has been shown to
generate more robust z-score profiles from L1000 assay data, and therefore, gives better representation for perturbagens. To
achieve that, they propose a peak deconvolution algorithm based on Bayes’ theorem that gives unbiased likelihood estimations
for peak locations and they characterize the peaks with probability-based z-scores.

Bayesian-based peak deconvolution L1000 dataset consists of three levels of the data (corresponding to level 2, 4, and 5 of
the original L1000 dataset): level 2 data presents the marginal distributions of peak locations computed from Bayesian-based
method, level 4 data presents the z-score of each gene for each bio-replicates by comparing the probability distribution for
each gene with its background distribution, and level 5 data combines z-score profiles from bio-replicates into one signature
by weighted average. In our study, we conduct experiments on level 5 data and use level 4 data for filtering out unreliable
experiments in level 5 data. In particular, average Pearson correlation (APC) score for each experiment in level 5 data is
calculated from Pearson correlation scores among its bio-replicates’ gene expression profiles in level 4 data and experiments
that have APC scores less than a threshold are considered as unreliable experiments and filtered out. In our setting, this
threshold is set at 0.7. The APC score density function and cumulative distribution of L1000 data are shown in Supplementary
Figure 1. Level 4 data is also used in our data augmentation method described in the following sections. From this filtered
dataset, we select the gene signatures measured after 24h of the 7 most popular cell lines (MCF7, A375, HT29, PC3, HA1E,
YAPC, HELA) and 6 most popular dose sizes (0.04 µm, 0.12 µm, 0.37 µm, 1.11 µm, 3.33 µm, 10.0 µm) to create the dataset
used in our experiments. We split this dataset into training, development, and testing sets w.r.t. chemical by the ratio 0.6 :
0.2 : 0.2 respectively. This training set is called high-quality training set. We also create the training set without removing
unreliable experiments and call it as original training set. The statistics of these training, development, and testing sets are
shown in Supplementary Table 2.

Besides constructing training, development, and testing sets for de novo chemical setting, we also generate these set for
traditional imputation setting from high-quality dataset. In particular, new training, development, and testing sets are constructed
from high-quality dataset with the same ratio as de novo chemical setting, but at this time, we split this dataset by experiment
instead of chemical. Therefore, chemicals in the testing set can appear in the training set. The statistics of the training,
development, and testing sets for traditional imputation setting are shown in Supplementary Table 3

Data processing for ATC code and drug-target prediction We extract gene expression profiles of chemicals that do not
have reliable experiments in L1000 dataset (i.e. 1258 chemicals) and call them a original feature set. We only extract gene
expression profiles induced by chemicals with dose size of 10 um because gene expression profiles induced by the larger
amount of chemicals can differentiate chemicals better than them induced by the smaller amount of chemicals. Note that, each
chemical compound is experimented on 7 cell lines so it is represented by 7 gene expression profiles. Similarly, we use DeepCE
trained on the high-quality training set to generate gene expression profiles for these chemicals and call them a predicted feature
set. Next, we extract the ATC codes and drug-targets of these chemicals from Drugbank database to create labels for these
chemicals. We also filter out labels that have low frequencies in the dataset (i.e. < 3% of the number of chemicals) to avoid
unreliable evaluation. After that, 10 ATC codes ((i.e. N, C, A, J, S, L, D, R, G, M) and 4 drug-targets (HRH1, DRD2, HTR2A,
ADRA1A) are selected to construct 14 binary classification datasets. The details of these datasets are shown in Supplementary
Table 7.

Feature engineering
Our models predict gene expression values based on tuples of chemical and biological objects including chemical compounds,

cell lines, dose sizes, and L1000 genes. In the following paragraphs, we present the way to transform these chemical and
biological objects into numerical representations that can be put into our models.

Chemical fingerprints The canonical SMILES strings which are the raw representation of chemicals are transformed to
the chemical fingerprints using the open-source cheminformatics software RCDK1 (i.e. get.fingerprint() function). chemical
fingerprints are binary (bit) vectors that represent the presence or absence of particular substructures in chemicals. In our
settings, we experiment with PubChem and circular (ECFP6) fingerprints which have lengths (i.e. number of substructures) of
881 and 1024 respectively. We also use neural fingerprints which are continuous vectors to represent chemicals. The neural
fingerprints are described in detail later.

Drug-target features Besides using molecule structure information, bioactivity information of chemicals (i.e. drug-target
interaction knowledge) can be used to represent chemicals. In particular, vector representations for chemicals are calculated
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from drug-target interaction and human protein-protein interaction networks extracted from Drugbank and STRING databases
respectively. To increase the quality of generated vectors, all edges (interactions) in the human protein-protein interaction
network have their combined scores of less than 700 are removed. If chemical compound interacts with L1000 genes (i.e.
L1000 genes are 1-hop neighborhoods of chemical compound in the interaction network), values at indexes corresponding
to these genes are set at 1.0. If L1000 genes interact with targets of chemicals (i.e. L1000 genes are 2-hop neighborhoods
of chemical compound in interaction network), their values are set at 0.1. Similarly, the values of L1000 genes which are
3-hop neighborhoods of chemical compound are set at 0.01. The values of remaining L1000 genes are set at 0. The generated
vectors are normalized to have Euclidean norm to be 1. The length of these vectors is 978 which is equal to the number of
L1000 genes. Besides our proposed drug-target interaction-based representation, we also experiment with another chemical
representation using drug-target interaction information named latent target interaction profile (LTIP) which has been shown
to be an effective representation for chemical compound in many bioactivity prediction tasks, especially for the setting that
the biological information is important for prediction2. In particular, LTIP maps chemicals into low dimensional continuous
vectors which are embeddings of nodes in the drug-target interaction network (i.e. bipartite graph where drugs and targets are
nodes, and their interactions are edges).

Gene features Vector representations for L1000 genes are generated from the human protein-protein interaction network
extracted from STRING database using node2vec method3. The length of these vectors is set at 128.

Cell line and chemical dose size features We represent cell lines and chemical dose sizes using one-hot encoding. The
lengths of these vectors are 7 and 6 corresponding to the numbers of cell lines and chemical dose sizes used in our experiments
respectively.

Metrics
Root mean squared error Root mean squared error (RMSE) captures the differences between the ground-truth and predicted
z-scores for all L1000 genes. This score is defined as the square root of the mean square error and is computed as follows:

RMSE =

√√√√ 1
NM

N

∑
i=1

M

∑
j=1

(zi, j− yi, j)2

where N and M are the number of gene expression profiles in a batch and number of L1000 genes respectively. zi, j and yi, j are
ground-truth and predicted gene expression values of jth gene in ith gene expression profile. The lower value of RMSE shows
the better performance.

Gene set enrichment analysis While Pearson correlation and RMSE captures the variations among all L1000 genes, gene
set enrichment analysis (GSEA)4, 5 only focuses on the most significant up and down regulated genes. In particular, GSEA,
which is often used in the biological science literature, is calculated based on the enrichment score that represents the amount to
which the genes in the set are over-represented at either the top (up-regulated) or bottom (down-regulated) of the ranked gene
list. The higher GSEA score shows the better performance.

Precision@k Similar to GSEA, Precision@k (P@k), which is commonly used information retrieval field, only focuses on
top-k significant p and down regulated genes. In particular, P@k is a fraction of intersection of top-k up or down-regulated
genes between predicted and ground-truth genes to the ground-truth genes. By definition, there are 2 kinds of P@k scores that
measure the most significant positive and negative genes. For example, positive P@100 measures the overlap between top 100
positive genes (i.e. genes that have their z-scores in top 100 positive z-scores) in ground-truth and predicted gene expressions
and is computed as follows:

Positive P@100 =
|A100−positive

ground−truth∩|A
100−positive
predicted |

||A100−positive
predicted |

where A100−positive
ground−truth and A100−positive

predicted are the sets of top 100 positive genes in ground-truth and predicted gene expression
respectively. Similarly, negative P@100 is computed as follows:

Negative P@100 =
|A100−negative

ground−truth∩|A
100−negative
predicted |

||A100−negative
predicted |

where A100−negative
ground−truth and A100−negative

predicted are the sets of top 100 negative genes in ground-truth and predicted gene expression
respectively.
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Implementation details
All neural network-based models including DeepCE, vanilla neural network, and linear models are implemented with Pytorch6.
The training process lasts at most 100 epochs for all training sets and all models. We use Adam optimizer7 with the learning
rate of 0.0005 and the batch size is set at 16. The development set is used for tuning hyperparameters and stopping the training
process. kNN model is implemented by Python 3 while we use authors’ implementation for TT-WOPT. Binary classification
models used in downstream task evaluation including logistic regression, support vector machine and kNN are implemented by
scikit-learn package8. All experiments are conducted on Intel Xeon E5-2680 v4 processor with 128 GB of RAM and Tesla
P100 with 16 GB of VRAM and are repeated three times with different random seeds.
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Supplementary Tables

Dataset Description Usage
LINCS L1000 This dataset includes differential gene expres-

sion signature induced by chemical compound.
Each example contains gene expression signa-
ture and its experiment setting (i.e. chemical
compound, cell line, and dosage)

This dataset is used to train and evaluate
DeepCE and other models for predicting differ-
ential gene expression signature from experi-
ment setting

STRING The protein-protein interaction network This dataset is used to compute vector represen-
tation for L1000 genes by network embedding
method (i.e. node2vec) and to compute drug-
target features for chemical compounds

DrugBank The online database contains information of
drugs and their targets

We extract drugs and their properties from
this dataset to create datasets for downstream
tasks including ATC code and drug-target pre-
dictions. We also generate gene expression
profiles for all drugs in DrugBank for virtual
screening for finding COVID-19 treatment

COVID-19 Patient
Gene Expression
(NGDC, NCBI)

The transcriptomics data of COVID-19 patients
and healthy control samples

We compute differential gene expression pro-
files for COVID-19 patients from both patient
and healthy samples in this dataset. This pro-
file is then used to compared with chemical-
induced gene expression profiles for finding
COVID-19 treatment

Supplementary Table 1. The summary of datasets used in our study.

#chemicals Cell lines (#gene expression profile) Chemical doses (#gene expression profile)
A375 HA1E HELA HT29 MCF7 PC3 YAPC 0.04 um 0.12 um 0.37 um 1.11 um 3.33 um 10.00 um

Train (Original) 1553 9225 9233 8443 9243 9240 9247 8440 10587 10504 10526 10512 10502 10440
Train (High-quality) 284 397 296 209 287 250 279 177 136 175 227 322 402 633
Train (Augmented) 626 707 953 399 552 519 514 321 327 414 497 639 817 1271
Dev 92 120 81 50 89 77 69 58 40 57 72 93 89 193
Test 92 121 69 39 82 61 72 52 33 48 57 83 91 184

Supplementary Table 2. Statistics of (original/high-quality/augments) training, development, and testing sets generated
from Bayesian-based peak deconvolution L1000 dataset for de novo chemical setting.

#chemicals Cell lines (#gene expression profile) Chemical doses (#gene expression profile)
A375 HA1E HELA HT29 MCF7 PC3 YAPC 0.04 um 0.12 um 0.37 um 1.11 um 3.33 um 10.00 um

Train 394 396 258 177 288 229 251 162 133 169 235 292 332 600
Dev 268 132 89 54 90 76 82 64 44 51 61 99 129 203
Test 257 110 99 67 80 83 87 61 32 60 60 107 121 207

Supplementary Table 3. Statistics of training, development, and testing sets generated from Bayesian-based peak
deconvolution L1000 dataset for traditional imputation setting.
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Hyperparameter Value

Training

Batch size 16
Learning rate 0.0002
Optimizer Adam
Maximum number of epochs 100
Loss function MSE
Initializer Xavier Uniform

Feature mapping

Atom feature size 62
Bond feature size 6
Convolution size 16
Number of convolutional layers 2
Neural fingerprint size 128
Chemical dose feature size 6
Cell line feature size 7
L1000 gene feature size 128
Chemical dose hidden size 4
Cell line hidden size 4
L1000 gene hidden size 128

Interaction component

Number of attention heads 4
Number of attention layers 2
Attention hidden size 512
Batch normalization yes
Dropout 0.1

Prediction component
Number of feed-forward layers 2
Feed-forward layer sizes 128, 978
Activation function ReLU

Supplementary Table 4. Hyperparameter used in DeepCE model.
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Models PubChem ECFP Drug-target LTIP Random
Vanilla neural network 0.4086 ± 0.0306 0.4138 ± 0.0227 0.4275 ± 0.0280 0.4311 ± 0.0321 0.3187 ± 0.0245
kNN 0.3988 ± 0.0177 0.4009 ± 0.0187 0.3975 ± 0.0188 0.3896 ± 0.0140 -
Linear regression 0.1757 ± 0.0099 0.1758 ± 0.0100 0.1758 ± 0.0100 0.1759 ± 0.1101 -
Lasso 0.1755 ± 0.0100 0.1756 ± 0.0101 0.1756 ± 0.0100 0.1757 ± 0.0101 -
Ridge regression 0.1757 ± 0.0099 0.1758 ± 0.0100 0.1758 ± 0.0100 0.1759 ± 0.0101 -

(a)
Models Performances
TT-WOPT 0.0075 ± 0.0106
DeepCE w/o interaction component 0.4424 ± 0.0213
DeepCE w/o chemical substructure-gene attention 0.4601 ± 0.0345
DeepCE w/o gene-gene attention 0.4617 ± 0.0259
DeepCE 0.4869 ± 0.0130

(b)

Supplementary Table 5. Performances (Pearson correlation) under 5-fold cross-validation setting of DeepCE and other
baseline models. (a) shows performances of vanilla neural network, kNN, and linear models with different chemical features.
(b) shows performances of TT-WOPT, and DeepCE and its simpler versions.

Setting Performance
DeepCE 0.4907
DeepCE w/o cell line feature 0.3723
DeepCE w/o dose size feature 0.4453
DeepCE w/o cell line and dose size features 0.3567

Supplementary Table 6. Performances (Pearson correlation) on testing set of DeepCE when removing cell line and dose
size information.
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ATC code Frequency ATC code Frequency
N 143 L 57
C 124 D 54
A 84 R 53
J 80 G 48
S 62 M 43

(a)

Drug-target Frequency
HRH1 47
DRD2 45
HTR2A 42
ADRA1A 40

(b)

Supplementary Table 7. Data statistics for downstream task evaluation. (a) shows frequencies of ATC codes across all
low-quality drugs. (b) shows frequencies of drug-targets across all low-quality drugs.

Original feature Predicted feature
A375 0.5712 0.6292
HA1E 0.5441 0.6173
HELA 0.5527 0.6262
HT29 0.5522 0.6182
MCF7 0.5518 0.6203
PC3 0.5586 0.6206
YAPC 0.5805 0.6191

(a)

Original feature Predicted feature
N 0.5534 0.6511
C 0.5260 0.6077
A 0.5047 0.5312
J 0.5199 0.7116
S 0.5678 0.6385
L 0.5153 0.5219
D 0.5923 0.5806
R 0.4969 0.5955
G 0.5436 0.5698
M 0.5436 0.5890

(b)
Original feature Predicted feature

HRH1 0.6015 0.7746
DRD2 0.6219 0.5792
HTR2A 0.6538 0.7115
ADRA1A 0.5813 0.6399

(c)

Original feature Predicted feature
LR 0.5958 0.6809
kNN 0.5471 0.6110
SVM 0.5850 0.6655
DT 0.5070 0.5288

(d)

Supplementary Table 8. AUC of experiments with original and predicted gene expression profiles. (a) shows results per
cell-specific profile, across experiments for different classification tasks and models. (b) shows results per ATC code, across
experiments for different cell-specific profiles and models. (c) shows results per drug-target, across experiments for different
cell-specific profiles and models. (d) shows results per model, across experiments for different cell-specific profiles and
classification tasks.
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Supplementary Algorithms

Algorithm 1: Pseudo-code of GCN

Input: Chemical graph = (V,E), radius R, hidden weights (H1
1 , ...,H

5
R),(U1, ...,Ul),(W1, ...,Wl)

Output: v(1)R , ...,v(|V |)R
for l = 1 to R do

for i = 1 to —V— do
Vneighbor,Eneighbor← Neighbors(v(i));
v(i)l ← ∑v( j)∈Vneighbor

v( j)
l−1;

e(i)l ← ∑e( j)∈Eneighbor
e( j)

0 ;

v(i)l ← concat(v(i)l ,e(i)l );

v(i)l ← ReLU(v(i)l−1Ul +(v(i)l Wl);

v(i)l ← so f tmax(v(i)l H|Vneighbor |
l )

end
end

Algorithm 2: Pseudo-code of data augmentation method

Input: High-quality training set DLV 5
high, level 4 low-quality training set DLV 4

low , model F(Θ), threshold t
Output: Augmented training set Daugment
Daugment ← DLV 5

high;
F(Θtrain)← train F(Θ) on DLV 5

high;
Dpredict ← predicted gene expression profiles for unreliable experiments by F(Θtrain);
for each profile d in Dpredict do

Dbio ← set of bio-replicate profiles corresponding to d in DLV 4
low ;

S← set of similarity scores of Dbio and d;
dmax ← argmaxd∈Dbio sd ∈ S;
if dmax ≥ t then

Daugment ← Daugment ∪dmax
end

end
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Supplementary Figures
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Supplementary Figure 1. Statistics of Bayesian-based peak deconvolution L1000 dataset (Experiments that have APC
score < 0.7 are considered as unreliable experiments). (a) shows the density function of APC score for level 5 data. (b) shows
the cumulative distribution of APC score for level 5 data. (c) shows the experiment statistics per cell line (time = 24h and dose
size = 10 um).
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Results of DeepCE on the testing test per cell line, dose size, and L1000 gene
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Supplementary Figure 2. Performance (Pearson correlation) of DeepCE model on the testing set per cell line and chemical
dose size. (a) shows performance of DeepCE model per cell line. (b) shows performance of DeepCE model per chemical dose
size
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Supplementary Figure 3. Performance (RMSE) of DeepCE over L1000 genes on the testing set. Note: We sort L1000
genes by their standard deviation on the testing set and divide them into 4 groups: Q1 (genes that have their standard deviation
scores < the first quartile in the sorted list), Q2 (genes that have their standard deviation scores from the first quartile to the
second quartile in the sorted list), Q3 (genes that have their standard deviation scores from the second quartile to the third
quartile in the sorted list), and Q4 (genes that have their standard deviation scores > the third quartile in the sorted list). (a)
shows the density function of prediction performance of DeepCE (RMSE) over L1000 genes on the testing set. (b) shows the
density function of standard deviation of z-scores over L1000 genes on the testing set. (c) shows the average performance
(RMSE) of DeepCE for each L1000 gene group. DeepCE achieves better performances on groups of genes that have lower
standard deviation scores.
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