

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Factors affecting anaemia among women of reproductive age in Nepal: a multilevel and spatial analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041982
Article Type:	Original research
Date Submitted by the Author:	23-Jun-2020
Complete List of Authors:	Sunuwar, Dev Ram; Nepal Armed Police Force, Department of Nutrition and Dietetics Singh, Devendra Raj; Asian College for Advance Studies, Department Public Health Adhikari, Bipin; Nepal Community Health and Development Centre, Shrestha, Santosh ; Agricultural Technology Center, Lalitpur, Nepal, Research Pradhan, Pranil; Institute of Medicine, Tribhuvan University, Department of Community Medicine and Public Health
Keywords:	PUBLIC HEALTH, Anaemia < HAEMATOLOGY, NUTRITION & DIETETICS, Maternal medicine < OBSTETRICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Factors affecting anaemia among women of reproductive age in Nepal: a multilevel and spatial analysis

3 Dev Ram Sunuwar^{1*}, Devendra Raj Singh², Bipin Adhikari³, Santosh Shrestha⁴, Pranil Man
4 Singh Pradhan⁵

- ⁵ ¹Department of Nutrition and Dietetics, Nepal Armed Police Force, Kathmandu, Nepal
- ⁶ ²Department of Public Health, Asian College for Advance Studies, Purbanchal University,
- 7 Lalitpur, Nepal
- ⁸ ³Nepal Community Health and Development Center, Kathmandu, Nepal
- 9 ⁴Agricultural Technology Center, Lalitpur, Nepal
- 10 ⁵Department of Community Medicine, Maharajgunj Medical Campus, Institute of Medicine,

ê. R

- 11 Tribhuvan University, Kathmandu, Nepal
- 12 Corresponding author
 - 13 <u>*devramsunuwar@gmail.com</u>
- - 15 Word count: Abstract: 286; Main text: 4260; References: 68

16 ABSTRACT

Objective: The main objective of this study was to explore the factors affecting anemia among
women of reproductive age (WRA) in Nepal using spatial and multilevel epidemiological
analysis.

- **Design:** This cross-sectional study analyzed the data from the 2016 Nepal demographic and
- 21 health survey (NDHS 2016). The spatial analysis was performed using ArcGIS software V.10.8
- to identify the hot and cold spots of anaemia among WRA (15 to 49 years). Data were analyzed
 - 23 using multilevel mixed-effect logistic regression analysis.

2					
3 4	24	4 Setting: Nepal			
5 6 7 8	25	Participants: A total of 6,414 WRA were included in the analysis.			
9 10 11	26	Main outcome measure: Anaemia defined by World Health Organization (WHO) as			
12 13	27	hemoglobin level less than 12g/dL in non-pregnant women and less than 11g/dL in pregnant			
14 15	28	women.			
16 17 18	29	Results: The spatial analysis showed that statistically significant hotspots of anaemia were in			
19 20 21	30	the southern Terai region (4 districts in Province-1, 8 districts in Province-2, 1 district in			
22 23	31	Bagmati province, and 3 districts in Province-5) of Nepal. At the individual level, women with			
24 25	32	no education (aOR: 2.07 95% CI: 1.21-3.54), and from middle socio-economic class families			
26 27 28	33	(aOR: 1.66, 95% CI: 1.02-2.68) were more likely to be anemic, whereas, older women (\geq 35			
28 29 30	34	years) (aOR: 0.48, 95% CI: 0.26-0.91), and those women who were using hormonal			
31 32	35	contraceptives (aOR: 0.57, 95% CI: 0.39-0.84) were less likely to be anaemic. At the community			
33 34	36	level, women from Province-2 (aOR: 3.12, 95% CI: 1.58-6.14) had higher odds of being			
35 36 37	37	anaemic.			
38 39 40	38	Conclusion: WRA had higher odds of developing anemia and it varied by the geographical			
41 42	39	regions. High prevalence of anaemia were observed in the southern Terai. The multi-pronged			
43 44 45	40	approaches including nutritional, and non-nutritional anaemia prevention and control strategies			
46 47	41	can benefit by tailoring the programs to the high risk provinces and districts with high burden of			
48 49 50 51 52 53 54 55 56	42	anemia.			
57 58					

	Igths and limitations of this study Used comprehensive, nationally representative data with haemoglobin level.
,	
	The combined statistical methods including multilevel and spatial analysis were
	applied, which takes into account the role of geographical risk profile and determinants
	of anaemia among WRA in Nepal.
	Due to the cross-sectional design, it was difficult to determine the cause-and-effect
	relationships between the predictors and outcome variable (anaemia).
	Other potential confounding factors of anaemia such as nutrient intake, worm
	infestations, malaria and other non-modifiable risk factors were beyond the scope of
	this study.
\triangleright	This study could not distinguish the types of anaemia such as nutritional, genetic and
	infectious.
	4.
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

INTRODUCTION Anaemia remains a significant public health problem in developing countries despite advances in health science.[1] Approximately one-third of the population is affected by anaemia globally.[2,3] South Asian accounts for the largest burden of anaemia with estimated prevalence of 49% in 2016 among women of reproductive age (WRA).[4] The highest prevalence over the past 26 years was 55.2% in 1990.[4] Despite the implementation of a '1000 days nutrition program' among various other programs, targeted to a mother with newborn babies in South Asia, the reduction in anemia among pregnant women has not been significant.[5] To accelerate reduction of anaemia, the World Health Assembly has set a target of achieving a 50% reduction of anaemia among WRA by 2025 relative to 2010.[6] However, not a single South Asian country is on the way to achieve the 2025 targets.[7] Despite the historic efforts in preventing anaemia through the implementation of national nutrition programs and policies including iron-folic acid supplementation across the country, the prevalence of anaemia among WRA has been steadily increasing from 35% in 2011 to 41% in 2016.[8,9] These figures suggest that anaemia continues to be a severe public health problem in Nepal where the prevalence rate is $\geq 40\%$.[10] Anaemia in WRA is associated with multiple conditions and consequences such as preterm delivery,[11] miscarriage,[12] low birth weight,[13] child growth faltering, impairment of cognitive function, increased susceptibility to infection, and poverty. [14,15] It is also associated with increased risk of prenatal and maternal mortality.[13,16] Approximately 20% of maternal deaths are caused by anaemia and it is also considered as an additional risk factor for 50% of all

66 maternal deaths.[17,18]

Contributing factors and distribution of anaemia include a complex interplay of political,
ecological, social, and biological factors.[19] In Nepal, anaemia among WRA is associated with

various socio-ecological factors. In the southern Terai of Nepal, low community education status, gender based-inequality, poor health seeking behavior, [20–22] inadequate dietary intake during pregnancy. [23–25] lack of diversified diet. [9,24,26] high burden of hookworm infection and malaria, [27–29] and high amount of arsenic in potable water [30] were identified as factors contributing to anaemia. On the other hand, high prevalence of anaemia in the mountainous region were attributed to among others, food insecurity, and low dietary diversity, [9,24,31] poor health services, [22] illiteracy, and gender based-inequality. [20,21] To the best of our knowledge, this is the first study to explore the geographical regions with hotspots (high prevalence rate) and factors affecting anaemia among WRA using cluster

sampling of the nationally representative data of Nepal. Exploring spatial patterns and factors
affecting anaemia by geographical region is crucial to inform the planning for targeted anaemia
control and prevention programs.[32] The main objective of this study was to explore the spatial

81 distribution and contributing factors of anaemia among WRA in Nepal.

METHODS

Patient and public involvement

84 This study utilized a publicly available data set (NDHS); therefore, there was no patient85 involved.

86 Data source

This study was based on the data from Nepal Demographic and Health Survey (NDHS) 2016, a
nationally representative cross-sectional survey. This survey was carried out as part of the DHS
program by New ERA under the guidance of the Ministry of Health, Government of Nepal and
was supported by ICF international and United States Agency for International Development

BMJ Open

91 (USAID). The study population for this study was WRA from the Nepal Demographic and92 Health Survey 2016.

93 Sampling strategy

The NDHS 2016 utilized a stratified, two-stage cluster sampling design to provide representative estimates for seven provinces, three ecological zones, and urban and rural areas. The survey used enumeration areas (EAs) which is a primary sampling unit (PSU) and was selected from 383 wards in both rural (n=199) and urban (n=184) areas with probability proportional to size method. In the second stage, 30 households on average within EAs were selected using a systematic sampling technique. A more detailed methodology of the NDHS has been published elsewhere.[9] All WRA (pregnant and non-pregnant) with available data on anaemia, complete socio-demographic and nutritional characteristics who were resident or who had slept in the selected households on the night before the survey were eligible for the survey. The details of the sample size and exclusion criteria for the selection of the samples are presented in Figure 1.

104 Study variables

Outcome variables

Haemoglobin level was measured using capillary blood by a battery-operated portable HemoCue
rapid testing machine and was adjusted for altitude and smoking status.[9] According to the
WHO, for non-pregnant and pregnant women aged 15-49 years, any form of anaemia is defined
as haemoglobin concentration <12.0g/dL and 11g/dL respectively.[33] The categories of
anaemia were further dichotomized into 'anaemic' and 'not anaemic'.

Predictor's variables

Predictors of anaemia were selected based on the literature review.[14,34–36] The wide range of
 socio-demographic, individual, household and community factors were hypothesized to increase

the likelihood of anaemia. The predictors of anaemia including both individual-level and community-level factors were included in the analysis. The coding strategy of individual-level and community-level factors are presented in online supplementary Table 1. **Individual-level factors** A total of 11 individual-level factors were identified, and that included for example, respondent's age, education level, occupation, wealth index, nutritional status, pregnancy status, and minimum dietary diversity for WRA (MDD-W). The minimum Dietary Diversity for Women of Reproductive age (MDD-W) was calculated using the guideline of the modified FANTA III tool developed by the Food and Agriculture Organization (FAO) of the United Nations.[37] **Community-level factors** The six different factors were included in the community-level factors that included place of residence, province, community wealth, community female education, community safe water access, and community toilet facility. The selection of community-level factors were based on the group of women living in similar settings.[32] If more women have shared features such as place of residence, province, type of water source, and toilet facility; it was considered to have the same effect on anaemia among WRA.[32] For community level wealth and female education, we constructed the aggregate continuous community-level predictor-variables by aggregating individual-level characteristics at the community (cluster) level. We dichotomized the aggregate variables into "high" or "low" based on the distribution of the proportion values calculated for each community.[38] The mean value was used as a cut-off point of the proportion values for the categorization of community-level variables. The community wealth was categorized as 'high' if the proportion of women from richest (rich, richest) households in the community was above 21% and 'low' if the proportion was 0 to 21%. Community female education was defined as the

Page 9 of 44

1

2		
3 4	137	mean percentage of women in the community with at least primary education and above.[39]
5 6	138	Water supply and sanitation guidelines based on the WHO and UNICEF Joint Monitoring
7 8 9	139	Progamme (JMP) were used to define improved toilet facility and improved water source.[40]
10 11 12	140	Data analysis
13	141	Statistical analysis
14 15 16	142	Data were analyzed using Stata/MP version 14.1 (StataCorp LP, College Station, Texas). Data
17 18	143	were adjusted for enumeration areas (EAs) and disproportionate sampling and non-response.
19 20 21	144	Weighted frequencies, weighted percentage, mean and SD were used for the descriptive analysis.
21 22 23	145	The multilevel mixed-effect logistic regression analysis was performed to estimate the adjusted
24 25 26	146	odds ratio and to estimate the extent of random variations between communities.
20 27 28	147	Four models were created and were fitted. Model 1 (empty model) was fitted without predictor
29 30	148	variable to test random variability in the intercept and to estimate the intra-class correlation
31 32	149	(ICC).[41] Model 2 examined the effects of individual-level characteristics, model 3 examined
33 34 35	150	the effects of community-level variables, and model 4 examined the effects of both individual
36 37	151	and community-level characteristics simultaneously. In the multilevel mixed-effect logistic
38 39	152	regression models, the fixed effects estimated the association between the likelihood of anaemia
40 41 42	153	among WRA and the individual-level and community-level factors, and the findings are reported
42 43 44	154	in terms of adjusted odds ratio (aOR) with p-values <0.05 and 95% confidence intervals (CIs).
45 46	155	To prevent statistical bias in the multilevel logistic regression model, we examined and reported
47 48	156	multicollinearity among the predictor variables using variation inflation factors (VIF). In this
49 50 51	157	study, we used "10" as a cut-off value for the maximum level of VIF.[42] The random effects are
52 53	158	expressed as ICC,[41] and proportional change in variance (PCV).[43] The ICC was calculated
54 55 56	159	to evaluate the cluster variability; and PCV can measure the total variation due to factors at the
57 58		8
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

individual- and community- levels.[41] Models fit were assessed using Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). Considering the nested structure of
the survey data, a multilevel model is considered to be appropriate than ordinary single-level
regression model because it provides correct parameter estimates by handling the cluster
data.[44,45]

Spatial analysis

Spatial analysis were performed using ArcGIS software V.10.8, and base files of the administrative provinces and districts of Nepal were obtained from Government of Nepal, Ministry of Land Management, [46] and Natural Earth.[47] The global positioning system (GPS) data set for NDHS was obtained from the DHS website after receiving the approval letter. The prevalence of anaemia and standardized prevalence ratio were computed for both the districts and provinces in Stata/MP version 14.1 software and were later transferred to Excel spreadsheet. These data were imported into the ArcGIS software to link the reported anaemia prevalence for each cluster to the corresponding geographical location (survey cluster data). The spatial variations of the prevalence of anaemia among WRA by both districts and provinces were visualized. Similarly, the standardized prevalence ratio of anaemia among WRA (normalized to the national prevalence of 41%) for both districts and provinces were visualized. The spatial analysis was performed to explore the clustering of anaemia among WRA using the Getis-Ord G-statistic tool in ArcGIS software. The Getis-Ord G-statistics identifies statistically

significant spatial clusters of high values (hot spots) and low values (cold spots).[48] The

180 statistical significance of autocorrelation was determined by z-scores and p-value ≤ 0.05 with a

181 95% Confidence Intervals (CIs).[32,48] An autocorrelation can be categorized into positive and

182 negative using Getis-Ord G-statistics. For statistically significant positive autocorrelation, larger

Page 11 of 44

1

BMJ Open

2	
3	
4	
5	
6 7	
8 9	
10 11	
12	
13	
14	
12 13 14 15	
16	
17	
18	
19 20	
20 21	
21 22	
22 23	
25	
26	
27	
28	
29	
30 21	
31 32	
32 33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52 52	
53 54	
54 55	
55 56	
57	
58	
59	

60

z-score, meant more intense clustering of high values (hot spots) and for statistically significant 183 negative autocorrelation, smaller z-score meant more intense clustering of low values (cold spot) 184 which allowed us to identify the spatial variability of anaemia among WRA.[9] An anaemia hot 185 spot was defined as the occurrence of high prevalence rates of anaemia clustered together on the 186 map. Anaemia cold spot was referred to the occurrence of low prevalence rates of anaemia 187 188 clustered together on the map.[32,48] The spatial pattern and distribution of anaemia prevalence rates among WRA in Nepal are visualized on the map (Figure 2) 189

190

Ethical consideration

The DHS survey protocols were approved by the institutional review boards of ICF, the DHS 191 program, and the Nepal Health Research Council (NHRC). The details on ethical procedures 192 193 used in this survey have been published elsewhere.[9] We registered and requested for access to both main data and GPS data from the DHS website[49] and received an approval to access and 194 download the DHS data file. DHS program collected data following a written informed consent 195 from each individual. All individual identifiers were precluded from the final dataset in this 196 study. 197

RESULTS 198

Socio-demographic characteristics of study participants 199

In this study, a total of 6,414 WRA were included in the analysis (Table 1). The mean (±SD) age 200 of the study participants was 29 (± 9.7) years. More than one third (38.1%) of the participants 201 from age group 15-24 years, and women (35.5%) had attended secondary level of education. 202 Nearly one guarter (22.4%) of study participants were from richer wealth guintiles and more than 203 half (59.7%) of the women were not using any contraceptive methods, and a half (50.6%) of the 204 participants consumed more than five food types. High proportion of women (68.8%) belonged 205

3 4 206	to urban areas, and
5 6 207	had the highest per
7 8 208	the women belong
9 10 209 11	participants had in
12 13 210	(Table 1)
14 15 211	Prevalence of a
16 17 212	In the current stud
18 19 213 20	38.5-42.9%). At th
21 214 22 214	groups (43.5%), an
23 24 215	higher cases of ana
25 26 216 27	prevalence of anae
28 29 217	who consumed les
30 31 218	anaemia was highe
32 33 219 34	anaemia was found
35 220 36	(44.3%), and who
37 38 221	
39 40 222	Factors affection
41 223 42	The fixed effects (
43 44 224	anaemia among W
45 46 225 47	showed that there
48 49 226	communities ($\tau=0$.
50 51 227	variance for the ris
52 53 228 54	communities. In in
55 229 56	(aOR=2.23, 95% C
57 58	
59 60	For

1

to urban areas, and were from Bagmati province (21.9%). More than half (54.2%) of the women had the highest percentage of community female education, whilst, nearly two-thirds (64%) of the women belonged to a low percentage of community female wealth index. Majority of the participants had improved sources of drinking water (91%) and type of toilet facility (84.1%). (Table 1)

211 Prevalence of anaemia among women of reproductive age

In the current study, the overall prevalence of any anaemia across Nepal was 41% (95% CI: 38.5-42.9%). At the individual level, the prevalence of anaemia was higher among younger age groups (43.5%), and women who attended at least secondary level education (42.6%). The higher cases of anaemia were found in middle socio-economic class families (48.9%). The prevalence of anaemia was more in who used various contraceptive methods (43.1%), and those who consumed less than five food groups (51%). At the community-level, the prevalence of anaemia was higher in women who came from Province-2 (57.7%). The high proportion of anaemia was found in community with low female education (47.8%), female wealth index (44.3%), and who did not have improved toilet facility (51.4%) (Table 1).

Factors affecting anemia among women of reproductive age

The fixed effects (a measure of association) and the random-effects for the risk of developing anaemia among WRA are presented in Table 2. The results of the empty model (model 1) showed that there was statistically significant variability in the odds of anaemia between communities (τ =0.627, p<0.001). The ICC in the empty model implied that 16% of the total variance for the risk of developing anaemia was attributed to differences between the communities. In individual-level factors (model 2), women who did not have formal education (aOR=2.23, 95% CI: 1.35-3.67) compared to those with higher education, and who belonged to Page 13 of 44

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
52
52 53
53
54
55
56
57
58
59

60

230	middle-class families (aOR=1.81, 95% CI: 1.17-2.75) compared to the family from poorest
231	families were found to have higher odds of anemia. Older women had 54% lower (aOR=0.46,
232	95% CI: 0.24-0.88) odds of developing anaemia compared to younger women. Women who used
233	hormonal contraceptive methods had 39% lower (aOR=0.61, 95% CI: 0.42-0.86) odds of
234	anaemia compared to who did not use contraceptive methods. The ICC in model 2 indicated that
235	13.9% of the variation in WRA anaemia was attributable to differences across communities. The
236	PCV indicated that 15.3% of the variance in WRA anaemia across communities was explained
237	by the individual-level characteristics.
238	The community-level (model 3) showed that women from Province-2 had 2.5 times higher
239	(aOR=2.51, 95% CI: 1.79-3.53) odds of anaemia compared to women from Bagmati province.
240	Women who belonged to communities with a high percentage of the wealthy households had
241	1.48 times higher (aOR=1.48, 95% CI: 1.21-1.80) odds of anaemia compared to those coming
242	from low percentage of the wealthy household; and women residing in communities with a high
243	percentage of community female education had 1.39 times higher (aOR=1.39, 95% CI: 1.15-
244	1.68) odds of anaemia compared to those coming from the communities with a low percentage of
245	education. The ICC in model 3 showed that differences between communities accounted for
246	about 11.1% of the variation in anaemia among WRA. In addition, the PCV indicated that 33.9%
247	of the variation in WRA anaemia between communities was explained by community-level
248	characteristics.
249	In model 4, women who had no formal education were found to have 2 times higher (aOR=2.07,
250	95% CI: 1.21-3.54) odds of anaemia compared to women who had higher education. Women
251	from middle socio-economic family had higher (aOR=1.66, 95% CI: 1.02-2.68) odds of anaemia

compared to poorest counterparts. Women who came from Province-2 (aOR=3.12, 95% CI:

1.1.58-6.14) had higher odds of anaemia compared to Bagmati province. The older women had
52% lower (aOR=0.48, 95% CI: 0.26-0.91) odds of anaemia compared to younger women, and
women who used hormonal contraceptive methods had 43% lower (aOR=0.57, 95% CI: 0.390.84) odds of anaemia compared to who did not use contraceptive methods. After the inclusion
of both the individual and community-level variables in model 4, the ICC indicated that 10% of
the variability in anaemia among WRA was attributable to the difference between communities.
Furthermore, the PCV indicated that 39.5% of the variation in anaemia among WRA between
communities was explained by both individual and community-level characteristics (Table 2).

261 Spatial data analysis

Figure 3(a) shows the prevalence of anaemia among WRA across provinces in Nepal. A severe
anaemia prevalence (≥40%) among WRA was seen in Province-2, followed by Province-1 and 5.
The prevalence of moderate anaemia (20-39.9%) was observed in Bagmati, Gandaki, Karnali,
and Sudurpaschim province. Mild anaemia (prevalence<19.9%) was not found in any provinces.
Figure 3(b) shows the prevalence of anaemia among WRA across 75 districts in Nepal. The
prevalence rate of severe anaemia was observed in 29 out of 75 districts, and mild anaemia was
found in only eight districts (Figure 3).

The standardized prevalence ratio by provinces (standardized to the national mean prevalence of 41%) are shown in Figure 4 (a), and ranged from 0.68 to 1.4. The higher prevalence ratio of anaemia was found in Province-2, whereas a lower prevalence ratio was observed in Bagmati, Gandaki, and Karnali province. Figure 4 (b) shows the standardized prevalence ratio across the 75 districts, and ranged from 0.76 to 1.59. The higher standardized prevalence ratio of anaemia was observed in 17 out of 75 districts across the country (Figure 4).

BMJ Open

The spatial pattern and distribution of anaemia among WRA at the cluster level are displayed in
Figure 5. The spatial analysis at the cluster level showed that statistically significant high
hotspots of anaemia were observed in the southern Terai of the country bordering India:
Province-2 (8 districts), Province-1 (4 districts), southern plain of the Bagmati province (1
district), and southwestern region of Province-5 (3 districts). Whilst, cold spots of anaemia were
observed in most of the hilly regions of the country (Figure 5).

DISCUSSION

Overall findings

In this study, more than 40% of WRA were anaemic which implies that anaemia is still a serious public health problem in Nepal.[33] Geographical pattern showed that anaemia is a serious public health problem in three of the seven provinces and 29 out of the 75 districts in Nepal. The higher prevalence of anaemia was observed in the southern Terai bordering India particularly in Province-2, and the upper Himalayan region of the country. The spatial analysis at the cluster level showed that high hot spots of anaemia were observed in Terai region especially in Province-1, 2 and 5. A possible reason could be that WRA from Terai region and high mountainous regions are more likely to be of a lower socioeconomic status and thus can afford less diversified diet compared to other provinces and districts.[9,26] In the southern Terai of Nepal, despite ecological richness, people have long suffered from a deficiency of micronutrients such as Vitamin A, iron and zinc, [23] and a high burden of hookworm infestation and a high prevalence of malaria which are established to contribute to anemia.[27] Diet of women in the Terai lack diversity and, nutrient adequacy which pose an increased risk of anaemia. [24] Furthermore, the Terai region of Nepal is considered to be high

297 malaria-endemic region, [28,29,50] and higher risk of malaria is associated with a higher risk of

2		
3 4	298	anaemia.[27] The majority (90%) of the population from Terai region rely on groundwater
5 6	299	especially shallow tube well for domestic purposes including drinking.[30] Higher arsenic
7 8	300	concentration can inhibit haem iron metabolism and increase erythrocyte hemolysis.[51]
9 10 11	301	Consequently, drinking arsenic-containing water poses an increased risk of anaemia among
12 13	302	women.[52] Arsenic exposure was more likely to cause anemia among women in
14 15	303	Bangladesh.[53]
16 17	304	The spatial analysis at the cluster level found that high hotspots of anaemia were also observed in
18 19 20	305	southwestern region (Province-5), particularly Banke, Bardiya and Kanchanpur district. A
20 21 22	306	previous study highlighted that Glucose 6 phosphate dehydrogenase deficiency (G6PDd), sickle
23 24	307	cell trait (SCT), and sickle cell anaemia (SCA) as the most common disorder in Tharu
25		
26 27	308	community living in southwestern Province-5.[54,55] G6PDd and haemoglobinopathies are
28 29	309	established to cause anaemia among WRA.[36]
30 31 32	310	The geographical variance of high cases of anaemia across the high mountainous region could be
33 34	311	attributed to food insecurity, low dietary diversity, [9,24,31] less calorie diet,[24] poor health
35 36	312	service coverage,[22] high illiteracy, gender based-inequality, and poor health seeking
37 38	313	behaviour.[20,21]
39 40	314	Socio-demographic characteristic among women and anaemia
41 42 42	315	Women who had no formal education, and those who came from middle socio-economic
43 44 45	316	households, and from younger age group were at increased risk of anaemia. These findings
46 47	317	corroborate with previous studies from low and middle-income countries (LMICs) including
48 49	318	Ethiopia,[32] India,[56] Tanzania,[57] Rwanda,[58] Timor-Leste,[59] and Bangladesh.[60]
50 51 52	319	Studies from Ethiopia and Tanzania suggest that higher-level education might enable women to
52 53 54	320	gain knowledge and improve attitude which in turn can promote them to adopt healthier lifestyle
55 56		
57 58		15
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3 4	3
3 4 5 6 7	3
7 8 9	3
10 11	3
12 13	3
14 15 16 17	3
17 18	3
19 20	3
21 22 23 24 25	3
23 24 25	3
26 27	3
28 29	3
30 31 32 33 34 35 36 37	3
32 33 34	2
35 36	0
37 38	3
39 40	3
41 42	3
43 44 45	3
46 47	3
48 49	3
50 51	3
52 53 54	3
54 55 56	5
57 58	
50 59	

60

including good nutrition habits, better health-seeking behavior, and good hygiene practices that 21 can prevent anaemia.[32,57] 22

23 Anaemia is a multifaceted problem where nutrition and household economic status are 24 considered to have a synergistic association.[58] Women belonging to poorer households are more likely to be anaemic compared to those living in middle or richer households in most of the 25 26 countries.[14,32,58] Contrastingly, this study revealed that poorer Nepalese women were less likely to be anaemic. In this study, prevalence of anaemia was 32.3% in poorest, 41.5% in 27 poorer, 48.9% in middle, 43.4% in richer, and 35.9% in richest households. These results are in 28 29 agreement with a previous study that used the data from the 2016 Nepal National Micronutrient Status Survey (NNMSS).[36] The possible reason could be Nepal is an agrarian-based country 30 and the staple diet may be similar for most of the households.[61] Most of the Nepalese people 31 consume iron-rich staple foods including cereal, grains, lentils and animal source food regardless 32 of wealth status.[61] Future research are critical to explore the association of household 33 economic status and anaemia among WRA in Nepal. 34 In this study, the prevalence of anaemia was found to decrease with increasing age. These 35 findings are consistent with studies from Ethiopia [32] Demographic Republic of Congo [62] and 36 Benin [52] The possible reason could be that the low fertility rates are high among older 37 women.[32] Relatively higher prevalence of anaemia in a younger age could be because of lower 38 39 dietary iron intake and the additional demand for iron to compensate iron loss during menstruation, pregnancy, and lactation.[1] High prevalence of anaemia among younger women 40 41 could also be attributed to teenage pregnancy.[35]

Effect of contraceptive use on anaemia 42

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

In this study, the use of hormonal contraceptive methods was less likely to be associated with anaemia among WRA which is consistent with previous studies conducted in Nepal,[35] Rwanda, [58] Tanzania, [57] and Ethiopia. [63] This could be due to multiple reasons. For instance, the plausible primary mechanism could be the use of hormonal contraceptive lead to less blood loss during the menstruation.[64,65] Almost 100-150 mg of iron is lost during menstrual bleeding. [66] Subsequently, this may directly or indirectly furnish iron loss among women at high risk for iron-deficiency anaemia.[65,66] A previous study also suggested that Depo-Provera injections were more likely to increase haemoglobin concentration among WRA in Nepal.[67]

352 Community-level factors and anaemia

In this study, estimated intra-class correlation (ICC) shows that about 10.3% of the community level variability was attributable to the difference between communities among WRA. The PCV indicated that 39.5% of the variation in WRA anaemia between communities was explained by both individual and community-level characteristics. This finding is in line with the study conducted in Ethiopia, where both individual- and community-level factors accounted for about 43% of the variability of anaemia among WRA.[32] Women who came from Province-2 had more than three times higher odds of anaemia compared to Bagmati province. A possible reason could be due to the fact that WRA from Province-2 are more likely to be of a lower socioeconomic status and are less likely to afford a diverse diet.[9,26] In addition, compliance rate of recommended dose of iron tablets amongst the pregnant mothers in Province-2 was also low (28%) compared to other provinces.[9] This study showed that promoting community female education has a potential role in lowering the likelihood of anaemia which echoes with a study from Malawi.[38] This could be explained by the fact that higher community education

Page 19 of 44

BMJ Open

provides a context where women are enabled to gain nutritional knowledge and material
resources[25] that can increase consumption of iron absorption enhancers such as vitamin C,
phytates (whole grains, legumes), and calcium (dairy products). With increase knowledge,
women may also reduce the intake of tea, coffee, and some spices which are known to inhibit the
iron absorption.[68]

371 Strength and limitation

This is the first study to explore the spatial pattern and multilevel analysis of anaemia among WRA in Nepal using stringent cluster sampling of a comprehensive nationally representative data. The combined statistical methods including multilevel and spatial analysis used in this study provides important insights on the role of contextual factors and geographical patterns in the occurrences of anaemia among WRA in Nepal. This study has some limitations. The cross-sectional design of the study does not allow us to establish the causality. This study relied on haemoglobin as the measure of anaemia; further studies should consider other indices that include total ferritin and total iron binding capacity to differentiate the types of anemia. Since this study is based on the secondary data analysis, we are unable to incorporate potential confounding factors of anaemia such as nutrient intake, worm infestations, malaria and other non-modifiable risk factors.

383 CONCLUSION

This study highlighted a high prevalence of anaemia among WRA across Nepal. At an individual level, women who had no formal education, those who came from middle socio-economic class families were more likely to be anaemic, whereas, older women, and those who used hormonal contraceptive were less likely to be anaemic. At the community level, low community female education, and women living in Province-2 were associated with increased odds of anaemia. In

the spatial analysis, our study found statistically significant hot spots in the southern Terai region particularly in Province-1 (4 districts), Province-2 (8 districts), Bagmati province (1 district), and Province-5 (3 districts). Multi-pronged approaches including nutritional, and non-nutritional anaemia prevention and control strategies can benefit by tailoring the programs to the high risk provinces and districts with high burden of anemia.

394 Acknowledgements

We thank Measure DHS, ICF Macro for granting free access to the data used in this analysis. We
are grateful to Professor Dr. Kalpana Tiwari, Director of Research and Planning Purbanchal
University, Faculty of Science and Technology, College of Applied Food and Dairy Technology,
Kathmandu Nepal for assistance of undertaking this research.

Contributors

DRSu designed, conceptualized the study, data extraction and analysis, interpreted the results,
generate the map, writing an original draft, reviewing, editing, and overall supervision of the
research. SS generate the map, and writing an original draft. DRSi, BA, and PMSP writing an
original draft, reviewing and editing, overall supervision of the research. All authors read and
approved the final manuscript.

405 Funding

406 This research received no specific grant from any funding agency in the public, commercial or407 not-for-profit sectors.

Competing interests

409 None declared

Patient consent for publication

1 2		
3 4 5	411	Not required
6 7	412	Ethical approval
8 9 10	413	The NDHS 2016 was approved by the Nepal Health Research Council (NHRC) and ICF Macro.
11 12 13	414	Data sharing statement
13 14 15	415	Dataset used in this study is publicly available from the DHS website (URL:
16 17	416	https://www.dhsprogram.com/data/available-datasets.cfm).
18 19 20	417	
21 22 23	418	REFERENCES
24 25	419	1 Benoist BD, McLean E, Egli I, Cogswell M, Editors. Worldwide prevalence of anaemia
26 27 28	420	1993–2005.
29 30	421	2008.http://apps.who.int/iris/bitstream/handle/10665/43894/9789241596657_eng.pdf?seq
31 32 33	422	uence=1 (accessed 27 Mar 2018).
34 35	423	2 Stevens GA, Finucane MM, De-Regil LM, <i>et al.</i> Global, regional, and national trends in
36 37	424	haemoglobin concentration and prevalence of total and severe anaemia in children and
38 39 40	425	pregnant and non-pregnant women for 1995-2011: A systematic analysis of population-
41 42	426	representative data. Lancet Glob Heal 2013;1:16-25. doi:10.1016/S2214-109X(13)70001-
43 44 45	427	9
46 47 48	428	3 Kassebaum NJ, Jasrasaria R, Naghavi M, <i>et al.</i> A systematic analysis of global anemia
49 50	429	burden from 1990 to 2010. Blood 2014; 123 :615–24. doi:10.1182/blood-2013-06-508325
51 52 53	430	4 World Health Organization (WHO). Global Health Observatory Data Repository/World
54 55 56	431	Health Statistics. 2016.http://apps.who.int/gho/data/node.main.1lang=en
57 58		20
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 432 5 Akseer N, Kamali M, Arifeen SE, <i>et al.</i> Progress in maternal and child heal 			Akseer N, Kamali M, Arifeen SE, et al. Progress in maternal and child health: How has
5 6 7	433		South Asia fared? <i>BMJ</i> 2017; 357 . doi:10.1136/bmj.j1608
8 9	434	6	WHO. Global nutrition targets 2025: anaemia policy brief (WHO/NMH/NHD/14.4).
10 11 12	435		2014;:1-
13 14	436		7.http://www.who.int//iris/bitstream/10665/148556/1/WHO_NMH_NHD_14.4_eng.pdf
15 16 17	437	7	Harding KL, Aguayo VM, Webb P. Hidden hunger in South Asia: A review of recent
18 19	438		trends and persistent challenges. Public Health Nutr 2018;21:785–95.
20 21 22	439		doi:10.1017/S1368980017003202
23 24	440	8	Ministry of Health and Population, New ERA, The DHS Program ICF. Nepal
25 26 27	441		Demographic and Health Survey 2011. 2011;:163–71. doi:10.1007/978-94-6091-391-
28 29 30	442		4_15
30 31 32	443	9	Ministry of Health, New ERA, The DHS Program ICF (2017). Nepal Demographic and
33 34	444		Health Survey. 2016.https://www.dhsprogram.com/pubs/pdf/FR336/FR336.pdf (accessed
35 36 37	445		11 Jul 2019).
38 39	446	10	World Health Organization. Department of Nutrition for Health and Development. Iron
40 41 42	447		deficiency anaemia: assessment, prevention and control: a guide for programme managers.
43 44 45	448		Geneva: World Health Organization. 2001;:1–114. doi:10.1136/pgmj.2009.089987
46 47 48 49	449	11	Scholl TO, Hediger ML, Fischer RL, et al. Anemia vs iron deficiency: increased risk of
	450		preterm delivery in a prospective study. Am J Clin Nutr 1992;55 (5):985-8.
50 51 52	451		doi:10.1093/ajcn/55.5.985
53 54 55 56	452	12	Szerafin L, Jakó J. Anemia in Pregnancy: Characteristics in Szabolcs-Szatmár-Bereg
57 58			21
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 44

1

2 3 4	453		County, Hungary. Orv Hetil 2010;151:1347-52. doi:10.1556/OH.2010.28887
5 6 7	454	13	Rasmussen KM. Is There a Causal Relationship between Iron Deficiency or Iron-
8 9	455		Deficiency Anemia and Weight at Birth, Length of Gestation and Perinatal Mortality? J
10 11	456		Nutr Published Online First: 2001.https://academic.oup.com/jn/article-
12 13 14	457		abstract/131/2/590S/4686836 (accessed 10 Jun 2020).
15 16 17	458	14	Balarajan Y, Ramakrishnan U, Özaltin E, et al. Anaemia in low-income and middle-
18 19	459		income countries. Lancet 2011;378:2123-35. doi:10.1016/S0140-6736(10)62304-5
20 21 22	460	15	Rabbani G, Saw A, Sayem A, et al. Differentials in the prevalence of anemia among non-
23 24	461		pregnant, ever-married women in Bangladesh: multilevel logistic regression analysis of
25 26 27	462		data from the 2011 Bangladesh Demographic and Health Survey. BMC Womens Health
28 29	463		2015;:4–11. doi:10.1186/s12905-015-0211-4
30 31 32	464	16	Baradwan S, Alyousef A, Turkistan A. Associations between iron deficiency anemia and
33 34	465		clinical features among pregnant women: A prospective cohort study. J Blood Med
35 36 37	466		2018; 9 :163–9. doi:10.2147/JBM.S175267
38 39	467	17	Sanghvi TG, Harvey PWJ, Wainwright E. Maternal iron-folic acid supplementation
40 41 42	468		programs: Evidence of impact and implementation. Food Nutr Bull 2010;31.
43 44	469		doi:10.1177/15648265100312s202
45 46 47	470	18	Galloway R, Dusch E, Elder L, et al. Women's perceptions of iron deficiency and anemia
48 49	471		prevention and control in eight developing countries. Soc Sci Med 2002;55:529-44.
50 51 52	472		doi:10.1016/S0277-9536(01)00185-X
53 54 55 56	473	19	McLean E, Cogswell M, Egli I, et al. Worldwide prevalence of anaemia, WHO Vitamin
57 58			22
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

475 476		54. doi:10.1017/S1368980008002401
476		
	20	Nepal National Planning Commission. Nepal Human Development Report 2014: Beyond
477		geography. 2014. https://www.npc.gov.np/images/category/NHDR_Report_20141.pdf
478	21	Nepal Development Research Institute and UNFPA. Situational Assessment for Improved
479		Gender Based Violence Prevention and Response in Selected Districts of Nepal, Lalitpur,
480		Nepal; 2017.
481	22	Adhikari B, Mishra SR. Urgent need for reform in Nepal's medical education. Lancet
482		2016; 388 :2739–40. doi:10.1016/S0140-6736(16)32423-0
483	23	Parajuli RP, Umezaki M, Watanabe C. Diet among people in the Terai region of Nepal, an
484		area of micronutrient deficiency. J Biosoc Sci 2012;44:401-15.
485		doi:10.1017/S0021932012000065
486	24	Campbell RK, Talegawkar SA, Christian P, et al. Seasonal dietary intakes and
487		socioeconomic status among women in the terai of Nepal. J Heal Popul Nutr
488		2014; 32 :198–216. doi:10.3329/jhpn.v32i2.2615
489	25	Sunuwar DR, Sangroula RK, Shakya NS, et al. Effect of nutrition education on
490		hemoglobin level in pregnant women: A quasi-experimental study. PLoS One 2019;14.
491		doi:10.1371/journal.pone.0213982
492	26	Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double and
493		triple burden of malnutrition among mothers and children in Nepal: evidence from 2016
494		Nepal demographic and health survey. BMC Public Health 2020;20:405.
		23
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	1777 178 179 180 181 182 183 184 185 186 187 188 185 188 189 190 191 192 193	4777 178 21 179 21 179 21 180 22 181 22 182 23 183 23 184 23 185 24 186 24 187 25 190 25 191 26 193 26

Page 25 of 44

1

2 3 4	495		doi:10.1186/s12889-020-8356-y
5 6 7	496	27	Dreyfuss ML, Stoltzfus RJ, Shrestha JB, et al. Hookworms, Malaria and Vitamin A
8 9	497		Deficiency Contribute to Anemia and Iron Deficiency among Pregnant Women in the
10 11 12	498		Plains of Nepal. J Nutr 2000;130:2527–36. doi:10.1093/jn/130.10.2527
13 14	499	28	Rijal KR, Adhikari B, Ghimire P, et al. Epidemiology of Plasmodium vivax malaria
15 16 17	500		infection in Nepal. Am J Trop Med Hyg 2018;99:680–7. doi:10.4269/ajtmh.18-0373
18 19 20	501	29	Rijal KR, Adhikari B, Adhikari N, et al. Micro-stratification of malaria risk in Nepal:
21 22	502		Implications for malaria control and elimination. <i>Trop Med Health</i> 2019;47:1–12.
23 24 25	503		doi:10.1186/s41182-019-0148-7
26 27	504	30	Pokhrel D, Bhandari BS, Viraraghavan T. Arsenic contamination of groundwater in the
28 29 30	505		Terai region of Nepal: An overview of health concerns and treatment options. Environ.
31 32	506		Int. 2009; 35 :157–61. doi:10.1016/j.envint.2008.06.003
33 34 35	507	31	Singh DR, Ghimire S, Upadhayay SR, et al. Food insecurity and dietary diversity among
36 37	508		lactating mothers in the urban municipality in the mountains of Nepal. PLoS One
38 39 40	509		2020;15:0–17. doi:10.1371/journal.pone.0227873
41 42	510	32	Kibret KT, Chojenta C, D'Arcy E, et al. Spatial distribution and determinant factors of
43 44 45	511		anaemia among women of reproductive age in Ethiopia: A multilevel and spatial analysis.
46 47 48	512		BMJ Open 2019;9:1–14. doi:10.1136/bmjopen-2018-027276
49 50	513	33	World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and
51 52	514		assessment of severity. Geneva: World Health Organization, 2011.
53 54 55	515		http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed 27 Mar 2018).
56 57 58			24
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	516	34	Harding KL, Aguayo VM, Namirembe G, et al. Determinants of anemia among women
4 5 6	517		and children in Nepal and Pakistan: An analysis of recent national survey data. Matern
7 8 9	518		<i>Child Nutr</i> 2018; 14 :1–13. doi:10.1111/mcn.12478
10 11 12	519	35	Gautam S, Min H, Kim H, et al. Determining factors for the prevalence of anemia in
12 13 14	520		women of reproductive age in Nepal: Evidence from recent national survey data. PLoS
15 16 17	521		One 2019;14:e0218288. doi:10.1371/journal.pone.0218288
18 19	522	36	Ford ND, Bichha RP, Parajuli KR, et al. Factors associated with anaemia in a nationally
20 21 22	523		representative sample of nonpregnant women of reproductive age in Nepal. Matern Child
22 23 24	524		Nutr 2020;:1–11. doi:10.1111/mcn.12953
25 26 27	525	37	FAO F. Minimum dietary diversity for women: a guide for measurement. Rome FAO
28 29 30	526		2016.
30 31 32	527	38	Ntenda PAM, Nkoka O, Bass P, et al. Maternal anemia is a potential risk factor for
33 34	528		anemia in children aged 6-59 months in Southern Africa: A multilevel analysis. BMC
35 36 37	529		Public Health 2018;18:1-13. doi:10.1186/s12889-018-5568-5
38 39	530	39	Ntenda PAM, Chuang KY, Tiruneh FN, et al. Multilevel analysis of the effects of
40 41 42	531		individualand community-level factors on childhood anemia, severe anemia, and
43 44	532		hemoglobin concentration in Malawi. J Trop Pediatr 2018;64:267-78.
45 46 47	533		doi:10.1093/tropej/fmx059
48 49	534	40	World Health Organization (WHO)., United Nations Children's Fund (UNICEF). WHO
50 51 52	535		and UNICEF Joint Monitoring Programme (JMP) for water supply and sanitation: types of
53 54	536		drinking-water sources and sanitation. Geneva, Switzerland. Published Online First:
55 56	537		2015.http://www.wssinfo.org/definitions-methods/%0Awatsan-categories/
57 58			25
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 27 of 44

1 2			
3 4	538	41	Merlo J, Chaix B, Ohlsson H, et al. A brief conceptual tutorial of multilevel analysis in
5 6	539		social epidemiology: Using measures of clustering in multilevel logistic regression to
7 8 9	540		investigate contextual phenomena. J Epidemiol Community Health 2006;60:290-7.
9 10 11 12	541		doi:10.1136/jech.2004.029454
13 14	542	42	Joseph F. Hair J, Black WC, Babin BJ, et al. Multivariate Data Analysis, 7th Edition
15 16	543		Pearson. https://www.pearson.com/us/higher-education/program/Hair-Multivariate-Data-
17 18 19	544		Analysis-7th-Edition/PGM263675.html (accessed 3 Apr 2020).
20 21	545	43	Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial on multilevel analysis in
22 23 24	546		social epidemiology: Interpreting neighbourhood differences and the effect of
25 26	547		neighbourhood characteristics on individual health. J Epidemiol Community Health
27 28 29	548		2005; 59 :1022-8. doi:10.1136/jech.2004.028035
30 31	549	44	Guo G, Zhao H. Multilevel Modeling for Binary Data. Annu Rev Sociol 2000;26:441-62.
32 33 34	550		doi:10.1146/annurev.soc.26.1.441
35 36	551	45	Diez Roux A V. A glossary for multilevel analysis. J Epidemiol Community Health
37 38 39	552		2002; 56 :588–94. doi:10.1136/jech.56.8.588
40 41 42	553	46	Goverment of Nepal, Survey Department. Ministry of Land Management, Coperatives and
43 44 45	554		Poverty Alleviation. 2020.http://dos.gov.np/
46 47	555	47	North American Cartographic Information Society (NACIS) Collaborators. Natural Earth.
48 49 50	556		http://www.naturalearthdata.com/ (accessed 17 Jun 2020).
51 52	557	48	Ord JK, Getis A. Local Spatial Autocorrelation Statistics: Distributional Issues and an
53 54 55 56	558		Application. <i>Geogr Anal</i> 1995; 27 :286–306. doi:10.1111/j.1538-4632.1995.tb00912.x
57 58			26
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00			

2 3 4	559	49	Demographic and Health Surveys. The DHS Program.
5 6 7	560		https://www.dhsprogram.com/data/available-datasets.cfm (accessed 20 Jun 2020).
8 9	561	50	Gautam N, Kakchapati S, Shrestha S, et al. Patterns and trends of malaria in 25 risk
10 11 12	562		districts of nepal from 2001 to 2017. Clin Exp Vaccine Res 2019;8:77-85.
13 14	563		doi:10.7774/cevr.2019.8.1.77
15 16 17	564	51	Mahmud H, Föller M, Lang F. Arsenic-induced suicidal erythrocyte death. Arch Toxicol
18 19 20	565		2009; 83 :107–13. doi:10.1007/s00204-008-0338-2
21 22	566	52	Hopenhayn C, Bush HM, Bingcang A, et al. Association between arsenic exposure from
23 24	567		drinking water and anemia during pregnancy. J Occup Environ Med 2006;48:635-43.
25 26 27	568		doi:10.1097/01.jom.0000205457.44750.9f
28 29 30	569	53	Heck JE, Chen Y, Grann VR, et al. Arsenic Exposure and Anemia in Bangladesh: A
31 32	570		Population-Based Study. J Occup Environ Med 2008;50:80-7.
33 34 35	571		doi:10.1097/JOM.0b013e31815ae9d4
36 37	572	54	Ghimire P, Singh N, Ortega L, et al. Glucose-6-phosphate dehydrogenase deficiency in
38 39 40	573		people living in malaria endemic districts of Nepal. Malar J 2017;16:214.
41 42	574		doi:10.1186/s12936-017-1864-2
43 44 45	575	55	Gautam N, Gaire B, Manandhar T, et al. Glucose 6 phosphate dehydrogenase deficiency
46 47	576		and hemoglobinopathy in South Western Region Nepal: A boon or burden. BMC Res
48 49 50	577		Notes 2019;12:1-6. doi:10.1186/s13104-019-4762-6
51 52 53	578	56	Balarajan YS, Fawzi WW, Subramanian S V. Changing patterns of social inequalities in
54 55 56	579		anaemia among women in india: Cross-sectional study using nationally representative
57 58			27
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	580		data. BMJ Open 2013;3. doi:10.1136/bmjopen-2012-002233
5 6	581	57	Wilunda C, Massawe S, Jackson C. Determinants of moderate-to-severe anaemia among
7 8 9	582		women of reproductive age in Tanzania: Analysis of data from the 2010 Tanzania
9 10 11	583		demographic and health survey. <i>Trop Med Int Heal</i> 2013; 18 :1488–97.
12 13	584		doi:10.1111/tmi.12199
14 15	501		
16 17	585	58	Hakizimana D, Nisingizwe MP, Logan J, et al. Identifying risk factors of anemia among
18 19	586		women of reproductive age in Rwanda – a cross-sectional study using secondary data
20 21	587		from the Rwanda demographic and health survey 2014 / 2015. BMC Public Health
22 23	588		2019;:1-11.https://www.ncbi.nlm.nih.gov/pubmed/31829161
24 25			
26 27	589	59	Lover AA, Hartman M, Chia KS, et al. Demographic and Spatial Predictors of Anemia in
28 29	590		Women of Reproductive Age in Timor-Leste : Implications for Health Program
30 31	591		Prioritization. PLoS One 2014;9. doi:10.1371/journal.pone.0091252
32 33	592	60	Md. Kamruzzaman, Md. Golam Rabbani1, Aik Saw MAS and MGH. Differences in early
34 35	392	00	4
36 37	593		postnatal morbidity risk by pattern of fetal growth in Argentina. Paediatr Perinat
38 39	594		<i>Epidemiol</i> ; 5 :263–75.
40 41	595	61	Adhikari RK. Food utilization practices, beliefs and taboos in Nepal–an overview. United
42 43		• -	
44 45	596		States Agency for International Development–Global Health Technical Report. 2010.
46 47	597		http://ghpro.dexisonline.com/sites/default/files/resources/legacy/sites/default/files/1.367
48 49	598		Nepal Nutrition Overview Rpt 8_16_10 508.pdf (accessed 19 Jan 2020).
50 51	599	62	Kandala NI, Pallikadavath S, Amos Channon A, et al. A multilevel approach to correlates
52 53		02	
54 55	600		of anaemia in women in the Democratic Republic of Congo: findings from a nationally
56 57	601		representative survey. Eur J Clin Nutr 2020;74:720-31. doi:10.1038/s41430-019-0524-8
58			28
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	602	63	Gebremedhin S, Enquselassie F. Correlates of anemia among women of reproductive age
5 6	603		in Ethiopia: Evidence from Ethiopian DHS 2005. <i>Ethiop J Heal Dev</i> 2011;25:22–30.
7 8 9	604		doi:10.4314/ejhd.v25i1.69842
10 11	605	64	Miller L, Hughes JP. Continuous combination oral contraceptive pills to eliminate
12 13 14	606		withdrawal bleeding: A randomized trial. Obstet Gynecol 2003;101:653-61.
15 16	607		doi:10.1016/S0029-7844(03)00014-0
17 18 19	608	65	Bellizzi S, Ali MM. Effect of oral contraception on anemia in 12 low- and middle-income
20 21 22	609		countries. Contraception 2018;97:236-42. doi:10.1016/j.contraception.2017.11.001
23 24	610	66	Haile ZT, Kingori C, Teweldeberhan AK, et al. The relationship between history of
25 26 27	611		hormonal contraceptive use and iron status among women in Tanzania: A population-
28 29	612		based study. Sex Reprod Healthc 2017;13:97-102. doi:10.1016/j.srhc.2017.07.003
30 31 32	613	67	Chandyo RK, Strand TA, Ulvik RJ, et al. Prevalence of iron deficiency and anemia among
33 34	614		healthy women of reproductive age in Bhaktapur, Nepal. Eur J Clin Nutr 2007;61:262–9.
35 36 37	615		doi:10.1038/sj.ejcn.1602508
38 39	616	68	Hurrell RF, Reddy M, Cook JD. Inhibition of non-haem iron absorption in man by
40 41 42	617		polyphenolic-containing beverages. Br J Nutr 1999;81:289–95.
43 44	618		doi:10.1017/s0007114599000537
45 46 47	619		
48 49 50 51	620	Figu	re 1 Flow chart for sample size selection
52 53	621	Figu	re 2 Study area map and observed anaemia prevalence among women of reproductive
54 55 56	622	age f	or the NDHS survey clusters
57 58			29
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	
3	623
4 5	624
6	625
7	626
8 9	020
10	627
11 12	
13	628
14	
15 16	629
17	6.0.6
18 19	630
20	631
21	
22 23	
24	632
25 26	633
27	
28	634
29 30	
31	635
32	636
33 34	
35	
36	
37 38	
39	
40	
41 42	
42 43	
44	
45 46	
46 47	
48	
49 50	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	

623 624	Table 1 Socio-demographic chreproductive age by determining	-	revalence of anaemia among wome)	n of
625 626	Table 2 Multilevel mixed-effect factors affecting anaemia amore	0 0	n for individual and community-le ductive age (n=6,414)	vel
627	Figure 3 (a) Prevalence of ana	emia among womer	n of reproductive age across provin	ices. 3
628	(b) Prevalence of anaemia am	ong women of repro	oductive age across districts	
629	Figure 4 (a) Standardized pre	valence ratio of ana	emia among women of reproductiv	ve age
630	across provinces. 4 (b) Standa	rdized prevalence r	atio of anaemia among women of	
631	reproductive age across distri	cts (standardized to	the national mean prevalence of 4	1%)
632	Figure 5 Spatial pattern and d	listribution of hot a	nd cold spots of anaemia among wo	omen o
633	reproductive age at cluster lev	el in Nepal		
634				
635	Table 1 Socio-demographic ch	aracteristics and p	revalence of anaemia among wome	n of
636	reproductive age by determini	ing factors (n=6,414)	
	Variables	Total sample	Prevalence of any anemia	a p-v
		Frequency (%)	$Frequency (\%) \qquad 95\% C$	r

Variables	Total sample	Prevalence	e of any anemia	p-value ^{1, 2}
	Frequency (%)	Frequency (%)	95% CI	
Overall prevalence	6414	2614 (40.7)	[38.5-42.9]	
Severe anemia	17 (0.3)			
Moderate anemia	450 (7)			
Mild anemia	2147 (33.4)			
Hemoglobin level, mean	12.3 <u>+</u> 1.5	10.8 <u>+</u> 1.1		< 0.001*
(<u>+</u> SD)				
Individual-level factors				
Age in years, mean (<u>+</u> SD)	29.1 <u>+</u> 9.7	28.4 <u>+</u> 9.5		< 0.001*
Age				< 0.001*
15-24	2443 (38.1)	1065 (43.5)	[40.6-46.5]	
25-34	1971(30.7)	814 (41.3)	[38.4-44.2]	
<u>≥</u> 35	2000(31.1)	735 (36.7)	[34-39.6]	
Education				0.086
No education	2144 (33.4)	892 (41.5)	[38.2-44.9]	

of

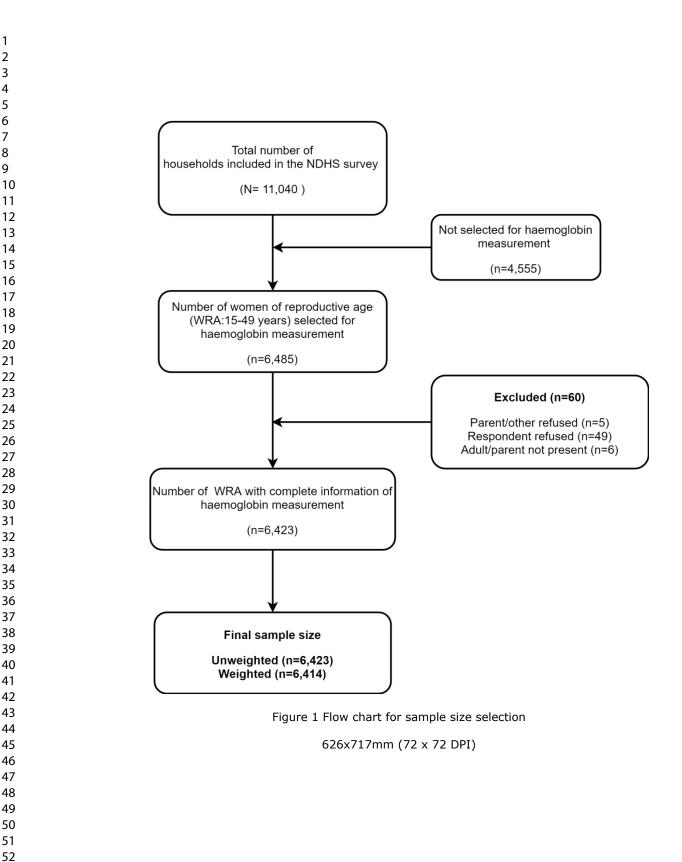
BMJ Oper

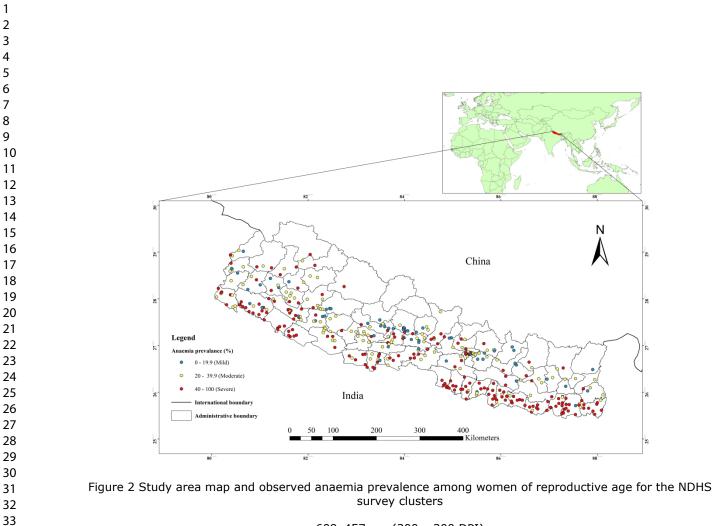
	Pag
42.8]	
-45.7]	
-41.3]	
	0.08
-46.2]	
2-42.2]	
	< 0.001
'-36.1]	
9-45.2]	
-52.8]	
3-48.1]	
-40.1]	
	< 0.001
	< 0.001
'-45.5]	
-51.6]	
'-33.4]	
-42.7]	0.08
-52.7]	
-41.6]	< 0.001
-49.3]	
	0.61
-45.4]	
-42.5]	
-44.8]	
	< 0.001
0.8-45]	
-46.1]	
-33.3]	
3-47.9]	
	< 0.001
/-33.4]	
-44.1]	
	0.025
3-56.1]	
2-48.2]	
	48.2]

59

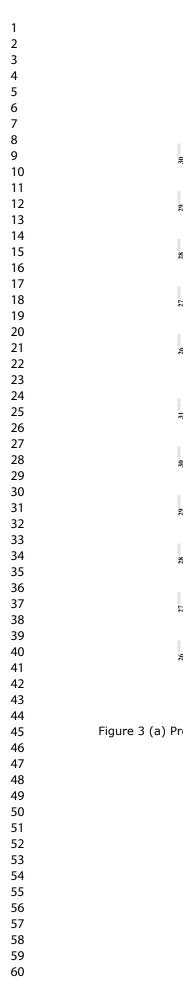
Place of residence				0.202			
Urban	4029 (68.8)	1596 (39.6)	[36.8-42.4]				
Rural	2385 (37.1)	1018 (42.6)	[39-46.3]				
Province				< 0.001*			
Province-1	1073 (16.7)	464 (43.2)	[37.9-48.7]				
Province-2	1285 (20)	742 (57.7)	[52.7-62.6]				
Bagmati	1408 (21.9)	409 (29)	[24.8-33.5]				
Gandaki	627 (9.7)	176 (28)	[23-33.6]				
Province-5	1086 (16.9)	472 (43.4)	[39.4-47.5]				
Karnali	369 (5.7)	129 (34.9)	[29.9-40.2]				
Sudurpaschim	566 (8.8)	222 (39.3)	[33.6-45.2]				
Community female				< 0.001*			
education ^a							
Low	2936 (45.7)	1406 (47.8)	[44.8-50.9]				
High	3478 (54.2)	1208 (34.7)	[31.9-37.6]				
Community female wealth				< 0.001*			
index ^b							
Low	4107 (64)	1820 (44.3)	[41.2-47.3]				
High	2307 (35.9)	795 (34.45)	[31.1-37.8]				
Source of drinking water				0.004*			
(n=6084)							
Improved	5537 (91)	2286 (41.2)	[38.9-43.6]				
Not improved	547 (8.9)	184 (33.7)	[29.2-38.5]				
Type of toilet facility		4		< 0.001*			
(n=6084)							
Improved	5117 (84.1)	1972 (38.5)	[36.3-40.7]				
Not improved	967 (16)	498 (51.4)	[46-56.8]				
Frequency and percentage (%)	are weighted		I				
^{1, 2} denotes Pearson Chi-Square test for categorical variables and independent t-test for continuous							
variables							
*denotes statistically significant at p<0.05							
	mean percent of households wealth quintiles categorized richer and richest and above						
^b mean percent of women with	primary education leve	el and above					
BMI: Body Mass Index MDD-W: Minimum Dietary D	iversity for Woman						
MDD-w: Minimum Dietary D							
	22						
	32						

Table 2 Multilevel mixed-effects logistic regression analysis for individual and communitylevel factors affecting anemia among women of reproductive age (n=6,414)


Variables	Model 1 Empty model	Model 2 Individual-level factors	Model 3 community-level factors	Model 4 Individual and community-leve factors	
		aOR (95% CI)	aOR (95% CI)	aOR (95% CI)	
Fixed-effects model					
Individual-level factors					
Age					
15-24		0.76 (0.56-1.04)		0.73 (0.54-1.01)	
25-34		Ref		Ref	
<u>>35</u>		0.46 (0.24-0.88)*		0.48 (0.26-0.91)*	
Education					
No education		2.23 (1.35-3.67)**		2.07 (1.21-3.54)*	
Primary		1.56 (0.96-2.56)		1.41 (0.84-2.38)	
Secondary		1.63 (1.06-2.49)*		1.52 (0.96-2.38)	
Higher		Ref		Ref	
Occupation					
Not working		Ref		Ref	
Working		1.01 (0.75-1.36)		0.91 (0.66-1.25)	
Wealth index					
Poorest		Ref		Ref	
Poorer		1.50 (1.00-2.24)		1.49 (0.97-2.29)	
Middle		1.81 (1.18-2.78)**		1.66 (1.02-2.68)*	
Richer		1.46 (0.92-2.30)	D_{A}	1.39 (0.84-2.32)	
Richest		1.61 (0.90-2.87)		1.32 (0.69-2.52)	
BMI (n=6411)					
Normal		Ref		Ref	
Underweight		1.16 (0.82-1.64)		1.08 (0.74-1.56)	
Overweight/obesity		0.90 (0.59-1.37)		1.03 (0.66-1.61)	
Currently pregnant					
No		0.82 (0.42-1.62)		1.08 (0.53-2.20)	
Yes		Ref		Ref	
Currently breastfeeding					
No		Ref		Ref	
Yes		1.38 (0.65-2.91)		1.59 (0.71-3.60)	
Total children ever born					
No child		Ref		Ref	



For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


1-3 child	-		-
4+ child	1.18 (0.74-1.86)		1.02 (0.63-1.0
Current contraceptive			
use			
Not using	Ref		Ref
Natural/barrier/permanent	1.26 (0.87-1.82)		1.26 (0.85-1.8
Hormonal	0.61 (0.42-0.86)*		0.57 (0.39-0.8
IUD	2.54 (0.69-9.32)		2.07 (0.68-10
Cigarette/smoking			
Smoking	0.81 (0.44-1.50)		1.21 (0.63-2.3
Not smoking	Ref		Ref
MDD-W (n=1131)			
Not diverse	1.24 (0.93-1.64)		1.03 (0.76-1.4
Diverse	Ref		Ref
Community-level factors			
Place of residence			
Urban		Ref	Ref
Rural		1.01 (0.83-1.21)	0.89 (0.64-1.2
Province			
Province-1		1.70 (1.23-2.34)**	3.04 (1.59-5.8
Province-2		2.51 (1.79-3.53)***	3.12 (1.58-6.1
Bagmati		Ref	Ref
Gandaki		0.90 (0.64-1.26)	0.77 (0.39-1.5
Province-5	4	1.60 (1.16-2.21)**	2.43 (1.31-4.5
Karnali		1.19 (0.85-1.66)	1.69 (0.88-3.1
Sudurpaschim		1.54 (1.11-2.15)*	1.64 (0.84-3.1
Community female		6	
education ^a			
Low		1.39 (1.15-1.68)***	-
High		Ref	-
Community wealth			
index ^b			
Low		1.48 (1.21-1.80)***	-
High		Ref	-
Source of drinking water			
(n=6084)			
Improved		Ref	Ref
Not improved		1.05 (0.84-1.30)	1.13 (0.68-1.8

Type of toilet facility				
(n=6084) Improved			Ref	Ref
Not improved			1.03 (0.84-1.24)	0.95 (0.63-1.45)
Random-effects model			1.05 (0.04-1.24)	0.95 (0.05-1.45)
Community-level variance	$e 0.627 \ (0.073)^{***}$	0.531 (0.207)***	0.414 (0.056)***	0.379 (0.201)**
(τ) (SE) ICC (%)	16	13.9	11.1	10.3
PCV (%)	Ref	15.3	33.9	39.5
Model fit statistics		10.0	55.9	57.5
AIC	8322.6	1558.6	7838.4	1397.9
BIC	8336.1	1669.6	7925.8	1551.4
Log-likelihood	4159.3	757.3	3906.2	667.9
		change in variation	AIC: Akaike informa	ition criterion BIC
Bayesian information crit ^a mean percent of househo ^b mean percent of women community female educat	erion olds wealth quintiles with primary educat	categorized richer a ion level and above		
^a mean percent of househo ^b mean percent of women community female educat	erion olds wealth quintiles with primary educat	categorized richer a ion level and above	nd richest and above tted in Model 4 due to	

609x457mm (300 x 300 DPI)

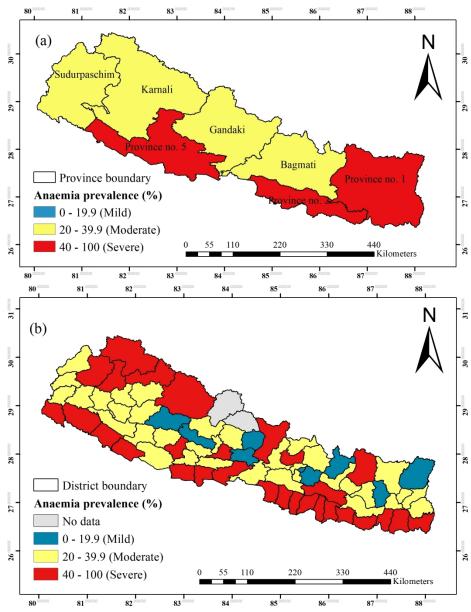
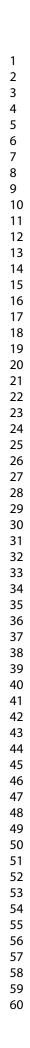



Figure 3 (a) Prevalence of anaemia among women of reproductive age across provinces. 3 (b) Prevalence of anaemia among women of reproductive age across districts

215x279mm (300 x 300 DPI)

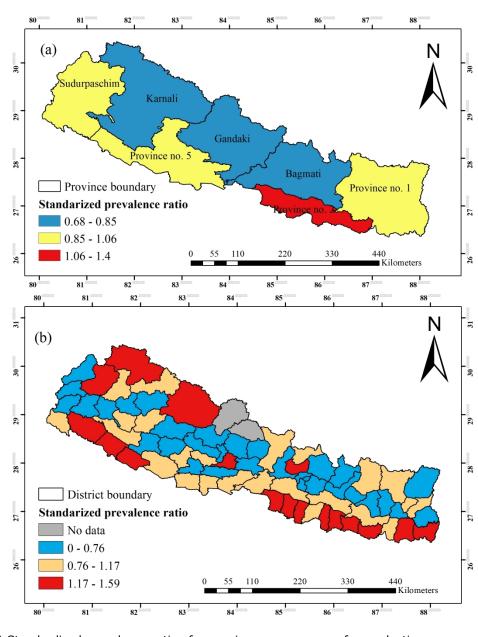


Figure 4 (a) Standardized prevalence ratio of anaemia among women of reproductive age across provinces. 4 (b) Standardized prevalence ratio of anaemia among women of reproductive age across districts (standardized to the national mean prevalence of 41%)

215x279mm (300 x 300 DPI)

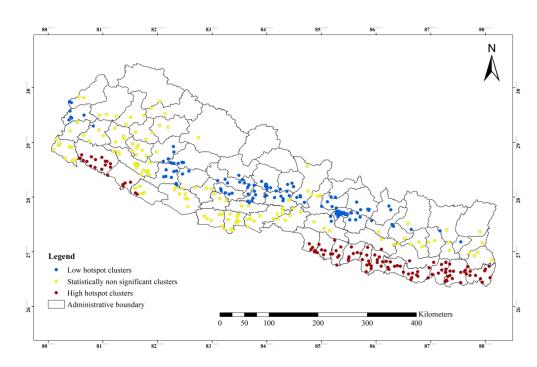


Figure 5 Spatial pattern and distribution of hot and cold spots of anaemia among women of reproductive age at cluster level in Nepal

457x304mm (300 x 300 DPI)

 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

S1 Table Plan for data coding and description of the study variab	les
---	-----

Study variables	Coding category for analysis
Age in years	1=15-24; 2=25-34; 3=35-49
Education	1=No education; 2=Primary; 3=Secondary; 4=Higher
Occupation	1= Not working; 2=Working (professional/technical/managerial,
	clerical, sales/services, agriculture-self-employed, skilled
	manual, unskilled manual, others)
Wealth index	1=Poorest; 2=Poorer; 3=Middle; 4=Richer; 5=Richest
Body mass index (BMI)	1=Normal (18.5-24.99); 2=Underweight(<18.5);
	3=Overweight/Obesity(≥25)
Currently pregnant	1=No; 2=Yes
Currently breastfeeding	1=No; 2=Yes
Total children ever born	1= No child; 2=1-3 child; 3=4+ child
Current contraceptive use	1=Not using; 2=Natural/barrier/permanent (Male condom,
	female sterilization, male sterilization, periodic abstinence,
	withdrawal, other traditional, lactation amenorrhea);
	3=Hormonal (Pill, Injections, Implants/Norplant's, Emergency
	contraception); 4=IUD
Cigarette/smoking	1= Smoking; 2=Not smoking
Minimum dietary diversity	1=Not diverse (consume <5 food groups); 2=Diverse (Consume
for women (MDD-W)	\geq 5 food groups)
Residence	1=Urban; 2=Rural
Province	1=Provice-1; 2=Province-2, 3=Bagmati Province; 4=Gandaki
	Province; 5=Province-5; 6=Karnali Province; 7=Sudurpaschim
	Province
Community female	1=Low (mean percent of women with lower primary education
education	level was 0-25%); 2=High (mean percent of women with
	primary education level above 25%)
Community wealth index	1=Low (mean proportion of women from richest (rich, richest)
	households in the community was 0-21%); 2=High (mean

	proportion of women from richest (rich, richest) household
	the community was above 21%)
Source of drinking water	1=Improved (piped water into dwelling, piped water to
	yard/plot, public tap or standpipe, tube well or borehole,
	protected dug well-protected spring and rainwater); 2=Not
	improved (Piped to neighbor, unprotected well, river, dam
	ponds, lake, and rainwater)
Type of toilet facility	1=Improved facility (flush toilet, piped sewer system, septi
	tank, flush/pour flush to pit latrine, ventilated improved pit
	latrine, pit latrine with slab, and composting toilet); 2=Not
	improved (flush to somewhere, flush don't know where, pit
	latrine without slab/open pit, and no facility/bush/field)

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-10
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-10
		(b) Describe any methods used to examine subgroups and interactions	8-10
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	10-11
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Factors affecting anaemia among women of reproductive age in Nepal: a multilevel and spatial analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-041982.R1
Article Type:	Original research
Date Submitted by the Author:	24-Jan-2021
Complete List of Authors:	Sunuwar, Dev Ram; Nepal Armed Police Force, Department of Nutrition and Dietetics ; Asian College for Advance Studies, Department of Public Health Singh, Devendra Raj; Purbanchal University, Asian College for Advance Studies,Department of Public Health Adhikari, Bipin; Nepal Community Health and Development Center, Kathmandu, Nepal Shrestha, Santosh ; Agricultural Technology Center, Lalitpur, Nepal, Agriculture Research Pradhan, Pranil; Tribhuvan University Institute of Medicine, Department of Community Medicine and Public Health; Nepalese Society of Community Medicine (NESCOM), Kathmandu, Nepal
Primary Subject Heading :	Public health
Secondary Subject Heading:	Global health
Keywords:	PUBLIC HEALTH, Anaemia < HAEMATOLOGY, NUTRITION & DIETETICS, Maternal medicine < OBSTETRICS

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Factors affecting anaemia among women of reproductive age in Nepal: a multilevel and spatial analysis

- Dev Ram Sunuwar^{1, 2*}, Devendra Raj Singh², Bipin Adhikari³, Santosh Shrestha⁴, Pranil Man
 Singh Pradhan^{5, 6}
- ⁵ ¹Department of Nutrition and Dietetics, Nepal Armed Police Force Hospital, Kathmandu, Nepal
- ⁶ ²Department of Public Health, Asian College for Advance Studies, Purbanchal University,

7 Lalitpur, Nepal

- ⁸ ³Nepal Community Health and Development Center, Kathmandu, Nepal
- ⁹ ⁴Agricultural Technology Center, Lalitpur, Nepal
- 10 ⁵Department of Community Medicine, Maharajgunj Medical Campus, Institute of Medicine,
- 11 Tribhuvan University, Kathmandu, Nepal
- 12 ⁶Nepalese Society of Community Medicine (NESCOM), Kathmandu, Nepal
- **Corresponding author**
- 14 <u>*devramsunuwar@gmail.com</u>

15 ABSTRACT

- **Objective:** The main objective of this study was to explore the factors affecting anaemia
- among women of reproductive age (WRA) in Nepal using spatial and multilevel epidemiologicalanalysis.
- **Design:** This cross-sectional study analyzed the data from the 2016 Nepal demographic and
- 20 health survey (NDHS 2016). The spatial analysis was performed using ArcGIS software V.10.8
- to identify the hot and cold spots of anaemia among WRA (15 to 49 years). Data were analyzed
- 22 using multilevel mixed-effect logistic regression analysis.
 - 23 Setting: Nepal

Participants: A total of 6,414 WRA were included in the analysis.

Main outcome measure: Anaemia defined by World Health Organization (WHO) as
hemoglobin level less than 12g/dL in non-pregnant women and less than 11g/dL in pregnant
women.

Results: The spatial analysis showed that statistically significant hotspots of anaemia were in the southern Terai region (4 districts in Province-1, 8 districts in Province-2, 1 district in Bagmati province, and 3 districts in Province-5) of Nepal. At the individual level, women who underwent female sterilization (aOR: 3.61, 95% CI: 1.10-11.84), with no education (aOR: 1.99, 95% CI: 1.17-3.39), and from middle socio-economic class families (aOR: 1.65, 95% CI: 1.02-2.68) were more likely to be anemic, whereas, older women (>35 years) (aOR: 0.51, 95% CI: 0.26-0.97), and those women who were using hormonal contraceptives (aOR: 0.63, 95% CI: 0.43-0.90) were less likely to be anaemic. At the community level, women from Province-2 (aOR=2.97, 95% CI: 1.52-5.82) had higher odds of being anaemic. **Conclusion:** WRA had higher odds of developing anaemia, and it varied by the geographical regions. Nutrition specific and nutrition sensitive interventions can tailor the interventions based

39 on the factors identified in this study to curb the high burden of anaemia.

Strer	ngths and limitations of this study
\triangleright	This study utilizes comprehensive, and nationally representative data with
	haemoglobin level.
۶	The combined statistical methods including multilevel and spatial analysis were
	applied, which takes into account the role of geographical risk profile and determin
	of anaemia among WRA in Nepal.
	Due to the cross-sectional design, it was difficult to determine the cause-and-effect
	relationships between the predictors and outcome variable (anaemia).
\triangleright	Other potential confounding factors of anaemia such as nutrient intake, worm
	infestations, other non-modifiable risk factors, and other qualitative factors were
	beyond the scope of this study.
\triangleright	This study could not distinguish the types of anaemia such as nutritional, genetic an
	infectious.
	3
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
Λ	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 20 30	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27	
20	
30	
31	
32	
33	
34	
32 33 34 35 36 37 38	
36	
37	
39	
40	
41	
42 43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

43 INTRODUCTION

Anaemia remains a significant public health problem in developing countries despite advances in 44 health science.[1] Approximately one-third of the population is affected by anaemia 45 globally.[2,3] South and Southeast Asian countries account for the largest burden of anaemia 46 with estimated prevalence of 52.5% among women of reproductive age (WRA).[4] The highest 47 48 prevalence over the past 26 years was 55.2% in 1990.[5] Despite the implementation of a '1000 days nutrition program' among various other programs, targeted to a mother with newborn 49 babies in South Asia, the reduction in anaemia among pregnant women has not been 50 51 significant.[6] To accelerate reduction of anaemia, the World Health Assembly has set a target of achieving a 50% reduction of anaemia among WRA by 2025 relative to 2010.[7] However, not a 52 single South Asian country is on the way to achieve the 2025 targets.[8] 53 The Government of Nepal has set targets in line with various global and national indicators such 54 as Multi-Sectoral Nutrition Plan II (2018–2022), and Sustainable Development Goals (SDGs) 55 2030 for the reduction of anaemia. [9,10] Despite the historic efforts in preventing anaemia 56 through the implementation of national nutrition programs and policies including iron-folic acid 57 supplementation across the country, the prevalence of anaemia among WRA has been increasing 58 59 steadily from 35% in 2011 to 41% in 2016.[11,12] These figures suggest that anaemia continues to be a serious public health problem in Nepal.[13] 60

Anaemia in WRA is associated with multiple conditions and consequences such as preterm
delivery,[14] miscarriage,[15] low birth weight,[16] child growth faltering, impairment of
cognitive function, increased susceptibility to infection, and poverty.[17,18] It is also associated
with increased risk of prenatal and maternal mortality.[16,19] Approximately 20% of maternal

deaths are caused by anaemia and it is also considered as an additional risk factor for 50% of all
maternal deaths.[20,21]

Contributing factors and distribution of anaemia include a complex interplay of political, ecological, social, and biological factors.[22] In Nepal, anaemia among WRA is associated with various socio-ecological factors. In the southern Terai of Nepal, low community education status, gender based-inequality, poor health seeking behavior, [23–25] inadequate dietary intake during pregnancy, [26–28] lack of diversified diet, [12,27,29] high burden of hookworm infection and malaria, [30–32] and high amount of arsenic in potable water [33] were identified as factors contributing to anaemia. On the other hand, high prevalence of anaemia in the mountainous region were attributed to among others, food insecurity, and low dietary diversity, [12,27,34] poor health services, [25] illiteracy, and gender based-inequality. [23,24]

To decrease the burden of anaemia, it is necessary to generate adequate evidence in terms of the role and contribution of individual, household and the community level factors along with the geographical risk profile of anaemia. Only a few studies in the past have explored factors affecting anaemia among WRA using nationally representative Nepal Demographic and Health Survey (NDHS) [35–37]. Till date, no studies have used spatial data to explore the geographical hotspots (high prevalence) of anaemia among WRA using cluster sampling of the NDHS data. In addition, population in Nepal has diverse characteristics in terms of their culture, ethnicity and geographical locations. Within the latitude of 193km (North to South), Nepal bears tropical/subtropical landscape on the south and temperate to alpine in the North, with an elevation ranging from 70m to the summit of Mount Everest (8848m).[38] The distinct characteristics such as dietary habit, lifestyle and socio-economic status linked to the geographical regions of Nepal are unique and pose risk of developing anaemia. Exploring spatial patterns and factors affecting

Page 7 of 49

BMJ Open

anaemia by geographical region is therefore critical to inform the plans and policies for targeted
anaemia control and prevention programs.[39] The main objective of this study was to explore
the spatial distribution and contributing factors of anaemia among WRA in Nepal.

91 METHODS

92 Patient and public involvement

93 This study utilized a publicly available data set (NDHS); therefore, there were no patients94 involved.

95 Data source

96 This study was based on the data from Nepal Demographic and Health Survey (NDHS) 2016, a
97 nationally representative cross-sectional survey. This survey was carried out as part of the DHS
98 program by New ERA (a private non-profit research organization based in Kathmandu) under
99 the guidance of the Ministry of Health, Government of Nepal and was supported by ICF
100 international and United States Agency for International Development (USAID). The study
101 population for this study was WRA from the Nepal Demographic and Health Survey 2016.

102 Study settings and Sampling strategy

The sample for the 2016 NDHS was designed to provide estimates of population health, and nutrition indicators including fertility and mortality rates for the overall country, provinces, development regions, urban and rural municipalities, and for the ecological zones: Terai, Hills, and Mountains. The NDHS 2016 utilized a stratified, two-stage cluster sampling design. The survey used enumeration areas (EAs) which is a primary sampling unit (PSU) and was selected from 383 wards in both rural (n=199) and urban (n=184) areas with probability proportional to size method. In the second stage, 30 households on average within EAs were selected using a systematic sampling technique. A more detailed methodology of the NDHS has been published

2	
3	
4	
5	
6	
7	
, ,	
8	
9	
10	
11	
12	
13	
14	
15	
15 16	
16 17	
18	
19	
20	
20	
20 21 22 23 24 25	
22	
23	
24	
25	
26	
26 27	
27	
28	
29	
30	
31	
32	
33	
22	
34 35	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

elsewhere.[12] All WRA (pregnant and non-pregnant) with complete socio-demographic and 111 nutritional characteristics who were residents or who had slept in the selected households on the 112

night before the survey were eligible for the survey. The details of the sample size selection in 113

the NDHS 2016 are presented in Figure 1. 114

Study variables 115

Outcome variables 116

Haemoglobin level was measured using capillary blood by a battery-operated portable HemoCue 117 118 rapid testing machine and was adjusted for altitude and smoking status.[12] According to the WHO, for non-pregnant and pregnant women aged 15-49 years, any form of anaemia is defined 119 as haemoglobin concentration <12 g/dL and <11g/dL respectively.[40] The categories of 120 121 anaemia were further dichotomized into 'anaemic' and 'not anaemic'.

122

Predictor's variables

123 Predictors of anaemia were selected based on the literature review. [4,35–37,39] The wide range of socio-demographic, individual, household and community factors were hypothesized to 124 increase the likelihood of anaemia. The predictors of anaemia including both individual-level 125 and community-level factors were included in the analysis. The coding strategy of individual-126 level and community-level factors are presented in online supplementary Table 1. 127

Individual-level factors 128

A total of 11 individual-level factors were identified, and that included for example, respondent's 129 age, education level, occupation, wealth index, nutritional status, pregnancy status, and minimum 130 dietary diversity for WRA (MDD-W). The minimum dietary diversity for women of 131 reproductive age (MDD-W) was calculated using the guideline of the modified FANTA III tool 132

developed by the Food and Agriculture Organization (FAO) of the United Nations.[41] 133

Page 9 of 49

BMJ Open

1 2	
3 4 5	
6 7 8	
8 9 10	
11 12	
13 14 15	
13 14 15 16 17 18	
19	
20 21 22	
23 24	
25 26 27	
28 29	
30 31 32	
30 31 32 33 34 35 36	
35 36 37	
38 39	
40 41 42	
43 44	
45 46	
47 48 49	
50 51	
52 53 54	
55 56	
57 58 59	
60	

134	Community-level factors
-----	--------------------------------

The six different factors were included in the community-level factors that included place of 135 136 residence, province, community wealth, community female education, community safe water access, and community toilet facility. The selection of community-level factors were based on 137 the group of women living in similar settings.[39] If more women have shared features such as 138 place of residence, province, type of water source, and toilet facility; it was considered to have 139 the same effect on anaemia among WRA.[39] For community level wealth and female education, 140 we constructed the aggregate continuous community-level predictor-variables by aggregating 141 individual-level characteristics at the community (cluster) level. We dichotomized the aggregate 142 variables into "high" or "low" based on the distribution of the proportion values calculated for 143 144 each community[42], but it was not applicable for the provinces and place of residence. Based on distribution of the aggregate variable (normal or non-normal), mean and median was used as a 145 cut off point for the categorization of community-level variables respectively. The community 146 147 wealth was categorized as 'high' if the proportion of women from richest (rich, richest) households in the community was above 21% and 'low' if the proportion was 0 to 21%. 148 Community female education was defined as the mean percentage of women in the community 149 with at least primary education and above.[43] Water supply and sanitation guidelines based on 150 the WHO and UNICEF Joint Monitoring Progamme (JMP) were used to define improved toilet 151 facility and improved water source.[44] 152

- 153 **Data analysis**
- 154 **Statistical analysis**

Data were analyzed using Stata/MP version 14.1 (StataCorp LP, College Station, Texas). The
'svy' command was used to account for sampling weights, clustering, and stratification in
complex survey data. Weighted frequencies, weighted percentage, mean and SD were used for

the descriptive analysis. Pearson Chi-Square test for categorical variables and independent t-test
 for continuous variables were used. The multilevel mixed-effect logistic regression analysis was
 performed to estimate the adjusted odds ratio and to estimate the extent of random variations
 between communities.

Four models were created and were fitted. Model 1 (empty model) was fitted without predictor variable to test random variability in the intercept and to estimate the intra-class correlation (ICC).[45] Model 2 examined the effects of individual-level characteristics, model 3 examined the effects of community-level variables, and model 4 examined the effects of both individual and community-level characteristics simultaneously. In the multilevel mixed-effect logistic regression models, the fixed effects estimated the association between the likelihood of anaemia among WRA and the individual-level and community-level factors, and the findings are reported in terms of adjusted odds ratio (aOR), and 95% confidence intervals (CIs). To prevent statistical bias in the multilevel logistic regression model, we examined and reported multicollinearity among the predictor variables using variation inflation factors (VIF). In this study, we used "10" as a cut-off value for the maximum level of VIF.[46] The random effects are expressed as ICC, [45] and proportional change in variance (PCV). [47] The ICC was calculated to evaluate the cluster variability; and PCV can measure the total variation due to factors at the individual- and community- levels.[45] Models fit were assessed using Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Considering the nested structure of the survey data, a multilevel model is considered to be appropriate than ordinary single-level regression model because it provides correct parameter estimates by handling the cluster data.[48,49]

Spatial analysis

Page 11 of 49

BMJ Open

	180	Spatial analysis were performed using ArcGIS software V.10.8, and base files of the
	181	administrative provinces and districts of Nepal were obtained from Government of Nepal,
	182	Ministry of Land Management, [50] and Natural Earth.[51] The global positioning system (GPS)
)	183	data set for NDHS was obtained from the DHS website after receiving the approval letter. The
<u>2</u> 3	184	prevalence of anaemia and standardized prevalence ratio were computed for both the districts
1 5	185	and provinces in Stata/MP version 14.1 software and were later transferred to Excel spreadsheet.
7	186	These data were imported into the ArcGIS software to link the reported anaemia prevalence for
))	187	each cluster to the corresponding geographical location (survey cluster data). The spatial
 <u>2</u>	188	variations of the prevalence of anaemia among WRA by both districts and provinces were
3 1 -	189	visualized. To estimate the standardized prevalence ratio (SPR; ratio of observed prevalence to
5 7	190	expected prevalence)[52] of anaemia among WRA, we first determined the prevalence of
3 9	191	anaemia for both districts and provinces. District and province wise prevalence rate of anaemia
)	192	among WRA was multiplied by the national prevalence rate of 41% (normalized to the national
<u>2</u> 3 1	193	prevalence of 41%).
5	194	The Local Moran's I, Gettis-Ord G-statistics tool in ArcGIS software was used to compute to
3	195	measure how spatial autocorrelation of anaemia among WRA varies across different locations in
)	196	Nepal. The Getis-Ord G-statistics identifies statistically significant spatial clusters of hotspot
2 3 1	197	clusters (High-High), and cold spot clusters (Low-Low).[53,54] Hotspot analysis computes Z-
5	198	score and p-value to determine the statistical significance of the clustering of anaemia over the
7 3	199	study area at different significance levels simultaneously. [54,55] The statistical significance of
€) I	200	autocorrelation was determined by z-scores and p-value ≤0.05 with a 95% Confidence Intervals
- <u>2</u> 3	201	(CIs).[39,55] An anaemia hot spot was defined as the occurrence of high prevalence rates of
1 5	202	anaemia clustered together on the map. Anaemia cold spot was referred to the occurrence of low

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
28 29	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1

prevalence rates of anaemia clustered together on the map.[39,55] The spatial pattern and
distribution of anaemia prevalence rates among WRA in Nepal are visualized on the map (Figure
205 2)

206 Ethical consideration

The DHS survey protocols were approved by the institutional review boards of ICF, the DHS program, and the Nepal Health Research Council (NHRC). The details on ethical procedures used in this survey have been published elsewhere.[12] We registered and requested for access to both main data and GPS data from the DHS website [56] and received an approval to access and download the DHS data file. DHS program collected data following a written informed consent from each individual. All individual identifiers were precluded from the final dataset in this study.

214 **RESULTS**

215 Socio-demographic characteristics of study participants

In this study, a total of 6,414 WRA were included in the analysis (Table 1). The mean (±SD) age 216 of the study participants was 29 (± 9.7) years. More than one third (38.1%) of the participants 217 218 were from age group 15-24 years, and women (35.5%) had attended secondary level of education. Nearly one quarter (22.4%) of study participants were from richer wealth quintiles 219 and more than half (59.7%) of the women were not using any contraceptive methods, and a half 220 221 (50.6%) of the participants consumed more than five food types. More than three guarters (77.1%) of participants had mosquitoes bed nets for sleeping. High proportion of women 222 (68.8%) belonged to urban areas, and were from Bagmati province (21.9%). More than half 223 (54.2%) of the women had the highest percentage of community female education, whilst, nearly 224 two-thirds (64%) of the women belonged to a low percentage of community female wealth 225

Page 13 of 49

BMJ Open

1 2	
3 4	226
5 6 7	227
7 8 9	228
10 11	229
12 13	230
14 15 16	231
16 17 18	232
18 19 20	233
21 22	234
23 24 25	235
25 26 27	236
28 29	237
30 31 32	238
33	239
34 35	240
36 37 38	241
39 40	242
41 42	243
43 44 45	244
46 47	245
48 49	246
50 51 52	247
52 53 54	248
55 56	249
57 58	
59 60	

index. Majority of the participants had improved sources of drinking water (91%) and type oftoilet facility (84.1%). (Table 1)

228 Prevalence of anaemia among women of reproductive age

In the current study, the overall prevalence of any anaemia across Nepal was 41% (95% CI: 29 30 38.5-42.9%). At the individual level, the prevalence of anaemia was higher among younger age 31 groups (43.6 %), and women who attended at least secondary level education (42.7 %). The 32 higher prevalence of anaemia were found in middle socio-economic class families (48.9%). The prevalence of anaemia was more among women who had undergone female sterilization 33 34 (53.7%), and those who consumed less than five food groups (51%). At the community-level, the prevalence of anaemia was higher in women who came from Province-2 (57.7%). The high 35 prevalence of anaemia was found in community with low female education (47.9 %), female 36 37 wealth index (44.3%), and who did not have improved toilet facility (51.5%) (Table 1).

Factors affecting anaemia among women of reproductive age

The fixed effects (a measure of association) and the random-effects for the risk of developing 40 anaemia among WRA are presented in Table 2. The results of the empty model (model 1) 41 showed that there was statistically significant variability in the odds of anaemia between 42 communities (τ =0.627, p<0.001). The ICC in the empty model implied that 16% of the total 43 variance for the risk of developing anaemia was attributed to differences between the 44 45 communities. In individual-level factors (model 2), women who did not have formal education (aOR=2.22, 95% CI: 1.35-3.82) compared to those with higher education, and who belonged to 46 middle-class families (aOR=1.38, 95% CI: 0.86-2.20) compared to the family from poorest 47 48 families were found to have higher odds of anaemia. Older women had 52% lower (aOR=0.48, 95% CI: 0.24-0.83) odds of developing anaemia compared to younger women. Women who used .49

hormonal contraceptive methods had 35% lower (aOR=0.65, 95% CI: 0.46-0.92) odds of anaemia compared to who did not use contraceptive methods. The ICC in model 2 indicated that 11.8% of the variation in WRA anaemia was attributable to differences across communities. The PCV indicated that 29.3% of the variance in WRA anaemia across communities was explained by the individual-level characteristics. The community-level (model 3) showed that women from Province-2 had 2.5 times higher (aOR=2.51, 95% CI: 1.79-3.53) odds of anaemia compared to women from Bagmati province. Women who belonged to communities with a low percentage of the wealthy households had 1.48 times higher (aOR=1.48, 95% CI: 1.21-1.80) odds of anaemia compared to those coming from high percentage of the wealthy household; and women residing in communities with a low percentage of community female education had 1.39 times higher (aOR=1.39, 95% CI: 1.15-1.68) odds of anaemia compared to those coming from the communities with a high percentage of education. The ICC in model 3 showed that differences between communities accounted for about 11.1% of the variation in anaemia among WRA. In addition, the PCV indicated that 33.9% of the variation in WRA anaemia between communities was explained by community-level characteristics. In model 4, women who had undergone female sterilization were at higher (aOR: 3.61, 95% CI: 1.10-11.84) odds of anaemia compared to those who did not use contraceptive methods. Women with no formal education were found to have 2 times higher (aOR=1.99, 95% CI: 1.17-3.39) odds of anaemia compared to women who had higher education. Women from middle socio-economic family had higher (aOR=1.65, 95% CI: 1.02-2.68) odds of anaemia compared to

- poorest counterparts. Women who came from Province-2 (aOR=2.97, 95% CI: 1.52-5.82) had
- higher odds of anaemia compared to Bagmati province. The older women had 49% lower

1	
2	
3	
4	
5	
6	
7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57	
50	
59	
60	

(aOR=0.51, 95% CI: 0.26-0.97) odds of anaemia compared to younger women, and women who
used hormonal contraceptive methods had 37% lower (aOR=0.63, 95% CI: 0.43-0.90) odds of
anaemia compared to who did not use contraceptive methods. After the inclusion of both the
individual and community-level variables in model 4, the ICC indicated that 9.5% of the
variability in anaemia among WRA was attributable to the difference between communities.
Furthermore, the PCV indicated that 44.6% of the variation in anaemia among WRA between
communities was explained by both individual and community-level characteristics (Table 2).

280 Spatial data analysis

Figure 3(a) shows the prevalence of anaemia among WRA across provinces in Nepal. A severe
anaemia prevalence (≥40%) among WRA was seen in Province-2, followed by Province-1 and 5.
The prevalence of moderate anaemia (20-39.9%) was observed in Bagmati, Gandaki, Karnali,
and Sudurpaschim province. Mild anaemia (prevalence<19.9%) was not found in any provinces.
Figure 3(b) shows the prevalence of anaemia among WRA across 75 districts in Nepal. The
prevalence rate of severe anaemia was observed in 29 out of 75 districts, and mild anaemia was
found in only eight districts (Figure 3).

The standardized prevalence ratio by provinces (standardized to the national mean prevalence of 41%) are shown in Figure 4 (a), and ranged from 0.68 to 1.4. The higher prevalence ratio of anaemia was found in Province-2, whereas a lower prevalence ratio was observed in Bagmati, Gandaki, and Karnali province. Figure 4 (b) shows the standardized prevalence ratio across the 75 districts, and ranged from 0.76 to 1.59. The higher standardized prevalence ratio of anaemia was observed in 17 out of 75 districts across the country (Figure 4).

The spatial pattern and distribution of anaemia among WRA at the cluster level are displayed in
Figure 5. The spatial analysis at the cluster level showed that statistically significant high
hotspots of anaemia were observed in the southern Terai of the country bordering India:
Province-2 (8 districts), Province-1 (4 districts), southern plain of the Bagmati province (1
district), and southwestern region of Province-5 (3 districts). Whilst, cold spots of anaemia were
observed in most of the Hilly regions of the country (Figure 5).

DISCUSSION

In this study, more than 40% of WRA were anaemic which implies that anaemia is still an important public health problem in Nepal. [40] Geographical pattern showed that anaemia is an important public health problem in three of the seven provinces and 29 out of the 75 districts in Nepal. The higher prevalence of anaemia was observed in the southern Terai bordering India particularly in Province-2, and the upper Himalayan region of the country. The spatial analysis at the cluster level showed that high hot spots of anaemia were observed in Terai region especially in Province 1, 2 and 5. These findings are consistent with a previous study [57] which was based on the analysis of Nepal National Micronutrient Status Survey 2016 and found WRA living in the Terai ecological zone had higher odds of anaemia relative to women living in the Mountain and Hill regions. A possible reason could be that in the Terai region, there is a shortage of safe and adequate drinking water supply and the risks of malaria and hookworm infestation are high. [30]

In the southern Terai of Nepal, despite ecological richness, people have long suffered from a
deficiency of micronutrients such as Vitamin A, iron and zinc,[26] and a high burden of
hookworm infestation and malaria which can contribute to development of anaemia.[30] Diet of
women in the Terai lack diversity and, nutrient adequacy which pose an increased risk of

Page 17 of 49

BMJ Open

anaemia.[27] Terai region of Nepal is endemic to malaria in contrast to Hill and Mountain region of Nepal, [31,32,58] and thus poses higher risk of anaemia. [30] The majority (90%) of the population from Terai region rely on groundwater especially shallow tube well for domestic purposes including drinking whereas most of the people from Mountain and Hill region rely on municipal taps, spring water source, and stone spouts as drinking water sources. Terai region is the most densely populated region compared to Hill and Mountain regions of Nepal. The population of Terai increased dramatically after the 1970s because people from the Mountains and Hills migrated to Terai for permanent settlement. [33] Most of the water wells were installed to meet the growing population demand. However, well water in the Terai consists of high arsenic concentrations (>10 μ g/L) beyond the WHO recommendation. [33] A previous study also explained the high burden of anaemia might be due to chronic exposure to arsenic through contaminated groundwater in Terai region. [57] Higher arsenic concentration can inhibit haem iron metabolism and increase erythrocyte hemolysis.[59] Consequently, drinking arsenic-containing water poses an increased risk of anaemia among women.[60] Arsenic exposure was more likely to cause anaemia among women in Bangladesh.[61] The spatial analysis at the cluster level found that high hotspots of anaemia were also observed in southwestern region (Province-5, and southern plain of Sudurpaschim province), particularly Banke, Bardiya and Kanchanpur district. A previous study highlighted that Glucose 6 phosphate dehydrogenase deficiency (G6PDd), sickle cell trait (SCT), and sickle cell anaemia (SCA) as the most common disorder in Tharu communities living in southwestern province-5, and sudurpaschim province [62,63]. Study based on the Nepal National Micronutrient Status Survey 2016 also found the G6PD and haemoglobinopathies had strong association with anaemia among WRA.[57]

The geographical variance of high cases of anaemia across the high Mountainous region could be attributed to food insecurity, low dietary diversity, [12,27,34] less calorie diet,[27] poor health service coverage,[25] high illiteracy, gender based-inequality, and poor health seeking behaviour.[23,24]

343 Socio-demographic characteristic among women and anaemia

Women who had no formal education, and those who came from middle socio-economic households, and from younger age group were at increased risk of anaemia. These findings are in line with previous studies from low and middle-income countries (LMICs) including Ethiopia,[39] India,[64] Tanzania,[65] Rwanda,[66] Timor-Leste,[67] and Bangladesh.[68] Studies from Ethiopia and Tanzania suggest that higher-level education might enable women to gain knowledge and improve attitude which in turn can promote them to adopt healthier lifestyle including good nutrition habits, better health-seeking behavior, and good hygiene practices that can prevent anaemia.[39,65]

Anaemia is a multifaceted problem where nutrition and household economic status are considered to have a synergistic association.[66] Women belonging to poorer households are more likely to be anaemic compared to those living in middle or richer households in most of the countries.[17,39,66]. Contrastingly, this study revealed that poorer Nepalese women were less likely to be anaemic. Similar findings were reported by a previous study which was based on the analysis of the 2016 NDHS dataset. [36] The possible reason could be first, Nepal is an agrarianbased country and the staple diet may be similar for most of the households.[69] Second, poorer Nepalese women being at lower risk of anaemia might be due to the nationwide open defecation free (ODF) campaign initiated after 2011, which was targeted at poor households which contributed to the reduction of anaemia through the reduction in prevalence of helminthiasis.

Page 19 of 49

1

BMJ Open

2	
3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
10	
18 19 20	
19 20	
∠∪ ว1	
21 22 23	
22	
23 24	
24	
25	
26	
27	
28 29	
29	
30	
31 32	
32	
33	
34 25	
35	
36	
37	
38 39	
39 40	
40 41	
41	
42	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
55	
56	
57	
58	
59	
60	

362	[36] Third, there was various ongoing health and nutrition intervention program targeted at
363	poorer households. For instance, consumption of iron-rich dark green leafy vegetables available
364	from their kitchen garden, [70] consumption of animal source foods, and dietary iron
365	consumption. Interventions such as Suaahara-I (from 2011 to 2016), and Sunaula Hazar Din
366	(from 2014 to 2017), which provided financial and technical support to poor households for
367	poultry farming, and contributed to increased consumption of meat and eggs among
368	WRA.[71,72] Future studies are critical to explore the association of household economic status
369	and anaemia among WRA in Nepal.
370	In this study, the prevalence of anaemia was found to be decreasing with increasing age. These
371	findings are consistent with studies from Nepal, [36] Ethiopia, [39] Demographic Republic of
372	Congo,[73] and Benin.[60] The possible reason could be that the low fertility rates are high
373	among older women.[39] Also, it might be due to young girls being under-represented in the
374	public health programs that aim to prevent anaemia in Nepalese context. [36] However,
375	Government of Nepal has started weekly iron folic acid supplementation to adolescent girls aged
376	10-19 years only after 2016.[74] In contrast, few studies from Nepal did not show any
377	association of age with anaemia.[35,37] The discrepancies might be due to the nature of
378	statistical model used in the analysis.
379	Effect of contraceptive use on anaemia
380	In this study, those using hormonal contracentive were less likely to be anaemic among WRA

In this study, those using hormonal contraceptive were less likely to be anaemic among WRA
 which is consistent with previous studies conducted in Nepal,[35,36] Rwanda,[66] Tanzania,[65]
 and Ethiopia.[75] This could be due to multiple reasons. For instance, use of hormonal
 contraceptive can reduce the blood loss during the menstruation.[76,77] Almost 100-150 mg of
 iron is lost during menstrual bleeding.[78] Subsequently, this may directly or indirectly furnish

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

iron loss among women at high risk for iron-deficiency anaemia.[77,78] A previous study also
suggested that Depo-Provera injections were more likely to increase haemoglobin concentration
among WRA in Nepal.[79] Interestingly, in this study women who had undergone female
sterilization were at increased risk of anaemia. These findings are in line with the similar study
conducted in Nepal.[36,80]

Community-level factors and anaemia

In this study, estimated intra-class correlation (ICC) shows that about 9.5% of the community level variability was attributable to the difference between communities among WRA. The PCV indicated that 44.6% of the variation in WRA anaemia between communities was explained by both individual and community-level characteristics. This finding is in line with the study conducted in Ethiopia, where both individual- and community-level factors accounted for about 43% of the variability of anaemia among WRA.[39] Women who came from Province-2 had more than two times higher odds of anaemia compared to Bagmati province. Previous studies reported that women from province number 2 were more likely to be coming from lower socioeconomic status and less diverse diet (an estimated 29% of minimum dietary diversity (MDD)). [12,29] Other evidence from Nepal also suggested that women in Province 2 have poor nutritional status.[81] In addition, compliance rate of recommended dose of iron tablets amongst the pregnant mothers in Province-2 was also low (28%) compared to other provinces.[12] This study showed that promoting community female education has a potential role in lowering the likelihood of anaemia which echoes with a study from Malawi.[42] This could be explained by the fact that higher community education provides a context where women are enabled to gain nutritional knowledge and material resources [28] that can increase consumption of ironabsorption-enhancers such as vitamin C, phytates (whole grains, legumes), and calcium (dairy

Page 21 of 49

BMJ Open

products). Increasing community level education can play an important role in promoting
knowledge and attitude which in turn can incite them to adopt healthier lifestyle including good
nutrition habits that can ultimately prevent anaemia.[39,65,70]

411 Strength and limitation

This study is conducted based on the spatial pattern and multilevel epidemiological analysis of anaemia among WRA in Nepal using cluster sampling of nationally representative data. The combined statistical methods including multilevel and spatial analysis used in this study provides important insights on the role of contextual factors and geographical patterns in the occurrences of anaemia among WRA in Nepal. This study has some limitations. The cross-sectional design of the study does not allow us to establish the causality. This study relied on haemoglobin as the measure of anaemia; further studies should consider other indices that include total ferritin and total iron binding capacity to differentiate the types of anaemia. Since this study is based on the secondary data analysis, we are unable to incorporate potential confounding factors of anaemia such as nutrient intake, worm infestations, and other non-modifiable risk factors.

422 CONCLUSION

This study highlighted a high prevalence of anaemia among WRA across Nepal. At an individual level, women who had no formal education, those who came from middle socio-economic class families were more likely to be anaemic, whereas, older women, and those who used hormonal contraceptive were less likely to be anaemic. At the community level, low community female education, and women living in Province-2 were associated with increased odds of anaemia. In the spatial analysis, our study found statistically significant hot spots in the southern Terai region particularly in Province-1 (4 districts), Province-2 (8 districts), Bagmati province (1 district), and Province-5 (3 districts). Both nutrition specific and nutrition sensitive interventions such as

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 22 of 49

BMJ Open

social and behavioral programs can tailor their strategies based on the factors identified in thisstudy to reduce the high burden of anaemia.

433 Acknowledgements

We thank Measure DHS, ICF Macro for granting free access to the data used in this analysis. We
are grateful to Professor Dr. Kalpana Tiwari, Director of Research and Planning Purbanchal
University, Faculty of Science and Technology, College of Applied Food and Dairy Technology,
Kathmandu Nepal for assistance of undertaking this research.

Contributors

439 Dev Ram Sunuwar (DRSu), Devendra Raj Singh (DRSi), Bipin Adhikari (BA), Santosh Shrestha
440 (SS), and Pranil Man Singh Pradhan (PMSP). DRSu designed, conceptualized the study, data

extraction and analysis, interpreted the results, generate the map, writing an original draft,

442 reviewing, editing, and overall supervision of the research. SS generate the map, and writing an

443 original draft. DRSi, BA, and PMSP writing an original draft, reviewing and editing, overall

supervision of the research. All authors read and approved the final manuscript.

445 Funding

This research received no specific grant from any funding agency in the public, commercial or

447 not-for-profit sectors.

Competing interests

449 None declared

Patient consent for publication

451 Not required

Ethical approval

2 3 4 5	453	The NDHS 2016 was approved by the Nepal Health Research Council (NHRC) and ICF Macro.
6 7	454	Data sharing statement
8 9	455	Dataset used in this study is publicly available from the DHS website (URL:
10 11 12	456	https://www.dhsprogram.com/data/available-datasets.cfm).
13 14 15	457	
16 17 18	458	REFERENCES
19 20	459	1 Benoist BD, McLean E, Egli I, Cogswell M, Editors. Worldwide prevalence of anaemia
21 22 23	460	1993–2005.
24 25	461	2008.http://apps.who.int/iris/bitstream/handle/10665/43894/9789241596657_eng.pdf?seq
26 27 28	462	uence=1 (accessed 27 Mar 2018).
29 30 31	463	2 Stevens GA, Finucane MM, De-Regil LM, et al. Global, regional, and national trends in
32 33	464	haemoglobin concentration and prevalence of total and severe anaemia in children and
34 35	465	pregnant and non-pregnant women for 1995-2011: A systematic analysis of population-
36 37	466	representative data. Lancet Glob Heal 2013;1:16-25. doi:10.1016/S2214-109X(13)70001-
38 39 40	467	9
41 42	468	3 Kassebaum NJ, Jasrasaria R, Naghavi M, <i>et al.</i> A systematic analysis of global anemia
43 44 45	469	burden from 1990 to 2010. <i>Blood</i> 2014; 123 :615–24. doi:10.1182/blood-2013-06-508325
46 47 48	470	4 Sunuwar DR, Singh DR, Chaudhary NK, <i>et al.</i> Prevalence and factors associated with
49 50	471	anemia among women of reproductive age in seven South and Southeast Asian countries:
51 52	472	Evidence from nationally representative surveys. PLoS One 2020;15:e0236449.
53 54 55 56	473	doi:10.1371/journal.pone.0236449
57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	474	5	World Health Organization (WHO). Global Health Observatory Data Repository/World
4 5 6	475		Health Statistics. 2016.http://apps.who.int/gho/data/node.main.1lang=en
7 8 9	476	6	Akseer N, Kamali M, Arifeen SE, et al. Progress in maternal and child health: How has
10 11 12	477		South Asia fared? BMJ 2017;357. doi:10.1136/bmj.j1608
13 14 15	478	7	WHO. Global nutrition targets 2025: anaemia policy brief (WHO/NMH/NHD/14.4).
16 17	479		2014;:1–
18 19 20	480		7.http://www.who.int//iris/bitstream/10665/148556/1/WHO_NMH_NHD_14.4_eng.pdf
21 22	481	8	Harding KL, Aguayo VM, Webb P. Hidden hunger in South Asia: A review of recent
23 24	482		trends and persistent challenges. Public Health Nutr 2018;21:785-95.
25 26 27	483		doi:10.1017/S1368980017003202
28 29 30	484	9	National Planning Committee Government of Nepal. Multi-Sector Nutrition Plan (2018-
31 32	485		2022). 2017. http://www.nnfsp.gov.np/PublicationFiles/1588f12e-7c45-4506-829d-
33 34 35	486		8fe162da97e5.pdf
36 37	487	10	United Nations. THE 17 GOALS Sustainable Development.
38 39 40	488		2015.https://sdgs.un.org/goals (accessed 16 Jan 2021).
41 42	489	11	Ministry of Health and Population, New ERA, The DHS Program ICF. Nepal
43 44 45	490		Demographic and Health Survey 2011. 2011;:163-71. doi:10.1007/978-94-6091-391-
46 47	491		4_15
48 49 50	492	12	Ministry of Health, New ERA, The DHS Program ICF (2017). Nepal Demographic and
51 52	493		Health Survey. 2016.https://www.dhsprogram.com/pubs/pdf/FR336/FR336.pdf (accessed
53 54 55	494		11 Jul 2019).
56 57			
58 59			23
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 49

1 2			
3 4	495	13	World Health Organization. Department of Nutrition for Health and Development. Iron
5 6	496		deficiency anaemia: assessment, prevention and control: a guide for programme managers.
7 8 9	497		Geneva: World Health Organization. 2001;:1–114. doi:10.1136/pgmj.2009.089987
10 11 12	498	14	Scholl TO, Hediger ML, Fischer RL, et al. Anemia vs iron deficiency: increased risk of
13 14	499		preterm delivery in a prospective study. Am J Clin Nutr 1992;55 (5):985-8.
15 16 17	500		doi:10.1093/ajcn/55.5.985
18 19	501	15	Szerafin L, Jakó J. Anemia in Pregnancy: Characteristics in Szabolcs-Szatmár-Bereg
20 21 22	502		County, Hungary. Orv Hetil 2010;151:1347-52. doi:10.1556/OH.2010.28887
23 24	503	16	Rasmussen KM. Is There a Causal Relationship between Iron Deficiency or Iron-
25 26 27	504		Deficiency Anemia and Weight at Birth, Length of Gestation and Perinatal Mortality? J
28 29	505		Nutr Published Online First: 2001.https://academic.oup.com/jn/article-
30 31 32	506		abstract/131/2/590S/4686836 (accessed 10 Jun 2020).
33 34	507	17	Balarajan Y, Ramakrishnan U, Özaltin E, et al. Anaemia in low-income and middle-
35 36 37	508		income countries. Lancet 2011; 378 :2123–35. doi:10.1016/S0140-6736(10)62304-5
38 39 40	509	18	Rabbani G, Saw A, Sayem A, et al. Differentials in the prevalence of anemia among non-
41 42	510		pregnant, ever-married women in Bangladesh: multilevel logistic regression analysis of
43 44	511		data from the 2011 Bangladesh Demographic and Health Survey. BMC Womens Health
45 46 47	512		2015;:4–11. doi:10.1186/s12905-015-0211-4
48 49 50	513	19	Baradwan S, Alyousef A, Turkistan A. Associations between iron deficiency anemia and
50 51 52	514		clinical features among pregnant women: A prospective cohort study. J Blood Med
53 54 55 56	515		2018; 9 :163–9. doi:10.2147/JBM.S175267
57 58			24
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

516	20	Sanghvi TG, Harvey PWJ, Wainwright E. Maternal iron-folic acid supplementation
517		programs: Evidence of impact and implementation. Food Nutr Bull 2010;31.
518		doi:10.1177/15648265100312s202
519	21	Galloway R, Dusch E, Elder L, et al. Women's perceptions of iron deficiency and anemia
520		prevention and control in eight developing countries. Soc Sci Med 2002;55:529-44.
521		doi:10.1016/S0277-9536(01)00185-X
522	22	McLean E, Cogswell M, Egli I, et al. Worldwide prevalence of anaemia, WHO Vitamin
523		and Mineral Nutrition Information System, 1993-2005. Public Health Nutr 2009;12:444–
524		54. doi:10.1017/S1368980008002401
525	23	Nepal National Planning Commission. Nepal Human Development Report 2014: Beyond
526		geography. 2014. https://www.npc.gov.np/images/category/NHDR_Report_20141.pdf
527	24	Nepal Development Research Institute and UNFPA. Situational Assessment for Improved
528		Gender Based Violence Prevention and Response in Selected Districts of Nepal, Lalitpur,
529		Nepal; 2017.
530	25	Adhikari B, Mishra SR. Urgent need for reform in Nepal's medical education. Lancet
531		2016; 388 :2739–40. doi:10.1016/S0140-6736(16)32423-0
532	26	Parajuli RP, Umezaki M, Watanabe C. Diet among people in the Terai region of Nepal, an
533		area of micronutrient deficiency. J Biosoc Sci 2012;44:401-15.
534		doi:10.1017/S0021932012000065
535	27	Campbell RK, Talegawkar SA, Christian P, et al. Seasonal dietary intakes and
536		socioeconomic status among women in the terai of Nepal. J Heal Popul Nutr
		25
		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
	 517 518 519 520 521 522 523 526 527 526 527 528 529 530 531 532 533 534 535 	51751851921520215212252222523235242352523526245282452925531255322653327

1 2						
4	537		2014; 32 :198–216. doi:10.3329/jhpn.v32i2.2615			
6 7	538	28	Sunuwar DR, Sangroula RK, Shakya NS, et al. Effect of nutrition education on			
8 9	539		hemoglobin level in pregnant women: A quasi-experimental study. PLoS One 2019;14.			
11 12	540		doi:10.1371/journal.pone.0213982			
14	541	29	Sunuwar DR, Singh DR, Pradhan PMS. Prevalence and factors associated with double and			
16	542		triple burden of malnutrition among mothers and children in Nepal: evidence from 2016			
18 19	543		Nepal demographic and health survey. BMC Public Health 2020;20:405.			
20 21 22	544		doi:10.1186/s12889-020-8356-y			
24	545	30	Dreyfuss ML, Stoltzfus RJ, Shrestha JB, et al. Hookworms, Malaria and Vitamin A			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Deficiency Contribute to Anemia and Iron Deficiency among Pregnant Women in the			
27 28 547 Plains of Nepal. <i>J Nutr</i> 2000; 130 :2527–36. do			Plains of Nepal. J Nutr 2000;130:2527–36. doi:10.1093/jn/130.10.2527			
31	 Plains of Nepal. <i>J Nutr</i> 2000;130:2527–36. doi:10.1093/jn/130.10.2527 Rijal KR, Adhikari B, Ghimire P, <i>et al.</i> Epidemiology of Plasmodium vivax n 					
33 34	infection in Nepal. Am J Trop Med Hyg 2018; 99 :680–7. doi:10.4269/ajtmh.18-0					
37	550	32	Rijal KR, Adhikari B, Adhikari N, et al. Micro-stratification of malaria risk in Nepal:			
 Implications for malaria control and elimination. <i>Trop Med Health</i> 2019;47:1- 						
40 41 552 doi:10.1186/s41182-019-0148-7						
43 44	553	33	Pokhrel D, Bhandari BS, Viraraghavan T. Arsenic contamination of groundwater in the			
46	554		Terai region of Nepal: An overview of health concerns and treatment options. Environ.			
48 49	555		Int. 2009; 35 :157–61. doi:10.1016/j.envint.2008.06.003			
51 52	556	34	Singh DR, Ghimire S, Upadhayay SR, et al. Food insecurity and dietary diversity among			
54 55	557		lactating mothers in the urban municipality in the mountains of Nepal. PLoS One			
57						
59			26 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			
00						

1 2			
2 3 4 5	558		2020;15:0-17. doi:10.1371/journal.pone.0227873
6 7 8 9 10 11 12	559	35	Gautam S, Min H, Kim H, et al. Determining factors for the prevalence of anemia in
	560		women of reproductive age in Nepal: Evidence from recent national survey data. PLoS
	561		One 2019;14:e0218288. doi:10.1371/journal.pone.0218288
13 14	562	36	Rai A, Khan MN, Thapa S. Trends and determinants of anaemia in women of Nepal: a
15 16 17	563		multilevel analysis. Matern Child Nutr 2020;16:1–14. doi:10.1111/mcn.13044
18 19 20	564	37	Harding KL, Aguayo VM, Namirembe G, et al. Determinants of anemia among women
21 22	565		and children in Nepal and Pakistan: An analysis of recent national survey data. Matern
23 24 25	566		Child Nutr 2018;14:1–13. doi:10.1111/mcn.12478
26 27	567	38	Rose LE. Nepal History, Population, Flag, Language, Map, & Facts Britannica.
28 29 30	568		https://www.britannica.com/place/Nepal (accessed 18 Jan 2021).
31 32 33	569	39	Kibret KT, Chojenta C, D'Arcy E, et al. Spatial distribution and determinant factors of
34 35	570		anaemia among women of reproductive age in Ethiopia: A multilevel and spatial analysis.
36 37 38	571		<i>BMJ Open</i> 2019; 9 :1–14. doi:10.1136/bmjopen-2018-027276
39 40	572	40	World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and
41 42	573		assessment of severity. Geneva: World Health Organization, 2011.
43 44 45	574		http://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed 27 Mar 2018).
46 47 48	575	41	FAO F. Minimum dietary diversity for women: a guide for measurement. Rome FAO
49 50	576		2016.
51 52 53	577	42	Ntenda PAM, Nkoka O, Bass P, et al. Maternal anemia is a potential risk factor for
54 55 56	578		anemia in children aged 6-59 months in Southern Africa: A multilevel analysis. BMC
57 58			27
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3			
4 5	579		<i>Public Health</i> 2018; 18 :1–13. doi:10.1186/s12889-018-5568-5
6 7	580	43	Ntenda PAM, Chuang KY, Tiruneh FN, et al. Multilevel analysis of the effects of
8 9	581		individualand community-level factors on childhood anemia, severe anemia, and
10 11 12	582		hemoglobin concentration in Malawi. J Trop Pediatr 2018;64:267–78.
13 14	583		doi:10.1093/tropej/fmx059
15 16 17	584	44	World Health Organization (WHO), United Nations Children's Fund (UNICEF). WHO
18 19	585		and UNICEF Joint Monitoring Programme (JMP) for water supply and sanitation: types of
20 21	586		drinking-water sources and sanitation. Geneva, Switzerland. Published Online First:
22 23 24	587		2015.http://www.wssinfo.org/definitions-methods/%0Awatsan-categories/
24 25 26	588	45	Merlo J, Chaix B, Ohlsson H, et al. A brief conceptual tutorial of multilevel analysis in
27 28	589		social epidemiology: Using measures of clustering in multilevel logistic regression to
29 30	590		investigate contextual phenomena. J Epidemiol Community Health 2006;60:290–7.
31 32			
33 34	591		doi:10.1136/jech.2004.029454
35 36 37	592	46	Joseph F. Hair J, Black WC, Babin BJ, et al. Multivariate Data Analysis, 7th Edition
38 39	593		Pearson. https://www.pearson.com/us/higher-education/program/Hair-Multivariate-Data-
40 41 42	594		Analysis-7th-Edition/PGM263675.html (accessed 3 Apr 2020).
43 44	595	47	Merlo J, Chaix B, Yang M, et al. A brief conceptual tutorial on multilevel analysis in
45 46	596		social epidemiology: Interpreting neighbourhood differences and the effect of
47 48	597		neighbourhood characteristics on individual health. J Epidemiol Community Health
49 50 51	598		2005; 59 :1022-8. doi:10.1136/jech.2004.028035
52 53	599	48	Guo G, Zhao H. Multilevel Modeling for Binary Data. Annu Rev Sociol 2000;26:441-62.
54 55		40	
56 57	600		doi:10.1146/annurev.soc.26.1.441
58 59			28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			

3 4	601	49	Diez Roux A V. A glossary for multilevel analysis. J Epidemiol Community Health
3 4 5 6 7 8 9 10 11 2 3 14 5 16 7 18 9 20 1 22 3 24 25 26 7 28 9 30 31 32 33 4 35 36 7 38 9 40 1 42 3 44 5 6 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	602		2002;56:588-94. doi:10.1136/jech.56.8.588
	603	50	Goverment of Nepal, Survey Department. Ministry of Land Management, Coperatives and
	604		Poverty Alleviation. 2020.http://dos.gov.np/
	605	51	North American Cartographic Information Society (NACIS) Collaborators. Natural Earth.
	606		http://www.naturalearthdata.com/ (accessed 17 Jun 2020).
19	607	52	Ohsawa M, Tanno K, Okamura T, et al. Standardized prevalence ratios for atrial
21 22	608		fibrillation in adult dialysis patients in Japan. <i>J Epidemiol</i> 2016; 26 :272–6.
24 25	609		doi:10.2188/jea.JE20150077
27	610	53	Anselin L, Sridharan S, Gholston S. Using exploratory spatial data analysis to leverage
29 30 31 32 33 34 35 36 37	611		social indicator databases: The discovery of interesting patterns. Soc Indic Res
	612		2007; 82 :287–309. doi:10.1007/s11205-006-9034-x
	613	54	Liyew AM, Kebede SA, Agegnehu CD, et al. Spatiotemporal patterns of anemia among
	614		lactating mothers in ethiopia using data from ethiopian demographic and health surveys
39 40	615		(2005, 2011 and 2016). PLoS One 2020;15:1–17. doi:10.1371/journal.pone.0237147
42	616	55	Ord JK, Getis A. Local Spatial Autocorrelation Statistics: Distributional Issues and an
44 45	617		Application. <i>Geogr Anal</i> 1995; 27 :286–306. doi:10.1111/j.1538-4632.1995.tb00912.x
47 48 49 50	618	56	Demographic and Health Surveys. The DHS Program.
	619		https://www.dhsprogram.com/data/available-datasets.cfm (accessed 20 Jun 2020).
52	620	57	Ford ND, Bichha RP, Parajuli KR, et al. Factors associated with anaemia in a nationally
55 56	621		representative sample of nonpregnant women of reproductive age in Nepal. Matern Child
58			29
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4 5	622		Nutr 2020;:1-11. doi:10.1111/mcn.12953
6 7	623	58	Gautam N, Kakchapati S, Shrestha S, et al. Patterns and trends of malaria in 25 risk
8 9	624		districts of nepal from 2001 to 2017. Clin Exp Vaccine Res 2019;8:77-85.
10 11 12	625		doi:10.7774/cevr.2019.8.1.77
13 14 15	626	59	Mahmud H, Föller M, Lang F. Arsenic-induced suicidal erythrocyte death. Arch Toxicol
16 17	627		2009; 83 :107–13. doi:10.1007/s00204-008-0338-2
18 19 20	628	60	Hopenhayn C, Bush HM, Bingcang A, et al. Association between arsenic exposure from
21 22	629		drinking water and anemia during pregnancy. J Occup Environ Med 2006;48:635-43.
23 24 25	630		doi:10.1097/01.jom.0000205457.44750.9f
26 27	631	61	Heck JE, Chen Y, Grann VR, et al. Arsenic Exposure and Anemia in Bangladesh: A
28 29 30	632		Population-Based Study. J Occup Environ Med 2008;50:80–7.
31 32 33	633		doi:10.1097/JOM.0b013e31815ae9d4
34 35	634	62	Ghimire P, Singh N, Ortega L, et al. Glucose-6-phosphate dehydrogenase deficiency in
36 37	635		people living in malaria endemic districts of Nepal. Malar J 2017;16:214.
38 39 40	636		doi:10.1186/s12936-017-1864-2
41 42	637	63	Gautam N, Gaire B, Manandhar T, et al. Glucose 6 phosphate dehydrogenase deficiency
43 44 45	638		and hemoglobinopathy in South Western Region Nepal: A boon or burden. BMC Res
46 47	639		Notes 2019;12:1-6. doi:10.1186/s13104-019-4762-6
48 49 50	640	64	Balarajan YS, Fawzi WW, Subramanian S V. Changing patterns of social inequalities in
51 52	641		anaemia among women in india: Cross-sectional study using nationally representative
53 54	642		data. BMJ Open 2013;3. doi:10.1136/bmjopen-2012-002233
55 56 57			
58 59			30
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2		 women of reproductive age in Tanzania: Analysis of data from the 2010 Tanzania demographic and health survey. <i>Trop Med Int Heal</i> 2013;18:1488–97. doi:10.1111/tmi.12199 Hakizimana D, Nisingizwe MP, Logan J, <i>et al.</i> Identifying risk factors of anemia among women of reproductive age in Rwanda – a cross-sectional study using secondary data from the Rwanda demographic and health survey 2014 / 2015. <i>BMC Public Health</i> 2019;:1–11.https://www.ncbi.nlm.nih.gov/pubmed/31829161 Lover AA, Hartman M, Chia KS, <i>et al.</i> Demographic and Spatial Predictors of Anemia in Women of Reproductive Age in Timor-Leste : Implications for Health Program Prioritization. <i>PLoS One</i> 2014;9. doi:10.1371/journal.pone.0091252 						
3 4	643	65	wilunda C, Massawe S, Jackson C. Determinants of moderate-to-severe anaemia among					
5 6 7	644		women of reproductive age in Tanzania: Analysis of data from the 2010 Tanzania					
, 8 9	645		demographic and health survey. Trop Med Int Heal 2013;18:1488-97.					
10 11 12	646		doi:10.1111/tmi.12199					
13 14	647	66	Hakizimana D, Nisingizwe MP, Logan J, et al. Identifying risk factors of anemia among					
15 16	648		women of reproductive age in Rwanda – a cross-sectional study using secondary data					
17 18 19	649		from the Rwanda demographic and health survey 2014 / 2015. BMC Public Health					
20 21 22	650		2019;:1–11.https://www.ncbi.nlm.nih.gov/pubmed/31829161					
23 24	651	67	Lover AA, Hartman M, Chia KS, et al. Demographic and Spatial Predictors of Anemia in					
25 26	652		Women of Reproductive Age in Timor-Leste : Implications for Health Program					
27 28 29	653		Prioritization. <i>PLoS One</i> 2014;9. doi:10.1371/journal.pone.0091252					
30 31	654	68	Md. Kamruzzaman, Md. Golam Rabbani1, Aik Saw MAS and MGH. Differences in early					
32 33 34	655		postnatal morbidity risk by pattern of fetal growth in Argentina. Paediatr Perinat					
35 36 37	656		<i>Epidemiol</i> ; 5 :263–75.					
38 39	657	69	Adhikari RK. Food utilization practices, beliefs and taboos in Nepal-an overview. United					
40 41	658		States Agency for International Development–Global Health Technical Report. 2010.					
42 43 44	659		http://ghpro.dexisonline.com/sites/default/files/resources/legacy/sites/default/files/1.367					
44 45 660 Nep 46 47	Nepal Nutrition Overview Rpt 8_16_10 508.pdf (accessed 19 Jan 2020).							
48 49	661	70	Osei A, Pandey P, Nielsen J, et al. Combining Home Garden, Poultry, and Nutrition					
50 51	662		Education Program Targeted to Families With Young Children Improved Anemia Among					
52 53	663		Children and Anemia and Underweight Among Nonpregnant Women in Nepal. Food Nutr					
54 55 56	664		Bull 2017;38:49-64. doi:10.1177/0379572116676427					
57 58			31					
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

Page 33 of 49

1

2		 Cunningham K, Singh A, Pandey Rana P, <i>et al.</i> Suaahara in Nepal: An at-scale, multi-sectoral nutrition program influences knowledge and practices while enhancing equity. <i>Matern Child Nutr</i> 2017;13. doi:10.1111/mcn.12415 The World Bank. Nepal Sunaula Hazar Din Community Action for Nutrition Project Endline Report. 2018. http://documents1.worldbank.org/curated/en/176611539110943044/pdf/SHD-Endline-Report.pdf (accessed 14 Jan 2021). Kandala NI, Pallikadavath S, Amos Channon A, <i>et al.</i> A multilevel approach to correlates of anaemia in women in the Democratic Republic of Congo: findings from a nationally representative survey. <i>Eur J Clin Nutr</i> 2020;74:720–31. doi:10.1038/s41430-019-0524-8 Ministry of Health and Population, New ERA, UNICEF, EU, USAID &, CDC. Nepal National Micronutrient Status Survey Report 2016 UNICEF Nepal. 2018.https://www.unicef.org/nepal/reports/nepal-national-micronutrient-status-survey-report-2016 (accessed 14 Jan 2021). Gebremedhin S, Enquselassie F. Correlates of anemia among women of reproductive age in Ethiopia: Evidence from Ethiopian DHS 2005. <i>Ethiop J Heal Dev</i> 2011;25:22–30. doi:10.4314/ejhd.v25i1.69842 Miller L, Hughes JP. Continuous combination oral contraceptive pills to eliminate withdrawal bleeding: A randomized trial. <i>Obstet Gynecol</i> 2003:101.653–61. 			
3 4	665	71	Cunningham K, Singh A, Pandey Rana P, et al. Suaahara in Nepal: An at-scale, multi-		
5 6	666		sectoral nutrition program influences knowledge and practices while enhancing equity.		
7 8 9	667		Matern Child Nutr 2017;13. doi:10.1111/mcn.12415		
10 11 12	668	72	The World Bank. Nepal Sunaula Hazar Din Community Action for Nutrition Project		
13 14	669		Endline Report. 2018.		
15 16	670		http://documents1.worldbank.org/curated/en/176611539110943044/pdf/SHD-Endline-		
17 18 19	671		Report.pdf (accessed 14 Jan 2021).		
20 21	672	73	Kandala NI, Pallikadavath S, Amos Channon A, et al. A multilevel approach to correlates		
22 23 24	673		of anaemia in women in the Democratic Republic of Congo: findings from a nationally		
24 25 26 27	674		representative survey. Eur J Clin Nutr 2020;74:720-31. doi:10.1038/s41430-019-0524-8		
27 28 29	675	74	Ministry of Health and Population, New ERA, UNICEF, EU, USAID &, CDC. Nepal		
30 31	676		National Micronutrient Status Survey Report 2016 UNICEF Nepal.		
32 33 34	677		2018.https://www.unicef.org/nepal/reports/nepal-national-micronutrient-status-survey-		
35 36	678		report-2016 (accessed 14 Jan 2021).		
37 38 39	679	75	Gebremedhin S, Enquselassie F. Correlates of anemia among women of reproductive age		
40 41	680		in Ethiopia: Evidence from Ethiopian DHS 2005. Ethiop J Heal Dev 2011;25:22-30.		
42 43 44	681		doi:10.4314/ejhd.v25i1.69842		
45 46	682	76	Miller L, Hughes JP. Continuous combination oral contraceptive pills to eliminate		
47 48	683		withdrawal bleeding: A randomized trial. Obstet Gynecol 2003;101:653-61.		
49 50 51	684		doi:10.1016/S0029-7844(03)00014-0		
52 53 54	685	77	Bellizzi S, Ali MM. Effect of oral contraception on anemia in 12 low- and middle-income		
55 56	686		countries. Contraception 2018;97:236-42. doi:10.1016/j.contraception.2017.11.001		
57 58			32		
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

2			
3 4	687	78	Haile ZT, Kingori C, Teweldeberhan AK, et al. The relationship between history of
5 6	688		hormonal contraceptive use and iron status among women in Tanzania: A population-
7 8 9	689		based study. Sex Reprod Healthc 2017;13:97-102. doi:10.1016/j.srhc.2017.07.003
10 11 12	690	79	Chandyo RK, Strand TA, Ulvik RJ, et al. Prevalence of iron deficiency and anemia among
13 14	691		healthy women of reproductive age in Bhaktapur, Nepal. Eur J Clin Nutr 2007;61:262–9.
15 16 17	692		doi:10.1038/sj.ejcn.1602508
18 19	693	80	Jahanian Sadatmahalleh S, Ziaei S, Kazemnejad A, et al. Menstrual pattern following
20 21	694		tubal ligation: A historical cohort study. Int J Fertil Steril 2016;9:477-82.
22 23 24	695		doi:10.22074/ijfs.2015.4605
25 26 27	696	81	Rai A, Gurung S, Thapa S, et al. Correlates and inequality of underweight and overweight
28 29	697		among women of reproductive age: Evidence from the 2016 Nepal Demographic Health
30 31 32	698		Survey. PLoS One 2019;14:1–16. doi:10.1371/journal.pone.0216644
33 34	699	Figur	re 1 Flow chart for sample size selection
32 33 34 35 36 37 38 39	700 701	-	re 2 Study area map and observed anaemia prevalence among women of reproductive or the NDHS survey clusters
39 40 41	702 703		e 1 Socio-demographic characteristics and prevalence of anaemia among women of oductive age by determining factors (n=6,414)
42 43 44	704 705		e 2 Multilevel mixed-effects logistic regression for individual and community-level rs affecting anaemia among women of reproductive age (n=6,414)
45 46	706		e 3 (a) Prevalence of anaemia among women of reproductive age across provinces.
47 48	707	_	Prevalence of anaemia among women of reproductive age across districts
49 50 51 52 53 54 55 56			revalence of anaemia among women of reproductive age across districts
57 58			33
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 33 24 25 26 27 28 29 30 31 32 33	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	

Figure 4 (a) Standardized prevalence ratio of anaemia among women of reproductive age								
across provinces. 4 (b) Standardized prevalence ratio of anaemia among women of								
reproductive age across distri	cts (standardized to th	e national mean pro	evalence of 41%)				
Figure 5 Spatial pattern and o	listribution of hot and	cold spots of anaen	nia among wome	n of				
reproductive age at cluster lev	vel in Nepal							
Table 1 Socio-demographic cl reproductive age by determin	-	alence of anaemia a	among women of	Ī				
Variables	Total sample	Anaemia stat	us % (95% CI)	p-value ^{1, 2}				
	Frequency (%)	Not anaemic	Anaemic					
Overall prevalence	6414	59.3 (57.0-61.4)	40.7 (38.5-42.9)					
Severe anaemia	17 (0.3)							
Moderate anaemia	450 (7)							
Mild anaemia	2147 (33.4)							
Hemoglobin level, mean (<u>+</u> SD)	12.3 <u>+</u> 1.5	13.2 ± 0.9	10.8 <u>+</u> 1.1	< 0.001*				
Individual-level factors		1						
Age in years, mean (<u>+</u> SD)	29.1 <u>+</u> 9.7	29.5 ± 9.7	28.4 <u>+</u> 9.5	< 0.001*				
Age		U,		< 0.001*				
15-24	2443 (38.1)	56.4 (53.4-59.3)	43.6 (40.6-46.5)					
25-34	1971 (30.7)	58.7 (55.7-61.5)	41.3 (38.4-44.2)					
≥35	2000 (31.1)	63.2 (60.3-66)	36.8 (34-39.6)					
Education				0.086				
No education	2144 (33.4)	58.4 (55-61.7)	41.6 (38.2-44.9)					
Primary	1069 (16.6)	61.5 (57.1-65.7)	38.5 (34.2-42.8)					
Secondary	2277 (35.5)	57.3 (54.2-60.3)	42.7 (39.6-45.7)					

Higher	924 (14.4)	63.3	36.7	
		(58.7-67.6)	(32.3-41.3)	
Occupation				0.084
Not working	2096 (32.6)	57.1	42.9	
-		(53.7-60.3)	(39.6-46.2)	
Working	4318 (67.3)	60.3	39.7	
		(57.7-62.7)	(37.2-42.2)	
Wealth index				< 0.001
Poorest	1093 (17)	67.7	32.3	
		(63.8-71.2)	(28.7-36.1)	
Poorer	1225 (19.1)	58.5	41.5	
		(54.8-62.1)	(37.9-45.2)	
Middle	1317 (20.5)	51.1	48.9	
	, íl	(47.2-54.8)	(45.1-52.8)	
Richer	1441 (22.4)	56.6	43.4	
		(51.8-61.1)	(38.8-48.1)	
Richest	1338 (20.8)	64.1	35.9	
		(59.9-67.9)	(32.1-40.1)	
BMI, mean (+SD)	22 + 3.8	22.4 ± 3.9	21.4 ± 3.6	< 0.001
BMI (n=6411)				< 0.001
Normal	3925 (61.2)	57.4	42.6	
		(54.4-60.2)	(39.7-45.5)	
Underweight	1077 (16.8)	51.9	48.1	
-		(48.3-55.4)	(44.6-51.6)	
Overweight/obesity	1408 (21.9)	69.9	30.1	
		(66.5-73.2)	(26.7-33.4)	
Currently pregnant				0.081
No	6124 (95.4)	59.5	40.5	
		(57.3-61.6)	(38.3-42.7)	
Yes	290 (4.5)	53.9	46.1	
		(47.2-60.5)	(39.4-52.7)	
Currently breastfeeding				< 0.001
No	4988 (77.7)	60.7	39.3	
	, , , , , , , , , , , , , , , , , , ,	(58.4-62.9)	(37.1-41.6)	
Yes	1426 (22.2)	54.2	45.8	
	、	(50.6-57.7)	(42.2-49.3)	
Total children ever born				0.612
No child	1842 (28.7)	58.2	41.8	
	、	(54.5-61.7)	(38.2-45.4)	
1-3 child	3386 (52.8)	59.9	40.1	

BMJ Open

		(57.4-62.2)	(37.7-42.5)	
4+ child	1186 (18.4)	58.9	41.1	
		(55.1-62.7)	(37.2-44.8)	
Current contraceptive use				< 0.001*
Not using	3832 (59.7)	57.6	42.4	
		(54.9-60.1)	(39.8-45.1)	
Hormonal	905 (14.1)	70.5	29.5	
		(66.5-74.2)	(25.7-33.4)	
Female sterilization	730 (11.4)	46.3	53.7	
		(41.8-50.8)	(49.1-58.2)	
Male contraception	268 (4.2)	71.7	28.3	
		(61.9-79.8)	(20.1-38.1)	
Traditional	679 (10.6)	62.4	37.6	
		(58.1-61.4)	(33.3-41.9)	
Cigarette/smoking				< 0.001
Smoking	573 (8.9)	71.1	28.9	
		(66.5-75.2)	(24.7-33.4)	
Not smoking	5841 (91.1)	58.1	41.9	
-		(55.8-60.3)	(39.7-44.1)	
MDD-W (n=1131)				0.025
Not diverse	558 (49.3)	49	51	
		(43.8-54.1)	(45.8-56.1)	
Diverse	573 (50.6)	56.8	43.2	
		(51.7-61.7)	(38.2-48.2)	
Mosquitoes bed net for				0.024
sleeping				
No	1412 (22.1)	68.9	31.1	
		(65.6-72.1)	(27.9-34.3)	
Yes	5002 (77.1)	56.5	43.5	
		(53.9-59)	(41-46.1)	
		I	I	
Place of residence				0.202
Urban	4029 (68.8)	60.4	39.6	
		(57.5-63.1)	(36.8-42.4)	
Rural	2385 (37.1)	57.3	42.7	
		(53.6-60.9)	(39.1-46.3)	
Province				< 0.001
Province-1	1073 (16.7)	56.7	43.3	
		(51.2-62.1)	(37.9-48.7)	
		42.2		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

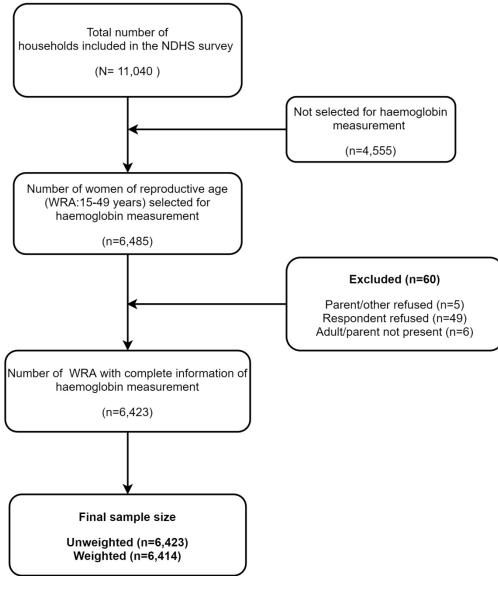
		1	I	
		(37.3-47.2)	(52.7-62.6)	
Bagmati	1408 (21.9)	70.9	29.1	
		(66.4-75.1)	(24.8-33.5)	
Gandaki	627 (9.7)	71.9	28.1	
		(66.3-76.9	(23.1-33.6)	
Province-5	1086 (16.9)	56.5	43.5	
		(52.5-60.5)	(39.4-47.5)	
Karnali	369 (5.7)	65.1	34.9	
		(59.7-70.1)	(29.9-40.2)	
Sudurpaschim	566 (8.8)	60.7	39.3	
		(54.7-66.3)	(33.6-45.2)	
Community female				< 0.001
education ^a				
Low	2936 (45.7)	52.1	47.9	
		(49.1-55.2)	(44.8-50.9)	
High	3478 (54.2)	65.3	34.7	
		(62.3-68.1)	(31.9-37.6)	
Community female wealth				< 0.001
index ^b				
Low	4107 (64)	55.7	44.3	
		(52.6-58.7)	(41.2-47.3)	
High	2307 (35.9)	65.5	34.5	
		(62.1-68.8)	(31.1-37.8)	
Source of drinking water		4		0.004
(n=6084)				
Improved	5537 (91)	58.7	41.3	
		(56.3-61.1)	(38.9-43.6)	
Not improved	547 (8.9)	66.3	33.7	
		(61.4-70.8)	(29.2-38.5)	
Type of toilet facility				< 0.001
(n=6084)				
Improved	5117 (84.1)	61.5	38.5	
		(59.3-63.6)	(36.3-40.7)	
Not improved	967 (16)	48.5	51.5	
- · · · · · · · · · · · · · · · · · · ·		(43.1-53.9)	(46.1-56.8)	

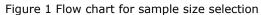
variables

*denotes statistically significant at p<0.05

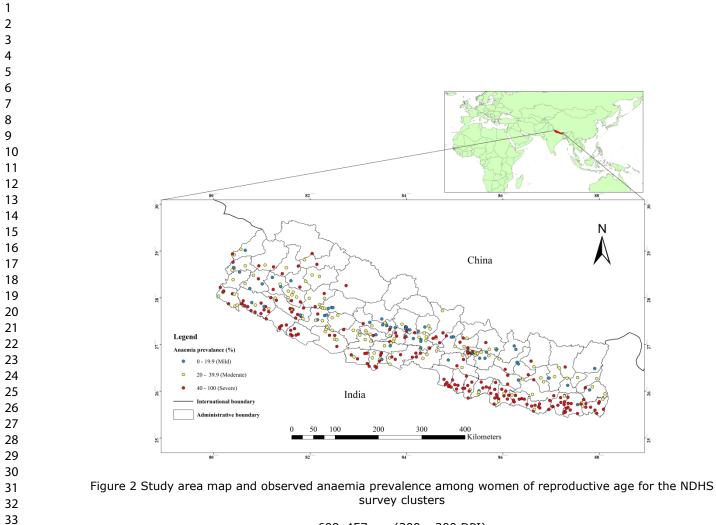
^amean percent of households wealth quintiles categorized richer and richest and above

	^b mean percent of women with primary education level and above
	BMI: Body Mass Index
	MDD-W: Minimum Dietary Diversity for Women
716	


717 Table 2 Multilevel mixed-effects logistic regression analysis for individual and community-

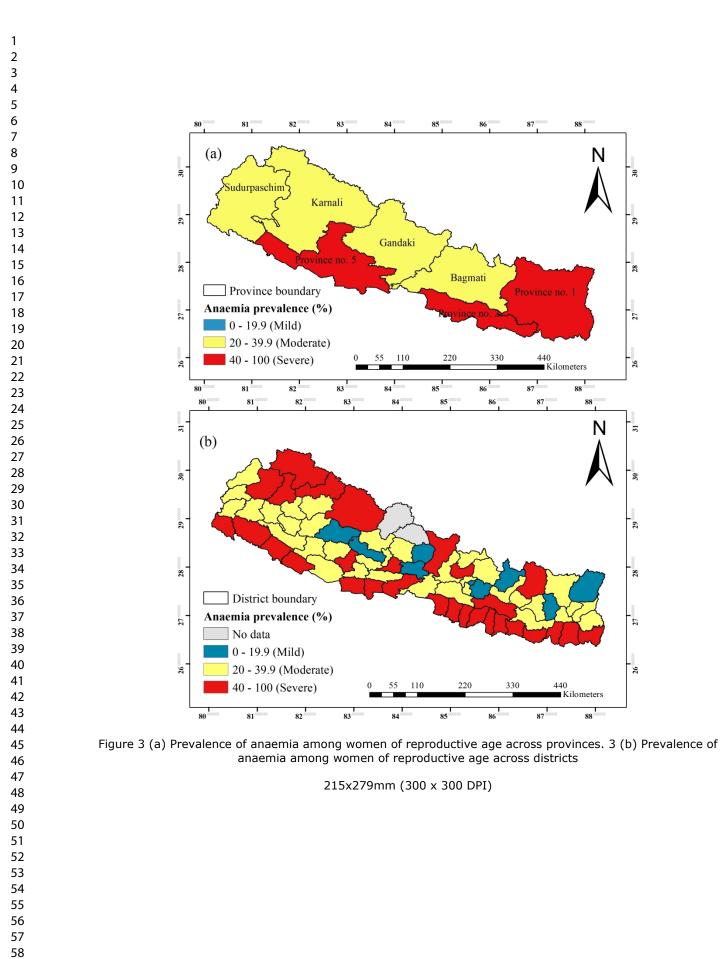

718 level factors affecting anaemia among women of reproductive age (n=6,414)

Variables	Model 1 Empty model	Model 2 Individual-level factors	Model 3 community-level factors	Model 4 Individual and community-leve factors
	6	aOR (95% CI)	aOR (95% CI)	aOR (95% CI)
Fixed-effects model				
Individual-level factors				
Age				
15-24		0.80 (0.57-1.08)		0.75 (0.54-1.04)
25-34		Ref		Ref
<u>>35</u>		0.48 (0.24-0.83)*		0.51 (0.26-0.97)*
Education				
No education		2.22 (1.35-3.82)**		1.99 (1.17-3.39)*
Primary		1.52 (0.99-2.63)		1.33 (0.79-2.23)
Secondary		1.61 (1.08-2.54)*		1.46 (0.93-2.29)
Higher		Ref		Ref
Occupation				
Not working		Ref		
Working		0.98 (0.73-1.32)		
Wealth index			U,	
Poorest		Ref		Ref
Poorer		1.20 (0.79-1.86)		1.46 (0.95-2.25)
Middle		1.38 (0.86-2.20)**		1.65 (1.02-2.68)*
Richer		1.13 (0.68-1.82)		1.39 (0.84-2.32)
Richest		1.28 (0.69-2.30)		1.33 (0.70-2.52)
BMI (n=6411)				
Normal		Ref		Ref
Underweight		1.10 (0.80-1.60)		1.05 (0.72-1.51)
Overweight/obesity		0.89 (0.59-1.35)		1.03 (0.65-1.58)
Currently pregnant				
No		0.81 (0.42-1.58)		1.08 (0.53-2.19)
Yes		Ref		Ref
Currently breastfeeding				


No	Ref		Ref
Yes	1.34 (0.63-2.82)		1.60 (0.71-3.59)
Total children ever born			
No child	Ref		Ref
1-3 child	-		-
4+ child	1.15 (0.75-1.87)		1.02 (0.63-1.63)
Current contraceptive			
use			
Not using	Ref		Ref
Hormonal	0.65 (0.46-0.92)*		0.63 (0.43-0.90)
Female sterilization	3.55 (1.21-10.44)*		3.61 (1.10-11.84
Male contraception	0.92 (0.17-4.79)		0.74 (0.14-3.77)
Traditional	1.10 (0.74-1.63)		1.12 (0.74-1.69)
Cigarette/smoking			1
Smoking	0.89 (0.48-1.66)		1.21 (0.63-2.33)
Not smoking	Ref		Ref
MDD-W (n=1131)			
Not diverse	1.20 (0.91-1.59)		1.03 (0.76-1.40)
Diverse	Ref		Ref
Mosquitoes bed net for			
sleeping			
No	0.57 (0.38-0.86)		
Yes	Ref		
Community-level factors	4		
Place of residence			
Urban		Ref	Ref
Rural		1.01 (0.83-1.21)	0.89 (0.64-1.24)
Province			
Province-1		1.70 (1.23-2.34)**	2.07 (1.57-5.64)
Province-2		2.51 (1.79-3.53)***	2.97 (1.52-5.82)
Bagmati		Ref	Ref
Gandaki		0.90 (0.64-1.26)	0.76 (0.39-1.49)
Province-5		1.60 (1.16-2.21)**	2.42 (1.31-4.50)
Karnali		1.19 (0.85-1.66)	1.66 (0.88-3.14)
Sudurpaschim		1.54 (1.11-2.15)*	1.62 (0.84-3.10)
Community female			
education ^a			
Low		1.39 (1.15-1.68)***	-
High		Ref	-

index ^b				
Low			1.48 (1.21-1.80)***	-
High			Ref	-
Source of drinking water (n=6084)				
Improved			Ref	Ref
Not improved			1.05 (0.84-1.30)	1.13 (0.68-1.86
Type of toilet facility				
(n=6084)				
Improved			Ref	Ref
Not improved			1.03 (0.84-1.24)	0.96 (0.63-1.45
Random-effects model		I		
Community-level variance (τ) (SE)	0.627 (0.073)***	0.443 (0.192)***	0.414 (0.056)***	0.347 (0.194)**
ICC (%)	16	11.8	11.1	9.5
PCV (%)	Ref	29.3	33.9	44.6
Model fit statistics		27.5		11.0
AIC	8322.6	1554.7	7838.4	1400.6
BIC	8336.1	1675.8	7925.8	1559.1
level factors. *p<0.05, **p<0.01, ***p<0.00 aOR=adjusted odds ratio, Cl ICC: intra-class correlation, Bayesian information criteri a mean percent of household	I: confidence inter PCV: percentage on s wealth quintiles	change in variation, categorized richer a	AIC: Akaike informati	<i>,</i>
^b mean percent of women with community female education			tad in Madal 4 due to	allinaarity
9				<u> </u>

626x717mm (72 x 72 DPI)



609x457mm (300 x 300 DPI)

Ν

Ν

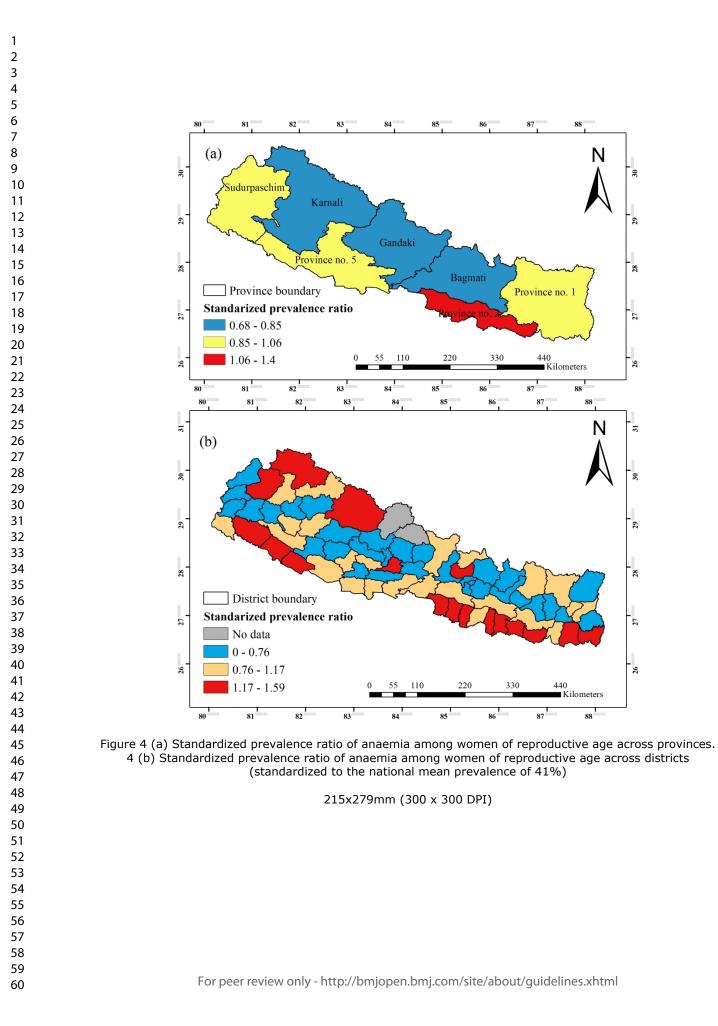
°.

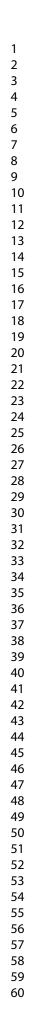
Bagmati

85.00000

Kilometers

88.00


Province no. 1


Kilometers

Ν

Ν

°.

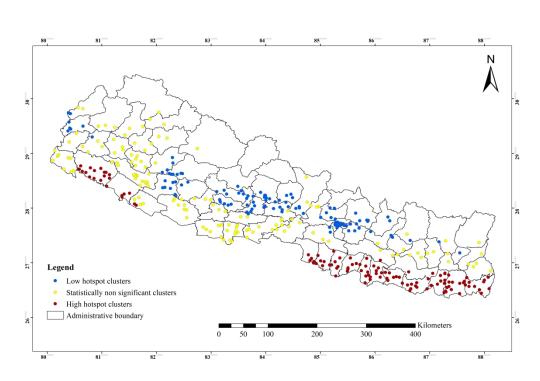


Figure 5 Spatial pattern and distribution of hot and cold spots of anaemia among women of reproductive age at cluster level in Nepal

457x304mm (300 x 300 DPI)

Study variables	Coding category for analysis
Age in years	1=15-24; 2=25-34; 3=35-49
Education	1=No education; 2=Primary; 3=Secondary; 4=Higher
Occupation	1= Not working; 2=Working (professional/technical/managerial,
	clerical, sales/services, agriculture-self-employed, skilled manual
	unskilled manual, others)
Wealth index	1=Poorest; 2=Poorer; 3=Middle; 4=Richer; 5=Richest
Body mass index (BMI)	1=Normal (18.5-24.99); 2=Underweight(<18.5);
	$3=Overweight/Obesity(\geq 25)$
Currently pregnant	1=No; 2=Yes
Currently breastfeeding	1=No; 2=Yes
Total children ever born	1= No child; 2=1-3 child; 3=4+ child
Current contraceptive use	1=Not using; 2=Hormonal (Pill, Injections, Implants/Norplant's,
	Emergency contraception); 3=Female sterilization; 4=Male
	contraception; 5= Traditional (Male condom, periodic abstinence
	withdrawal, other traditional, lactational amenorrhea)
Cigarette/smoking	1= Smoking; 2=Not smoking
Minimum dietary diversity	1=Not met (consume <5 food groups); 2= Met (Consume \geq 5 food
for women (MDD-W)	groups)
Mosquitoes bed net for	1= No; 2= Yes
sleeping Residence	1=Urban; 2=Rural
Province	1=Province-1; 2=Province-2, 3=Bagmati Province; 4=Gandaki
	Province; 5=Province-5; 6=Karnali Province; 7=Sudurpaschim
	Province
Community female	1=Low (mean percent of women with lower primary education
education	level was 0-25%); 2=High (mean percent of women with primary
	education level above 25%)
Community wealth index	1=Low (mean proportion of women from richest (rich, richest)
	households in the community was 0-21%); 2=High (mean

CITLL DI • ... C 41 . 1.4 1 1 . . . I.

	proportion of women from richest (rich, richest) households in
	the community was above 21%)
Source of drinking water	1=Improved (piped water into dwelling, piped water to yard/plot,
	public tap or standpipe, tube well or borehole, protected dug well-
	protected spring and rainwater); 2=Not improved (Piped to
	neighbor, unprotected well, river, dam ponds, lake, and rainwater)
Type of toilet facility	1=Improved facility (flush toilet, piped sewer system, septic tank,
	flush/pour flush to pit latrine, ventilated improved pit latrine, pit
	latrine with slab, and composting toilet); 2=Not improved (flush
	to somewhere, flush don't know where, pit latrine without
	slab/open pit, and no facility/bush/field)

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1-2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5-6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6-7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-10
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-10
		(b) Describe any methods used to examine subgroups and interactions	8-10
		(c) Explain how missing data were addressed	6
		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
		(e) Describe any sensitivity analyses	NA

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	NA
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	11-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	14-18
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml