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Supplementary Note 1: Rotational contribution to the measured spectra

The basic principle of time-of-flight QENS is that a monochromatic neutron beam is scattered

by the diffusing nuclei in the sample and one measures the scattered intensity as a function of

the scattering angle and neutron time of flight, which are then converted into momentum and

energy transfers, h̄Q and E. For methane, because the incoherent cross-section of the proton is

much larger than any other cross-section, the scattered intensity is dominated by the self-dynamic

structure factor Sinc(Q,E) of the protons. The usual approximation is to consider that the different

kinds of movements (vibrations, translations, and rotations) are uncoupled, which is essential to

derive an analytical expression for Sinc(Q,E). For each of them, the timescale of the motion has

to be compared to the timescale window probed by the instrument, the upper limit of which is set

by the energy resolution and the lower limit by the accessible energy transfer range. The elastic

instrumental energy resolution was about 0.08 meV during our experiment on IN6-SHARP, so

quasi-elastic lines down to 0.1 meV in width could be analysed, corresponding to a characteristic

time of 13 ps (the characteristic time is defined as h̄/∆E, with ∆E the half width). The maximum

energy transfer values available on the Stokes side were 1-2 meV, corresponding to about 1 ps. On

the anti-Stokes side, the minimum energy transfer values varied from –1.25 meV at Q=0.4 Å-1 to

–16 meV at Q=1.9 Å-1, so in principle, timescales as small as ∼0.08 ps could be accessed at high

Q.

The contribution of the vibrational motion (high-frequency motion around the mean transla-
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tion path or intramolecular vibration) can be approximated with a factor exp(−Q2
〈
u2
〉
/3), where〈

u2
〉

is the mean square vibrational amplitude. This is the analogue of the Debye–Waller factor of

solids and has the effect of decreasing the measured intensity with increasing Q.

Under the assumption of a Fickian (continuous) isotropic diffusion, the scattering function

corresponding to the translational motion (motion of the molecular centre of mass) has a Lorentzian

shape centred at E=0, whose half width at half maximum Γ(Q) increases with the momentum

transfer according to a DQ2 law1. This is expected to be a reasonable assumption as long as the

molecule remains spherical and the intermolecular forces weak, which is not necessarily the case

at high pressure. Literature estimations of D for room-temperature methane reached a maximum

P of 0.4 GPa, at which pressure D was reported to be about 10−8m2s-12. For D=10−8m2s-1, the

Γ(Q)=h̄DQ2 relation predicts Γ(Q)∼0.66 meV at Q=1 Å-1, which is very compatible with our ex-

periment. At high Q, the random-jump diffusion model suggested by Singwi and Sjölander3 (Eq.

(1) of the main text) provides a relation for the Q dependence of Γ(Q) with only one additional

parameter. Eq. (1) simplifies to Γ(Q)=h̄DQ2 for Q→0 and converges progressively to h̄/τ for

Q→∞ . The QENS technique provides a rather direct determination of the self-diffusion coeffi-

cient D as long as small Q values are accessible in the measurements. Conversely, the estimation

of the residence time τ mainly depends on the high-Q values of Γ(Q); its uncertainty can be sig-

nificant for different reasons, such as a high instrumental background. We would like to underline

that all jump diffusion models yield the sameDQ2 asymptotic behaviour at lowQ (the microscopic

process of Brownian jump diffusion is consistent with Fickian diffusion on a macroscopic scale).
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The literature measurements of supercritical high-pressure methane at room temperature by

QENS2, 4 were analysed with a roto-translational model, which assumed that the two types of

motion are uncoupled. Rotational diffusion coefficients DR ranging from 40 ps-1 at 0.05 GPa to

6 ps-1 at 0.4 GPa were reported, and their accuracy was not better than 25%2. 40 ps-1 would be

too fast to be analysed by our experiment. 6 ps-1 corresponds to a rotational timescale of 0.0833

ps (=1/2DR), which is just within the accessible timescales in our experiment, suggesting that the

rotational motion (overall rotation of the molecule around the centre of mass) should be accessible

at pressures of 0.4 GPa and above, but only on the anti-Stokes side of the spectra and at high Q.

Moreover, modelling of the rotational motion can be challenging and we decided to ignore it in

the present study. To limit the effect that the rotational contribution might have on our results, we

excluded the points at Q≥1.4 Å-1 from the fits of Γ(Q), as the intensity of the quasi-elastic terms

of a rotational scattering function must tend to zero forQ→0. For example, in the model employed

in ref. 2, the area of the translational component dominates over that of the rotational component

at small wave vector transfers (Q≤0.8 Å-1), while the opposite is true for Q≥2.0 Å-1. In addition,

we used a narrow fitting range close to zero energy transfer (always within –4.5 to +2 meV). The

previous estimation2 of DR up to 0.4 GPa indicates that the quasi-elastic rotational contribution is

so broad that it must be essentially seen as a flat background over this narrow region of the spectra.

At high pressure, molecules penetrate deeper into the repulsive force fields of their neighbours

and are likely to experience strong orientational correlations, as they also do in liquid methane at

ambient pressure5. Orientational correlations introduce further correlations (“coupling”) between

the translational and rotational motions. The authors of refs. 2, 4 pointed out that their model did
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not perfectly reproduce the experimental spectra and that the disagreement was probably due to

the neglected coupling effects between the translations and the rotations.
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Supplementary Table 1. Measured pressure P , residence time τ , and self-diffusion coefficient D

of methane at 300 K, with fractional uncertainty (one standard deviation) in τ and D, as well as

density ρ taken from the equation of state of ref. 6 up to 1 GPa and from its extrapolation above,

and shear viscosity η interpolated from refs. 7, 8. The last two columns report the factors Dη and

Dη/ρ, as can be calculated from the other columns of the table.

P /GPa ρ/g cm-3 τ /ps δτ(%) D/10-9 m2 s-1 δD(%) η/10-6 Pa s (Dη)/10-12 m2 Pa (Dη/ρ)/10-18 m5 Pa g-1

0.12 0.3582 0.085 7 22.59 0.7 61.4 1.39 3.87

0.16 0.3849 0.087 6 18.88 0.6 74.1 1.40 3.63

0.23 0.4185 0.088 7 15.50 0.6 95.6 1.48 3.54

0.28 0.4371 0.077 5 13.68 0.3 111 1.52 3.47

0.29 0.4404 * * 12.76 2.4 114 1.45 3.30

0.40 0.4715 0.111 4 10.77 0.4 148 1.59 3.38

0.50 0.4939 0.117 4 9.19 0.4 180 1.65 3.35

0.81 0.5451 * * 7.08 1.9 296 2.10 3.84

1.13 0.5834 * * 5.30 2.0 452 2.40 4.11

1.44 0.6161 * * 3.69 3.9 637 2.35 3.82
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Supplementary Note 2: Residence time

As can be seen in Supplementary Table 1, the residence time τ turned out to be small (about a tenth

of a picosecond), meaning that the probed translational diffusion of methane molecules was close

to being a simple Fickian diffusion. To our knowledge, no values of τ for methane are available

in the literature. Typical values reported in the literature of liquid water at ambient or close-to-

ambient pressure range from about 23 ps at –20◦C to 3 ps at 0◦C1, to 0.4 ps at 127◦C9. Hence, a

tenth of a picosecond seems a reasonable order of magnitude for τ in methane at 300 K, which is

more than 200 K above the melting temperature at ambient pressure (91 K). Moreover, it seems

reasonable to expect smaller values of the residence time in methane compared to an associated

(hydrogen-bonded) liquid like water.

The statistics of the data taken in the Paris–Edinburgh press is not sufficient for a precise

determination of τ and Eq. (1) of the main text provides τ values affected by extremely large

uncertainties ranging from 34 to 430%, which are omitted in Supplementary Table 1. For these

pressure points, the Γ(Q)=h̄DQ2 relation can be used instead of Eq. (1) and the obtained values

of D are identical within the error bars. For the points taken in the gas pressure cell up to 0.5

GPa, τ is affected by an uncertainty of typically 5% and shows a moderate increasing trend with

increasing P , as reported in Supplementary Table 1.
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Supplementary Figure 1. Phase diagram of methane. T -P phase diagram of methane with

the low-T melting line (black line) from ref. 6 and the high-T melting line (red line) from ref.
10. In addition to the room-temperature measurements commented in the main text, Harris11 mea-

sured D along the isotherms 223 and 323 K up to 0.17 and 0.16 GPa, respectively. Oosting and

Trappeniers12 measured D along the isotherms 195 and 273 K up to 0.04 and 0.19 GPa, respec-

tively, along the liquid-vapor coexistence line between the triple point and 186 K, and along five

isochores at temperatures from 170 to 308 K and up to a maximum pressure of 0.02 GPa. Greiner-

Schmid and co-workers13 measured D along seven isotherms between 327 and 454 K up to maxi-

mum pressures of 0.207 GPa. Harris and Trappeniers14 measured D along the isotherms 110, 140,

and 160 K up to 0.08, 0.22, and 0.20 GPa, respectively. Johnson and Olsson15 measured D at 102

K and 1 bar, and 200 K and 0.16 GPa. Horizontal error bars show the uncertainties in pressure.
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Supplementary Figure 2. Lennard–Jones model. Logarithm of the dimensionless reduced self-

diffusion coefficient D+=D
√
m/εσ2 as a function of dimensionless reduced pressure P+=Pσ3/ε

from our data (the employed values of ε and σ are indicated in the legend) and from the re-

sults of the molecular dynamics simulations of the Lennard–Jones fluid reported in ref. 16 for

T+=kBT/ε=2.0. It can be seen that a linear dependence describes our data at high pressure fairly

well, but the slope is very different from that predicted for the Lennard–Jones fluid.
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Supplementary Note 3: Reduced self-diffusion coefficient D∗

The dimensionless reduced self-diffusion coefficient D∗ defined by Dymond17 is given by

D∗ =
nD

(nD)0

[
V

V0

]2/3
, (1)

where (nD)0 is the value of nD for the dilute gas, V is the molar volume and V0 the volume of

close packing:

V0 =
NAσ

3

√
2
. (2)

For hard spheres, (nD)0 is given by the gas kinetic Chapman-Enskog theory:

(nD)0 =
3

8σ2

(
RT

πM

)1/2

. (3)

Using Eqs. (2) and (3), Eq. (1) can be written as

D∗ =
8

3
D

(
2NA

V

)1/3(
πM

RT

)1/2

. (4)

Finally, Eq. (4) is equivalent to

D∗ = 17.44× 107 D

V 1/3

(
M

T

)1/2

, (5)

if the unit of D is m2 s-1, the unit of V is m3 mol−1, the unit of M is kg mol−1, and the unit

of T is K. We calculated D∗ for our experimental values of D, V =M /ρ, M=16.04 g mol−1 and

T=300 K. The result is plotted in Supplementary Fig. 3 as a function of reduced number density

nσ3, where n=ρNA/M and σ was chosen to be 3.6 Å. Similarly, we calculated D∗ and nσ3 for

literature data11, 14 along six other isotherms reaching a maximum pressure of 0.22 GPa, using the
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values of σ indicated in the legend of Supplementary Fig. 3. This set of six values was found

in ref. 14 so that the reduced diffusivity isotherms fall on a common curve when plotted against

reduced number density. It can be seen from Supplementary Fig. 3 that the six literature isotherms

do fall on a common curve while our isotherm deviates significantly. Supplementary Figure 3 also

reports D∗ as a function of nσ3 for the smooth hard-sphere fluid as obtained computationally in

ref. 18. Supplementary Figure 3 is another way of visualizing the finding presented in Fig. 4a of

the main text: There is no constant sphere diameter σ for which our experimental results can be

matched with the expectation for a smooth hard-sphere fluid. It is also interesting to note that the

wide pressure range explored in the current study allows us to see a considerably larger deviation

from the smooth hard-sphere behaviour than that observed in liquid methane for nσ3>0.86 in ref.

14. Supplementary Figure 3 also shows that there is a clear deviation of the literature results11, 14

from the smooth hard-sphere behaviour for nσ3 below ∼0.6.

The reduced number density corresponding to freezing of the hard sphere fluid is 0.939218

but ref. 18 also reported results in the metastable fluid region, up to nσ3=1.01. Our values of

D∗ at the two highest investigated pressures can be superposed to the full line of Supplementary

Fig. 3 for σ∼3.43 Å. The resulting nσ3 is about 0.93 at our highest pressure point. On the other

hand, from the equation nσ3=0.9392 and the density of fluid methane at the freezing pressure, it

is possible to independently calculate the equivalent diameter at a certain temperature by assum-

ing that methane is a close packed hard sphere fluid. At 1.38 GPa and 300 K, ρ=0.6097 g cm-3

therefore n=0.02289 Å−3 and one finds σ=3.449 Å. This is in fairly good agreement with the value
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mentioned above (3.43 Å) or the (identical) one that could be deduced from Fig. 4a, showing the

essential correctness of our experimental results. It must be stressed that the density value at 1.38

GPa used here had to be extrapolated from the literature data6 existing up to 1 GPa. In figure 5 of

ref. 14, Harris and Trappeniers showed that σ values from i) the comparison of the experimental

diffusion coefficient with that of the smooth hard-sphere fluid at moderate pressures and ii) the

experimental density of fluid methane at freezing coincide at low temperature. However, the two

approaches provide progressively diverging diameters above∼170 K14. One can then infer that the

equivalent hard-sphere diameter of methane must be reduced upon compression along isotherms

for T>170 K, but entire isotherms have to be measured for this effect to be visible (pressures

comparable to the freezing points have to be achieved).
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Supplementary Figure 3. Reduced diffusion coefficient and hard-sphere model. Reduced self-

diffusion coefficient of methane from our experimental data along the 300 K isotherm and from

the experimental data of refs. 11, 14 along other isotherms, as a function of reduced number density

nσ3. The (ρ-independent) σ values employed for each isotherm of this plot are indicated in the

legend. The solid line is the σ- and T -independent result obtained from the molecular dynamics

simulations of the smooth hard-sphere fluid reported in ref. 18.
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Supplementary Figure 4. Test of the Stokes–Einstein–Sutherland relation at room tempera-

ture. Pressure dependence of the product between the self-diffusion coefficientD and the viscosity

η, calculated from the D values of this work and η values at room temperature interpolated from

refs. 7, 8, and from the room-temperature D values of refs. 11–13 and η values interpolated from ref.

7. The error bars were obtained by propagating the errors in D only. The SES relation predicts a

constant product Dη.
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Supplementary Figure 5. Test of the Stokes–Einstein–Sutherland relation at low tempera-

ture. Pressure dependence of the product between the self-diffusion coefficient D and the viscos-

ity η along some low-temperature isotherms from literature data. D values are experimental values

from refs. 11, 12, 14 and η values are predicted values from ref. 19.
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Supplementary Note 4: Diameters andC values derived from the Stokes–Einstein–Sutherland

equation

At the lowest pressures of our experiment, Dη is about 1.4×10−12m2 Pa (see Supplementary Fig.

4) and the Stokes–Einstein–Sutherland relation (Eq. (4) of the main text) is satisfied with an ef-

fective molecular diameter σ=4.7 Å for C=2 (slip limit), or σ=3.2 Å for C=3 (stick limit). This

low-P value of the SES relation could be used to extrapolate D to higher pressures; one would

find 2.2×10−9m2s-1 at 1.44 GPa, for example, which is certainly not a satisfactory prediction

when compared to our experimental results. At the highest investigated pressures, Dη is about

2.4×10−12m2 Pa (see Supplementary Fig. 4) and Eq. (4) is satisfied with σ=2.8 Å for C=2, or

σ=1.9 Å for C=3. This means that Eq. (4) cannot be satisfied over the entire investigated P range

for a unique diameter σ even ifC is allowed to vary from 3 to 2. It can be satisfied at all pressures if

σ is allowed to change for a given C. However, an unrealistically large variation would be needed,

for example from 3.8 to 2.2 Å for C=2.5. These effective diameter values may be compared with

the van der Waals diameter of 3.78 Å for methane20.
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Supplementary Figure 6. Test of the Dη/ρ=constant relation at room temperature. Pressure

dependence of the factorDη/ρ at room temperature, calculated from theD values of this work and

of refs. 11–13, and η values interpolated from refs. 7, 8. In the inset, the same plot is zoomed over a

shorter y-axis range for better visibility. The error bars were obtained by propagating the errors in

D only. Dη/ρ is found to be constant within ±10% in the pressure range of this work.
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Supplementary Figure 7. Test of the Dη/ρ=constant relation at low temperature. Pressure

dependence of the factor Dη/ρ along some low-temperature isotherms from literature data. D

values are experimental values from refs. 11, 12, 14 and η values are predicted values from ref. 19.
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