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Supplementary Note 1: Job Vacancies are Proportional to Employment
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Figure S1: Projections of annual job vacancies by occupation for 2018 to 2028 are proportional to

national employment according to employment projections from the US Bureau of Labor Statistics.
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Figure S2: For each quarter in 2015, 2016, and 2017, the number of new jobs (i.e., internal or
external hiring) by 4-digit NAICS Industry code was proportional to the industry’s total employ-

ment. This analysis used Longitudinal Employer-Household Dynamics data from the US Census

Bureau.

Supplementary Note 2: The Universality of Skill Complexity with Alternative Job Network

Construction

In this section, we consider the job network constructed with an alternative skill similarity metric.

Specifically, we measure the Jaccard similarity of the O*NET skills required by each occupation

according to
Y min(0(i,s),0(j.s))
seSkills
max(0(i,s),0(j,s))’
seSkills

jaccard(i, j) =



where O(i,s) is the relative weight of skill s in job i. The universality of the skill complexity of

cities is consistent for this alternative job network construction (see Fig. [S3]and Fig. [S4).
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Figure S3: The equilibrium solutions of our model for each city while varying y and the rate of

job match dissolution A. Each panel represents a different choice of y. Symbol size and color

represent total employment in the city. As an alternative method, we consider the job-job network

constructed from Jaccard skill similarity.
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Figure S4: The equilibrium solutions of our model for each city while varying y and the rate of job
match dissolution A after controlling for the skill matching complexity in each city wS. Each panel
represents a difference choice of y. As an alternative method, we consider the job-job network
constructed from Jaccard skill similarity. Symbol size and color represent total employment in the

city. Solid line is the analytically-derived equilibrium solution eS.

Supplementary Note 3: Robustness of the job network connectivity definition

Our job network connectivity wegr depends on the definition of the job network w;;. Here we study

the robustness of wegr with respect to the different assumptions made to build the job network.



Firstly we made wfj = 0 1n city c for jobs i with the number of jobs ch =0 in the BLS data. Since
BLS does not report occupations i that have less than 30 people employed by city we are effectively
using a threshold in our definition, i.e. wfj =0if E]C <0. Figure@ shows that wegr does not change
when that threshold is increased beyond 30. In fact, cross-correlation of the values are pretty high

(around 90%) for different values of the threshold.

On the other hand, the construction of the job network depends on the specific composition
of skills by jobs given in the O*NET tables. The question is whether the actual value of weg for
a given city depends critically on that specific composition which could affect it dramatically if
information about skills is missing or incomplete. Or simply if skills are redefined for a different
market or country. To test this we have recalculated the values of wegr for the different cities in our
dataset by removing randomly a set of skills in the definition of jobs. Figure [S6| shows that the

values of wegr are pretty robust against the actual set of skills used to calculate the job network.

In summary, both tests performed in this section show that our definition of weg and, in turn,

our results do not depend critically on the assumptions made to construct the job network.
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Supplementary Note 4: Sensitivity to Job Match Dissolution A
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Figure S7: The equilibrium solutions of our model for each city for y = 0.50 while varying A and
controlling for the skill matching complexity in each city wgg. Each panel represent a different
choice of A. Symbol size and color represent total employment in the city. Solid line is the

analytically-derived equilibrium solution e_g.
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Supplementary Note 5:  Sensitivity to Varying y
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Supplementary Note 6: Examples of City Projections onto the Job Network
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Figure S12: Examples of cities projected onto the job network. City projections are the sub-
networks defined by the occupations with non-zero employment in a city. Each occupation is

represented by a circle colored according to its weighted degree w?.
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Figure S15: The distribution of node closeness score for each city’s job network projection’s giant

component calculated in a few example years. For each year, one line is plotted for each city.

Supplementary Note 7: Simulating Labor Flows within City

For a given city ¢, we simulate the employment of occupation E; and the flow of workers between

unemployment U; and another occupation j using eq. (2) from the main text:

N Yrrl=vy
Ej=-AEj+« Z wijEU,
icJob
1€Jobs (1)

Uj :lEj—OC Z WijEiyU;_y.
i€Jobs
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Here, A captures the exogenous rate of job match dissolution, w;; measures skill matching between
occupations based on occupations’ required O*NET skills, and o captures exogenous forces aside

from skill matching that shape inter-occupational career mobility.

The simulation starts using the empirical employment distribution on ¢ according to Occu-
pational Employment Statistics (OES) from the US Bureau of Labor Statistics (BLS). We integrate
the system using 10,000 iterations of Forward Euler integration with a time step of At = 0.5 to
allow the system to reach a steady state. The system is evaluated once it reaches a steady state at

the end of the simulation to avoid transient dynamics.

For simulations of employment shocks from automation, the system is integrated for an
additional 1,000 iterations after the removal of occupations with exposure to automation above
some threshold 6. An occupation’s exposure to automation is determined using estimates from 2.
If occupation i has exposure to automation above 6, then we simulate that systemic shock by setting
w;; = 0 for each j # i before the additional simulation and immediately transitioning all workers
of i to unemployment. Effectively, if an occupation is automated according to this methodology,
then employed and unemployed workers of other occupations cannot transition to employment or
unemployment in occupation i. Current employed and unemployed workers of i can transition to
other employment opportunities if there skills match the skills required by the new occupation (i.e.,
w;j is large). In this way, we see how large skill matching complexity (i.e., large wegr) can indicate
economic resilience in a labor market since we would expect displaced workers will have an easier

time finding new employment opportunities on average.
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Supplementary Note 8:

Job Network Embeddedness and Worker Wages

Variable Description

wage;eari The average annual wage of workers of occupation i in city ¢ in year according to
OES data.

wageﬁjéir?i"“l The nationwide average wage of occupation i in year according to OES data.

employment)’,‘e‘jﬁf’i”“l The national employment share of occupation i in year.

employmenty, . ; The employment share (%) of occupation i in city c in year according to OES data.

Wieari The embeddedness of occupation i in city ¢ in year using OES and O*NET data.
See main text for definition.

bachelorsyeqy. The percentage of workers of occupation i with a bachelor’s degree nationwide in
year according to O*NET data.

wages .. ; The z-score of wage; ari cOMpared to the average annual wage of occupation i across
all cities in year.

zemployment;‘mni The z-score of employmenty,,, compared to the employment share of occupation i
in all cities in year.

Myear, The z-score of wy,,,; compared to the embeddedness of occupation i across all cities
in year.

Towages ,q,.; The percentage change in wageye,,; compared to nationwide average annual wage
of occupation i in year. _
100 (wages,,,; — wage;‘gjl’,‘;”“l )/wages, lrf,)l.”a[

Joemploymenty,,,.; The percentage change in employmenty,,, ; compared to the nationwide employment
share of occupation i in year. ' ‘
100 (employmenty,,,, ; — empl oyment;?e‘z’rf}”“l )/empl oyment;e“frf’i"“l

WS eqr.i The percentage change in wy,,,; compared to the average embeddedness of occupa-
tion i across all cities in year.
100 - (w§ ¢ ¢

' (Wyear,i - <Wyeur,i>C’€Cities>/<Wyeur,i>C’ECities
Table S1: Definition of regression variables. Data covers each year from 2005 through 2017.

19



Dependent Variable: zwage,

year,i

Variable Model 1  Model2  Model3  Model 4 Model 5
zemploymenty,,, ; 0.000 0.016*** 0.002
bachelorsyear —0.064*** —0.021***  —0.020***
Myoar 0.253***  0.256*** 0.249***
Zemployment;,mm -bachelorsyer, 0.033***
zemploymenty, ;- TWy,q,.; —0.006***
bachelorsyear,i - Wy, 0.024**
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
R? 0.315 0.315 0.327 0.327 0.328
adj. R? 0.315 0.315 0.327 0.327 0.327

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S2: Ordinary least-squares regression on the z-score of wage;eani compared to the average

annual wage of occupation i across all cities in each year from 2005 through 2017. See Table

for variable definitions and data sources.
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Dependent Variable: zwagey,,,.;

Variable Model 1 Model 2  Model 3  Model 4 Model 5
zemploymenty,,, ; —0.004** 0.011*** —0.003
bachelorsyear —0.091*** —0.024***  —0.023***
Myear 0.273**  0.272*** 0.274**
Zemployment;,mm -bachelorsyer, 0.038***
zemploymenty, . ; - TWy,q,.; —0.005**
bachelorsyear,i - Wy, —0.004
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects No No No No No
R? 0.356 0.357 0.369 0.369 0.369
adj. R? 0.355 0.356 0.368 0.368 0.369

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S3: Similar to Table[S2] but restricting to years prior to the Great Recession. Ordinary least-

. . .
squares regression on the z-score of Wagey qy compared to the average annual wage of occupation

i across all cities in each year from 2005 through 2007. See Table |S1|for variable definitions and

data sources.

21



Dependent Variable: zwagey,,,.;

Variable Model 1  Model2  Model3  Model 4 Model 5
zemploymenty,,, ; 0.004** 0.019*** 0.000
bachelorsyear —0.054*** —0.021***  —0.019***
Myoar 0.244*  0.247*** 0.234**
Zemployment;,mm -bachelorsyer, 0.039**
zemploymenty, ;- TWy,q,.; —0.008***
bachelorsyear,i - Wy, 0.042**
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects No No No No No
R? 0.306 0.307 0.318 0.318 0.318
adj. R? 0.306 0.306 0.317 0.318 0.318

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S4: Similar to Table [S2] but restricting to years after the Great Recession. Ordinary least-

. . .
squares regression on the z-score of Wagey qy compared to the average annual wage of occupation

i across all cities in each year from 2012 through 2018. See Table |S1|for variable definitions and

data sources.
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Dependent Variable: %wage

year,i

Variable Model 1  Model2  Model3  Model 4 Model 5
Joemploymenty,,, ; 0.177*** 0.190*** 0.196***
bachelorsyear —4.550%* —4.290%*  22.550***
PoWseari 0.047***  0.037*** 0.166"**
%employmentycear’i -bachelorsyear, 0.272%**
Toemploymenty, . - oWy .. 0.001***
bachelorsyear,i - oWy, 0.021**
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
R? 0.276 0.286 0.278 0.288 0.288
adj. R? 0.276 0.286 0.277 0.288 0.288

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S5: Ordinary least-squares regression on the percentage change in w;ear’l

compared to the

average embeddedness of occupation i across all cities in each year from 2005 through 2017. See

Table [S]] for variable definitions and data sources.
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Dependent Variable: %wage

year,i

Variable Model 1  Model2  Model3  Model 4 Model 5
Joemploymenty,,, ; 0.230*** 0.246*** 0.188***
bachelorsyear —4.056** —3.793"*  21.727***
PoWseari 0.041***  0.027*** 0.019
%employmentyc eari’ bachelorsyeqr.i 0.259**
%employmentycwm . %w;ear’i —0.000
bachelorsyear,i - oWy 0.007**
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects No No No No No
R? 0.319 0.326 0.320 0.327 0.327
adj. R? 0.318 0.325 0.319 0.326 0.327

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S6: Similar to Table[S5] but restricting to years before the Great Recession. Ordinary least-
squares regression on the percentage change in w§w”- compared to the average embeddedness of

occupation i across all cities in each year from 2005 through 2007. See Table for variable

definitions and data sources.
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Dependent Variable: %wage

year,i

Variable Model 1  Model2  Model3  Model 4 Model 5
Joemploymenty,,, ; 0.166*** 0.180*** 0.225%**
bachelorsyear —4.830** —4.582%*  23.358***
PoWseari 0.051***  0.041*** 0.264***
%employmentycear’i -bachelorsyear, 0.283***
Toemploymenty, . - oWy .. 0.002***
bachelorsyear,i - oWy, 0.028**
City Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects No No No No No
R? 0.265 0.277 0.267 0.279 0.280
adj. R? 0.265 0.276 0.267 0.278 0.279

Pval < 0.1%, pyyr < 0.01**, p,yy < 0.001*

Table S7: Similar to Table [S5] but restricting to years after the Great Recession. Ordinary least-
squares regression on the percentage change in w§w”- compared to the average embeddedness of

occupation i across all cities in each year from 2012 through 2018. See Table for variable

definitions and data sources.
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year from 2005 through 2017.
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Year: 2006, Pearson p=0.128

Year: 2007, Pearson p=0.129

Year: 2008, Pearson p=0.131

Year: 2005, Pearson p= 0.072
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Computer and Information Systems Managers Embeddedness in 2015
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Figure S19: Mapping the embeddedness (w}) of Computer and Information Systems Managers

across US cities in 2018. (Inset) Occupation embeddedness compared to the average annual wage

($) across US cities.
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Figure S20: Mapping the embeddedness (w?) of Carpenters across US cities in 2018. (Inset)

Occupation embeddedness compared to the average annual wage ($) across US cities.
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Supplementary Note 9:

Job Connectivity and Wage Bill Growth

Variable Description

wagebilly,,, The wage bill (i.e., total wages paid) in city c in year according to OES data.

%wagebill;earlMar2 The percentage change of the wage bill in city ¢ in year2 compared to that city’s
wage bill in yearl.
100 - (wagebilly, ., — wagebilly, ., )/ wagebilly, .,

employmenty, . The total employment in city c in year according to OES data.

Yoempl oyment;'eml’yem2 The percentage change in city ¢’s total employment in year2 compared to in yearl.
100- (employmem‘)c,wr2 —employmenty, ., )/employmentycear]

Wieareff The job connectivity of city ¢ (i.e., wgg) in year. See main text for calculation.

PoWSeart year2 The percentage change in job connectivity wg (see main text for definition) in city

¢ in year2 compared to in yearl.

c c c
100- (WyearZ,eff - Wyearl,eff)/wyearl,eff

Table S8: Definition of regression variables. Data covers each year from 2011 through 2017.

30



Dependent Variable: %owagebilly,,, 1o

Variable Model 1 Model 2 Model 3 Model 4
%employmentycea,’zmo 1.349** 1.234**f 1.110***
(1.168%*%) (1.157%*%) (1.107%*%)
%w;earv2010 1.279*** 0.118*** 0.116™**
(1.637°**)  (0.262"*) (0.1527%)
%employment;‘ear’zom . %W;ear,2010 0.005*** 0.003***
(—0.002***)  (—0.001***)
Intercept 4.334%%* 8.618"** 4.370%* 4.550
(5.3677"%)  (9.524***)  (4.773**) (4.677)
Year Fixed Effects No No No Yes
City Fixed Effects No No No Yes
R? 0.869 0.403 0.874 0.971
(0.947) (0.264) (0.953) (0.989)
adj. R? 0.869 0.403 0.874 0.964
(0.947) (0.263) (0.953) (0.987)

Pral < 0.1%, pot < 0.01%*, pooy < 0.001%**

Table S9: Using employment, wage, and skills data for each year from 2011 through 2017, in-

creasing job connectivity is associated with increasing wage bill. We use 2010 statistics a baseline

since 2010 is the first official year after the US Great Recession. See Table [S8|for variable defini-

tions. Regression coefficients in black font represent the regression results when outliers (i.e., data

points with values beyond four standard deviations of the average value for at least one variable)

are removed. Purple font in parentheses represent the regression coefficients when no data points

are removed.
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Dependent Variable: %wagebill¢

year,year—1

Variable Model 1 Model 2 Model 3 Model 4
Toemploymenty, . ..q,_| 1.260*** 1.008*** 1.086***
(1.118%%) (1.018%**)  (1.039***)
%w§ear’ywr_1 0.688*** 0.224*** 0.070***
(0.834*%)  (0.266™*) (0.106™**)
%employment;’earyear_1 -%w;earywr_1 0.014*** 0.001
(0.0017%) (0.000)
Year Fixed Effects No No No Yes
City Fixed Effects No No No Yes
R? 0.832 0.345 0.837 0.867
(0.930) (0.225) (0.933) (0.945)
adj. R? 0.832 0.345 0.837 0.852
(0.930) (0.225) (0.933) (0.939)

pval < 0-1*, pval < 0-01**, pval < O.()()1>‘<>k>'<

Table S10: Using employment, wage, and skills data for each year from 2005 through 2017, in-
creasing job connectivity is associated with increasing wage bill. In this regression, we examine
year-to-year changes in each variable. See Table [S§| for variable definitions. Regression coef-
ficients in black font represent the regression results when outliers (i.e., data points with values

beyond four standard deviations of the average value for at least one variable) are removed. Purple

font in parentheses represent the regression coefficients when no data points are removed.
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