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1 Experimental procedures on C. crescentus cells
Bacterial strains and growth conditions

All C. crescentus strains used in this study were derived from the synchronizable wild-type CB15N
(NA1000). Cells were grown in peptone-yeast extract (PYE) medium (Pointdexter, 1964) at 28◦C
under aerobic conditions (shaking at 210 rpm). When appropriate, the medium was supplemented
with antibiotics at the following concentrations (µg ml−1 in liquid/solid medium): kanamycin
(30/50), gentamicin (15/20), and spectinomycin (50/100).

1.1 Experimental determination of distances between loci 10 kb apart
Plasmid and strain construction

To measure the distances between chromosomal loci that are located 10 kb apart, C. crescen-
tus strains were constructed whose chromosomes contained binding sites for fluorescently tagged
DNA binding proteins. The bacterial strains, plasmids, and oligonucleotides used in this study
are listed in Tables S1-S4. Escherichia coli TOP10 (Invitrogen) was used as host for cloning pur-
poses. All plasmids were verified by DNA sequencing. Plasmids carrying 10 copies of either lacO
(PCR-amplified from plasmid pLAU43 [1]) or tetO (PCR-amplified from plasmid pLAU44 [1]) were
transferred to C. crescentus by electroporation [2] and integrated at various chromosomal loci by
single-homologous recombination. Subsequently, a two-gene operon encoding LacI-eCFP and TetR-
eYFP was integrated at the xylX locus by phiCr30-mediated phage transduction [2], using a lysate
of a strain transformed with plasmid pHPV472 [3]. Proper chromosomal integration was verified
by colony PCR.

Measurement of distance between pairs of loci 10 kb apart

All microscopy analyses to determine the distance between chromosomal loci were performed on
cells grown in PYE medium containing kanamycin and gentimicin to the mid-exponential phase
(OD 0.4), and subsequently synchronized [4]. Immediately after synchronization, swarmer cells
were immobilized on pads made of 1% agarose in PYE medium. Cells were observed with a Zeiss
Axio Observer.Z1 microscope equipped with an alpha Plan-Apochromat 100x/1.46 Oil Ph3 objec-
tive (Zeiss, Germany). An X-Cite 120PC metal halide light source (EXFO, Canada), combined
with ET-CFP and ET-YFP filter cubes (Chroma, USA), was used for the detection of fluorescent
foci. Images were taken with a pco.edge sCMOS camera (pco, Germany) and recorded with Vi-
siView 2.1.4 (Visitron, Germany). To identify the subpixel localization of the fluorescent foci, a 2D
Gaussian was fitted to each fluorescent focus using the GDSC SMLM plugin [5] 1 for ImageJ2 [6].
In order to correct for systematic shifts between the YFP and CFP channels, fiducials (Tetraspeck
microspheres, 0.5 µm, Invitrogen/Thermo Fischer Scientific, USA) were imaged in the YFP and
CFP channels and analyzed with the same set-up and pipeline.

1.2 Determination of chromosome density via SIM microscopy
In order to investigate the intracellular distribution of the chromosome, C. crescentus wild-type
cells were grown and synchronized as described above. Immediately after synchronization, the cells

1http://www.sussex.ac.uk/gdsc/intranet/microscopy/UserSupport/AnalysisProtocol/imagej/smlm_plugins/
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were incubated with 0.5 µg/ml of the DNA-stain DAPI (4’,6-diamino-2-phenylindole) for 5 min at
28◦C. Cells were then washed (5 min at 4000 g), resuspended in M2 salts buffer [2] and applied
to pads made of 1% agarose in water, before they were imaged with a Zeiss Elyra 7 Lattice SIM
microscope equipped with an alpha Plan-Apochromat 100x/1.46 Oil Objective (Zeiss, Germany).
DAPI was excited with a 405 nm laser and its emission was recorded in the 420-480 nm range.

Supplementary Figure 1: SIM microscopy image example SIM microscopy image of a
single focal plane out of a z-stack shows the DAPI-stained DNA inside multiple C. crescentus cells
immediately after synchronization. The DNA is organized in a heterogeneous fashion, with several
regions of high-density chromosome packing per cell, and shows a clear cell-to-cell variation. The
intensity is rescaled for the entire image, such that the highest measured intensity is 1, and the
lowest is 0. Scale bar: 1 µm. Shown is a representative image of one of the two biological replicates,
which both showed similar results.
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Supplementary Table 1: Strains used in this study.

Strain Genotype/description Construction/Reference

E. coli strains
TOP10 Cloning strain Invitrogen

C. crescentus strains
CB15N Synchronizable wild-type strain Evinger & Agabian (1977) [7]

MvT151 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.0 kb apart at
196◦

Consecutive integration of pMvT149,
pMvT150 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT152 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
212◦

Consecutive integration of pMvT151,
pMvT152 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT170 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
21◦

Consecutive integration of pMvT161,
pMvT162 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT171 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.0 kb apart at
108◦

Consecutive integration of pMvT163,
pMvT164 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT172 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
lacO and 10x tetO spaced 10.0 kb apart at
108◦

Consecutive integration of pMvT165,
pMvT166 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N

MvT179 CB15N Pxyl::Pxyl-lacI-ecfp-tetR-eyfp 10x
tetO and 10x lacO spaced 10.1 kb apart at
311◦

Consecutive integration of pMvT159,
pMvT160 and Pxyl-lacI-ecfp-tetR-eyfp into
CB15N
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Supplementary Table 2: Plasmids used in this study.

Plasmid Description Reference

Basic vectors
pLAU43 Plasmid carrying 240 LacI binding sites (lacO), KanR Lau et al., 2003 [1]

pLAU44 Plasmid carrying 240 TetO binding sites (tetO), GenR Lau et al., 2003 [1]

pHPV472 Plasmid carrying Pxyl-lacI-ecfp tetR-eyfp, SpcR StrR Viollier et al., 2004 [3]

pMCS-2 Integrating plasmid containing multiple cloning site,
KanR

Thanbichler et al., 2007 [8]

pMCS-4 Integrating plasmid containing multiple cloning site,
GenR

Thanbichler et al., 2007 [8]

Plasmids constructed in this work
pMvT149 pMCS-2 including 10x tetO and part of CCNA_02049,

KanR
This study

pMvT150 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_02054, GenR

This study

pMvT151 pMCS-2 including 10x tetO and part of a chromosomal
fragment close to CCNA_02228, KanR

This study

pMvT152 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_02233, GenR

This study

pMvT159 pMCS-2 including 10x tetO and part of CCNA_03310,
KanR

This study

pMvT160 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_03317, GenR

This study

pMvT161 pMCS-2 including 10x tetO and part of CCNA_00217,
KanR

This study

pMvT162 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_00226, GenR

This study

pMvT163 pMCS-2 including 10x tetO and part of CCNA_01105,
KanR

This study

pMvT164 pMCS-4 including 10x lacO and part of a chromosomal
fragment close to CCNA_01112, GenR

This study

pMvT165 pMCS-2 including 10x lacO and part of CCNA_01105,
KanR

This study

pMvT166 pMCS-4 including 10x tetO and part of a chromosomal
fragment close to CCNA_01112, GenR

This study
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Supplementary Table 3: Construction of plasmids.

Plasmid Description

pMvT149 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT790 (product 433
bp) and 800 bp from NA1000 gDNA using oMvT791 & oMvT792 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT150 a) amplification of 10 lacO motifs from pLAU43 using oMvT796 & oMvT797 (product 547
bp) and 800 bp from NA1000 gDNA using oMvT798 & oMvT799 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT151 a) amplification of 10 tetO motifs from pLAU44 using oMvT803 & oMvT804 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT805 & oMvT806 (product 843 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT152 a) amplification of 10 lacO motifs from pLAU43 using oMvT808 & oMvT809 (product 548
bp) and 800 bp from NA1000 gDNA using oMvT810 & oMvT811 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT159 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT839 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT840 & oMvT841 (product 843 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT160 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT842 (product 549
bp) and 800 bp from NA1000 gDNA using oMvT843 & oMvT844 (product 851 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT161 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT849 (product 436
bp) and 800 bp from NA1000 gDNA using oMvT850 & oMvT851 (product 840 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT162 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT854 (product 549
bp) and 800 bp from NA1000 gDNA using oMvT855 & oMvT856 (product 844 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT163 a) amplifation of 10 tetO motifs from pLAU44 using oMvT789 & oMvT859 (product 436
bp) and 800 bp from NA1000 gDNA using oMvT860 & oMvT861 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT164 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT863 (product 547
bp) and 800 bp from NA1000 gDNA using oMvT864 & oMvT865 (product 851 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT165 a) amplification of 10 lacO motifs from pLAU43 using oMvT819 & oMvT867 (product 548
bp) and 800 bp from NA1000 gDNA using oMvT868 & oMvT861 (product 845 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly

pMvT166 a) amplification of 10 tetO motifs from pLAU44 using oMvT789 & oMvT869 (product 435
bp) and 800 bp from NA1000 gDNA using oMvT870 & oMvT865 (product 848 bp)

b) fusion of two inserts with pMCS-2/NdeI+NheI via Gibson Assembly
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Supplementary Table 4: Oligonucliotides used in this study.

ID Name Sequence (5’ to 3’)

oMvT789 tetO _CCNA_02049_p1 cgagacgtccaattgcatatgtccctatcagtgatagagaggggaaagg

oMvT790 tetO _CCNA_02049_p2 cgccgctggccaccggatctctatcactgatagggaccttcccttctg

oMvT791 tetO _CCNA_02049_p3 gggaaggtccctatcagtgatagagatccggtggccagcggcgaac

oMvT792 tetO _CCNA_02049_p4 gatcccccgggctgcagctagcgcgcactgaggccgatggcg

oMvT796 lacO _CCNA_02049_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT797 lacO _CCNA_02049_p2 cttcgaccgctgggacttcttgttatccgctcacaatttgccttttgc

oMvT798 lacO _CCNA_02049_p3 ggcaaattgtgagcggataacaagaagtcccagcggtcgaagaggacg

oMvT799 lacO _CCNA_02049_p4 gatcccccgggctgcagctagcgcctatgacgtgatgagctccaagcac

oMvT803 tetO _CCNA_02228_p1 cgagacgtccaattgcatatgtccctatcagtgatagagaggggaaagg

oMvT804 tetO _CCNA_02228_p2 gacgaccccctactggtcctctctatcactgatagggaccttccc

oMvT805 tetO _CCNA_02228_p3 ggtccctatcagtgatagagaggaccagtagggggtcgtcgaacg

oMvT806 tetO _CCNA_02228_p4 gatcccccgggctgcagctagcccagccccgccgccgacatcg

oMvT808 lacO _CCNA_02228_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT809 lacO _CCNA_02228_p2 cccaggcaacttgtctttcgttgttatccgctcacaatttgccttttgc

oMvT810 lacO _CCNA_02228_p3 ggcaaattgtgagcggataacaacgaaagacaagttgcctgggc

oMvT811 lacO _CCNA_02228_p4 gatcccccgggctgcagctagcctagcggatcgggcgcgcgaag

oMvT819 lacO _CCNA_01737_p1 gcgagacgtccaattgcatatgttgtgagcggataacaattggagcaag

oMvT839 tetO _nusG_p2 ggtcgaaaagatcgcctgatctctatcactgatagggaccttcccttc

oMvT840 tetO _nusG_p3 ggtccctatcagtgatagagatcaggcgatcttttcgacctgattg

oMvT841 tetO _nusG_p4 gatcccccgggctgcagctagccgcgacagccgccgccgctcc

oMvT842 lacO _CC-3211_p2 gcagccgcgatttccattgagttgttatccgctcacaatttgccttttg

oMvT843 lacO _CC-3211_p3 ggcaaattgtgagcggataacaactcaatggaaatcgcggctgcgg

oMvT844 lacO _CC-3211_p4 ctagtggatcccccgggctgcagctagcctgccaggagacgcggcc

oMvT849 tetO _CC-0217_p2 cagcgcatagcccagcgcgctctctatcactgatagggaccttcccttc

oMvT850 tetO _CC-0217_p3 ggtccctatcagtgatagagagcgcgctgggctatgcgctgac

oMvT851 tetO _CC-0217_p4 cccccgggctgcagctagcctagctccccgccctctcgatcg

oMvT854 lacO _CC-0226_p2 caactatgtcgatgacgagcattgttatccgctcacaatttgccttttg

oMvT855 lacO _CC-0226_p3 caaattgtgagcggataacaatgctcgtcatcgacatagttgctgcg

oMvT856 lacO _CC-0226_p4 ggatcccccgggctgcagctagcgtgatgaccaagaccatgcttctggc

oMvT859 tetO _CC-1053_p2 gcccagatgccggcgcaatctctctatcactgatagggaccttcccttc

oMvT860 tetO _CC-1053_p3 gggaaggtccctatcagtgatagagagattgcgccggcatctgggcc

oMvT861 tetO _CC-1053_p4 gatcccccgggctgcagctagcggcaggatcgaccaccgcgc

oMvT863 lacO _CC-1059_p2 ccagttcgcagagccggcgttgttatccgctcacaatttgccttttgc

oMvT864 lacO _CC-1059_p3 caaaaggcaaattgtgagcggataacaacgccggctctgcgaactggag

oMvT865 lacO _CC-1059_p4 ggatcccccgggctgcagctagctcatgccatccggtagtgtcgggc

oMvT867 lacO _CC-1053_p2 gcccagatgccggcgcaatcttgttatccgctcacaatttgccttttgc

oMvT868 lacO _CC-1053_p3 ggcaaattgtgagcggataacaagattgcgccggcatctgggc

oMvT869 tetO _CC-1059_p2 ccagttcgcagagccggcgtctctatcactgatagggaccttcccttc

oMvT870 tetO _CC-1059_p3 ggaaggtccctatcagtgatagagacgccggctctgcgaactggag
8



2 Data analysis: using experimental distance distributions to
set the coarse-grained representation of the lattice polymer

We require a coarse-grained representation of the bacterial chromosome that is consistent with
experimentally determined statistics beyond the coarse-graining length scale. Furthermore, our
coarse-grained representation should allow for efficient computation. The resolution of the Hi-
C data set (10 kb) sets a natural coarse-graining scale for the polymer, but we require additional
experiments for the statistics at this length-scale: the distribution of spatial distances between pairs
of loci at a 10 kb genomic distance. Here we demonstrate that a lattice polymer representation of
the chromosome captures the statistics at this length scale. In this representation, the measured
average spatial distance between a pair of loci sets the lattice spacing of our representation of the
bacterial chromosome.

2.1 Analysis of experimental distance distributions of pairs of loci in C.
crescentus

From the experimental procedure described in Note 1, a data set of 100 2D distance vectors are
obtained in C. crescentus for five pairs of loci separated by 10 kb. Note, microscopy data only
gives us the projected 2D distances, while the actual distance vectors are in 3D. From the 2D data
set, however, we can infer the underlying distribution of 3D distances. To make this inference, two
effects are considered:

1. Measurement errors. This has two sources: finite localization precision and drift between the
two consecutive images, taken to determine the positions of the two fluorescently (YFP and CFP)
labeled loci using two different fluorescence channels.

The measurement noise due to finite localization precision depends on the intensity of the
fluorescent probe and the brightness of its direct surroundings. We calculated this precision using
the GDSC SMLM plugin to have a standard error of 32.63 nm, with an average variation between
measurements of 0.02 nm.

To account for drift between two consecutive images, we decompose the distance vector within
each pair of foci into an x and y component, and sum these two components separately for all
cells. As the orientations of cells are isotropically distributed, both the x and y component sums
should go to 0 for increasing sample size. However, we find significant deviations from 0, larger than
expected with our finite sampling, indicating a systematic drift estimated to be 35 ± 4nm in the
x-direction, and 52±5nm in the y-direction (error on the mean). We correct for these deviations by
subtracting the systematic drift in the x and y directions from each of the experimentally measured
distance vectors, from which a model for the 3D distance distribution is inferred. This correction
will, however, be an overestimate: for a finite sample size, the x and y component sums will likely
deviate from 0, even in the absence of drift. To account for this bias in the drift estimator, we
simulate finite sampling of 2D distance vectors (using the same number of data points as in the
experiments) from the inferred model for the 3D distance distribution. Note, we require a self-
consistent iterative procedure: the bias in the drift estimator that we correct for, when inferring
the 3D model from measured 2D distances, must be consistent with the bias we determine when
performing a finite sampling of 2D distances from this model.
2. We consider intrinsic variations in 3D distances between the loci, for instance due to thermal
fluctuations of the DNA. We assume that the underlying distribution of relative positions is de-
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Supplementary Table 5: Inferred average distances for the measured pairs of loci. The data sets
MvT171 and MvT172 are for the same loci, just with their markers switched (see Note 1). The
determined distances for each of these pairs are within two standard deviations of each other.

Data set Average 3D distance (nm) Inferred σ (nm)

MvT151 106 ± 7 67

MvT170 134 ± 8 84

MvT171 121 ± 8 76

MvT152 158 ± 9 99

MvT172 132 ± 8 83

MvT179 124 ± 7 78

Inferred average for en-
tire chromosome

Average 3D distance (nm) Variance (nm)

129 ± 7 17

scribed by a 3D Gaussian with a standard deviation and a mean equal to 0. This results in one fit
parameter (σ) for the underlying distribution.

To determine the value of σ for each of the pairs of loci, we also use an iterative procedure: we
start by choosing an initial value of σ, and then simulate the sampling of a large number of 3D
distance vectors from this distribution. We then take a 2D projection of these samples and add the
random measurement error of 32.63 nm (see point 1). Next, we compute the average 2D distance
and compare with the experimentally determined 2D average distance. If these values are not equal,
the value of σ is updated accordingly, and a new round of the iteration begins. This procedure
is repeated until convergence is reached (the average 2D distance is equal to the experimentally
determined 2D average distance).

Once convergence is reached, the mean 3D distance for each pair of loci is calculated through
a forward simulation of random points being drawn from a 3D Gaussian. The error on the mean
inferred 3D distance for a specific pair of loci on the chromosome is determined by bootstrapping
(see Table 5). The average distance for the entire chromosome is taken as the average over the means
of the 5 pairs of loci we studied experimentally, and is determined to be 129±7 nm (standard error
of the mean).

Once the average distances are matched between model and experiment, the distributions of
measured distances can also be compared. This distribution matches well between model and
experiment (Supplementary Fig. 2), supporting the assumption of a 3D gaussian as an underlying
distribution of relative positions between the loci. Once we set the lattice constant of our lattice
polymer to match this average 3D distance, our lattice polymer model approximately captures the
correct statistics for the distance between neighboring chromosomal regions. This validates the
use of a lattice polymer to connect consecutive monomers representing neighboring chromosomal
regions.
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2.2 Setting the dimensions of the lattice spacing and the cellular con-
finement in the model

We employ a polymer model on a cubic lattice. In this representation, the position of each fourth
monomer indicates the unit cell occupied by the center of a Hi-C chromosomal region. The polymer
model is allowed to intersect, since multiple centers of genomic regions could reside in the same unit
cell volume. In fact, two monomers are assigned a contact probability γ only if they simultaneously
occupy the same lattice site. This assumes that the dominant contributions to contacts between
two chromosomal regions are from configurations where their respective centers occupy the same
unit cell. Any excluded volume effects reducing the number of self-overlaps of the coarse-grained
polymer manifest through imposed Hi-C score constraints.

To set the scale of the lattice spacing b in the model, we use the average spatial distance between
consecutive Hi-C chromosomal regions determined in Note 2.1). If we consider distances between
subsequent chromosomal regions, however, coarse-graining effects need to be taken into account:
only seven distances between these regions are possible in the lattice representation (Supplementary
Fig. 4 B): (0,

√
2b, 2b,

√
6b,
√

8b,
√

10b, 4b), which occur with respective relative occurrence fre-
quencies (f1, · · · , f7). In our MaxEnt model, we robustly observe (f1 ≈ 0.092, f2 ≈ 0.50, f3 ≈ 0.13,
f4 ≈ 0.19, f5 ≈ 0.041, f6 ≈ 0.048, f7 ≈ 0.0022). This coarse-graining effect implies a cut-off of
the tail of the underlying Gaussian distribution of 3D distances. To account for this cut-off, we
first sample real-space configurations of consecutive chromosomal regions according to the experi-
mentally determined 3D Gaussian distribution of continuous distances (see Note 2.1), and infer the
statistics in the corresponding lattice model. For each of the seven possible (discretized) distances
in the coarse-grained lattice representation, we thus obtain associated conditional distribution of
real-space distances. The sum of the seven conditional real-space distance distributions, weighted
by their respective relative occurrence frequencies (fi), defines the full distribution of distances be-
tween neighbouring chromosomal regions in the MaxEnt model. We determine the lattice spacing
b = 88 nm, such that the average distance between chromosomal regions in our MaxEnt model
matches the experimentally determined average distance (Note 2.1)). Note, for this lattice spacing,
the distribution of distances between neighbouring chromosomal regions in the MaxEnt model are
also in accordance with our experimentally determined distributions (Supplementary Fig. 2).

The phase space of chromosome states is restricted to those that fit inside a cell, the sampling
thus explores a constrained space (see also [9]). We introduce a confinement formed by a cylin-
der capped by two hemispheres. The dimensions of the confinement are chosen to match typical
dimensions of a newborn swarmer cell. These dimensions are determined by taking a sample of
267 cells from the MvT151 data set, which yields an average length of 2.3 ± 0.2, µm and width
of 0.75 ± 0.04µm, as determined by using the BacStalk software [10]. Subtracting the estimated
width of the cell envelope of 61 nm (based on figure 2 of [11]), we arrive at typical chromosome
confinement dimensions of 2.2 × 0.63µm. With the inferred lattice spacing, this translates to a
confinement of 470 unit cells (25 lattice spacings long and 7 wide). This representation of the cell
could be refined further to include the crescent shape, but we find that such corrections do not
appear to significantly affect the results of our model (see Note 17).
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Supplementary Figure 2: Distributions of 2D projected distances from experiment
and MaxEnt model. Bars: experimentally measured 2D distances (after bias correction, see
Note 2.1). Blue lines: distributions of 2D projected distances from the inferred 3D Gaussian
distribution. For each data set there is one fit parameter σ, chosen such that the average distances
of measured and inferred distributions match. Black markers: Relative frequencies (fi) of each of
the seven possible configurations of two neighboring chromosomal regions of the MaxEnt model with
associated average distances determined from coarse-graining. The pairs of horizontal black lines
at each dot indicate the mean variance of the MaxEnt configuration frequency for all neighboring
pairs of chromosomal regions. The error bar indicates the standard deviation of the underlying
distance distribution for each coarse-grained configuration. Black curve: Inferred 2D distance
distribution between consecutive genomic regions for the entire chromosome for the MaxEnt model.
This distribution is obtained by weighing the inferred distance distribution for each coarse-grained
configuration with the associated relative occupancy frequency within the MaxEnt model. To
enable a direct comparison with experimental data, the inferred measurement noise is applied over
the MaxEnt distance distribution. Note that all MaxEnt data sets are the same in each panel.

3 Inverse Monte Carlo algorithm for MaxEnt chromosome
model

We solve the inverse problem and obtain the Lagrange multipliers εij ’s by an iterative procedure:
we perform a Monte Carlo (MC) simulation (forward algorithm) to sample equilibrium states from
the lattice polymer model with an initial guess for εij . Subsequently, we compare the estimated
contact map, f simij , obtained from this MC simulation, with the target experimental map f exptij .
When the modeled and experimental contacts deviate, the εij ’s are updated (inverse algorithm).
This procedure converges when the modelled normalized contact frequency map matches the Hi-C
data set within a tolerance level, yielding the complete set of parameters εij that defines the MaxEnt
model. The forward and inverse algorithm are described below.
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Supplementary Figure 3: Illustration of the three polymer moves employed in the
Monte Carlo simulation. The simulation employs a kink move, a crankshaft move and a loop
move.

3.1 Forward algorithm
In our coarse-grained model, the bacterial chromosome of C. crescentus is represented by a circular
lattice polymer with a length of 1620 monomers. Each 4th monomer represents the location of the
center of a genomic region, with three monomers in between to ensure Gaussian statistics between
subsequent centers of genomic regions (see Note S2). The level of coarse-graining can be adapted
to accommodate the resolution of the data on which the model is trained.

The algorithm is initiated with the circular polymer randomly arranged within the confine-
ment. This starting state is obtained by first ’winding up’ the polymer in a square that fits in the
confinement. Subsequently, a simulation with no interaction energies is run for 107 Monte Carlo
moves. The resulting configuration is used as the starting configuration. We simulate the Boltz-
mann distribution of polymer configurations in the MaxEnt model using Monte Carlo simulations.
To sample configurations in the Monte Carlo algorithm, we employ three different polymer moves:
the kink move, the Crankshaft move and the loop move (Supplementary Fig. 3). This move set
preserves circularity and allows an ergodic sampling of the space of polymer configurations, which
is demonstrated in Note 3.3. Moves which would place a monomer outside of the confinement are
forbidden.

A potential move {r} → {r′} is randomly chosen (based on the move set in Supplementary
Fig. 3), and then accepted with a probability Pacc({r′}, {r}) according to the Metropolis criterion:
Pacc({r′}, {r}) = min(1, exp(E({r}) − E({r′}))), provided the configuration stays within the con-
finement. Here, E({r′}) and E({r}) are the energies of the proposed configuration {r′} and current
configuration {r}, respectively. The energies are computed according to the Hamiltonian (Eq. (5)
in main text)

H({r}) =
1

2

∑
ij

εijδri,rj . (S1)

For pairs of genomic regions i, j for which f̃ expt
ij = 0, the corresponding εij is set to a high value at

the start of the simulation, typically 10, which may further increase during iterations of the inverse
algorithm. Note, this initial value is high enough to ensure these contacts do not form in practice.
At the start of the forward simulation, we apply a burn in time of 2×107 MC moves before contact
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Supplementary Figure 4: Illustration of the model confinement and chromosome repre-
sentation A The cellular confinement used in the simulations. Each dot represents a lattice point.
B Illustration of the coarse-grained representation of the chromosome, which is shown here in 2D
for simplicity. The chromosome is represented by a lattice polymer, where each fourth monomer
describes the position of the center of a genomic region. The three monomers in between centers
of genomic regions serve to ensure correct distance statistics between subsequent genomic regions.
When two centers of genomic regions overlap, they have a probability γ of forming a contact that
contributes to the Hi-C map.

frequency statistics are calculated. During the inverse algorithm, this burn in time is only applied
to the first forward simulation. For subsequent forward simulations, the final configuration of the
previous forward simulation is used as a starting state.

3.2 Inverse algorithm
As noted in the main text, we learn the MaxEnt model directly from the normalized experimental
Hi-C map. During a forward simulation of the polymer, the contact frequency fmodel

ij of each pair
of monomers is counted. After one round of forward simulation, the simulated contact frequencies
are normalized and compared to the experimental ones. The pairwise interaction energies are then
updated according to

∆εij = α(f̃model
ij − f̃ exp

ij )× 1√
f̃ exp
ij

. (S2)
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Here, α is the learning rate (which we typically set to 0.2), and the last factor is included to speed
up conversion for pairs with a low contact frequency. Note, f̃model

ij and f̃ exp
ij are the normalized

model and experimental contact frequencies, respectively.
Importantly, to impose that the normalized contact frequencies match between model and ex-

periment, we need to determine one remaining parameter: the absolute scale of the model contact
frequencies. This is fixed by main text Eq. 6, which is derived as follows. Writing f exptij = cf̃ exptij

and c̃ = c
γ , the entropy functional becomes

S̃ =−
∑
{r}

P ({r}) lnP ({r})−
∑
ij

λij

(∑
{r}

P ({r})δri,rj

− c̃f̃ exptij

)
− λ0

(∑
{r}

P ({r})− 1

)
(S3)

we require that c̃ maximizes the model entropy, setting δS̃
δc̃ = 0. This yields main text Eq. 6:∑

ij

λij f̃
expt
ij = 0. (S4)

Ensuring that this condition is satisfied in each iteration step fixes the overall scale of contact
frequencies. In the simulation, this is done by applying an overall shift in the interaction energies
after the update step in Eq. (S2). This overall shift can be derived as follows: we start from Eq. 6,
which imposes

∑
ij εij f̃

expt
ij = 0. In general, a set of εij obtained after the update step in Eq. (S2)

will not satisfy this constraint. We can, however, introduce a shift ∆ε of all εij such that this
condition is satisfied: ∑

ij

(ε′ij −∆ε)f̃ exptij = 0. (S5)

Rewriting, and making use of
∑
ij f̃

expt
ij = Nbin with Nbin is the number of Hi-C bins, yields

∆ε = −
∑
kl ε
′
klf

exp
kl

Nbin
. (S6)

Performing this shift after each update step ensures that the condition in main text Eq. 6 is satisfied
at each iteration of the inverse algorithm.

We iterate the inverse algorithm until the Pearson’s correlation coefficient between the simulated
normalized contact frequencies and the experimental data is above 0.98. This is the correlation
coefficient of contact frequencies between repeat experiments reported in [12]. In practice, we can
obtain even higher correlation coefficients of 0.998, as stated in the main text. With each subsequent
forward simulation, the number of Monte Carlo steps is multiplied by

√
n, with n the iteration step.

The inverse algorithm is typically started with ∼ 360 million steps, and run for ∼ 100 iterations.

3.3 Ergodicity of forward algorithm
Next, we demonstrate that the algorithm is ergodic. A circular path of the polymer can be repre-
sented as a sequence of N steps along the lattice, where each step is either up (U), down (Ū), right
(R), left (R̄), in (I) or out (Ī). We denote the total number of steps of type x by N(x). Circularity
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of the path implies that N(U) = N(Ū), N(R) = N(R̄) and N(I) = N(Ī). Furthermore, we will
divide the steps in types, where (U) and (Ū) are type 1, (R) and (R̄) are type 2, and (I) and (Ī)
are type 3. An individual path can then be described as a sequence of steps, for example

[ U , R̄ , I , R , Ū , · · · ]. (S7)

Here, each of the steps is colored by type. In the following we will also consider the sequence within
each type. For our example, the sequences for the three types are:

• Type 1: [ U , Ū , · · · ]

• Type 2: [ R̄ , R , · · · ]

• Type 3: [ I , · · · ]

We now consider the action of each of the polymer moves on a sequence of steps.

• The kink move interchanges two subsequent steps of a different type. Using only this move,
any sequence of type 1, type 2 and type 3 steps can be created from a starting sequence that
doesn’t change the number of each type. Put differently, using the representation in (S7),
any sequence of red, green and blue can be created that conserves the original counts of each
color. Within each type, the sequence of the possible steps (e.g. U and Ū), however, cannot
be changed with this move.

• The crankshaft move takes a motif of the form [A,B, Ā] and alters this to one of three
possible motifs: (i) [Ā, B,A], or (ii) [C,B, C̄], or (iii) [C̄, B,C]. The first alteration changes
the sequence of steps within a type. Combining this alteration with the kink move, any
sequence of steps within each type can be created, provided that there is at least one set of
steps of a different type.

Alteration (ii) and (iii) change the number of steps of each type: N(A) + N(Ā) is reduced
by 2, and N(C) + N(C̄) is increased by 2. Combining this with the kink move, any set of
counts of each of the types can be created, provided that polymer length and circularity are
preserved, and that in the initial state not all steps are of the same type.

Combining all three alterations with the kink move, from any starting sequence any final
sequence can be created that conserves polymer length and circularity, as long as the starting
and final sequence have moves of at least two different types.

• The loop move takes a motif of the form [A, Ā] and alters it to either (i) [Ā, A] or (ii)[B, B̄]
or (iii) [B̄, B]. Alteration (i) enables any change of the sequence within a type when the entire
initial sequence is of the same type. Alterations (ii) and (iii) allow the conversion from a state
of only one type to a state of two types.

Combining the loop move with the kink and crankshaft moves, from any starting sequence
any final sequence can be created that conserves polymer length and circularity. Thus, an
ergodic sampling of the space of polymer configurations is ensured.

Note I: The presence of a confinement introduces a parity on the lattice sites: sites that can be
occupied by an even monomer through these 3 moves cannot be occupied by an uneven monomer,
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and vice versa. Either choice of parity can be seen as a separate coarse-grained model, as the unit
cell locations shift depending on this choice.

Note II: A confinement could be chosen that ‘traps’ a portion of the polymer in place, making
the phase space reachable using the three moves dependent on the initial state. For our confinement
consisting of a cylinder with rounded edges such a trapping is not present, thus ergodicity is still
preserved.

Note III: ergodicity is already ensured if only the loop and kink moves are used: the crankshaft
move can be constructed as a combination of the two. However, the crankshaft move allows for a
faster exploration of phase space and is thus also included.

4 Testing the inverse Monte Carlo algorithm
To test the performance of our inverse algorithm, we generated trial data sets by running a forward
simulation for a chosen set of input effective interaction energies εinij (upper left Supplementary
Fig. 5A). The resulting simulated contact map, f inij , exhibits intricate features, including domain-
like structures along the main diagonal and a fainter second diagonal (upper left Supplementary
Fig. 5B). Subsequently, we treat this contact map as an experimental data set, which we use as
an input to our iterative inverse scheme. We find that our inverse scheme rapidly and accurately
retrieves the correct energies, εmodel

ij ≈ εinij , and contact frequencies, fmodel
ij ≈ f inij , demonstrating

that this scheme adequately solves the inverse problem (Supplementary Fig. 5A-C).

B C

Supplementary Figure 5: Demonstration of numerical inverse algorithm for MaxEnt
chromosome model. A Upper left: input effective interaction energies εinij . Lower right: effective
interaction energies retrieved by the MaxEnt model. B Upper left: simulated contact frequencies
f inij using εinij . Lower right: contact frequencies of the MaxEnt model, using f inij as an input. C
The average relative contact frequency deviation: 〈f in

ij − fmodel
ij 〉/〈fmodel

ij 〉 vs. iteration number of
inverse algorithm.

5 Hi-C data filtering
Before the Hi-C data from Ref. [12] can be used to train our single-chromosome MaxEnt model, we
need to account for the presence of a small fraction of replicating cells due to imperfect synchro-
nization. Most notably, there is a local increase in Hi-C scores between the ori and ter genomic
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regions, which is attributed to a small fraction of cells that have partially replicated their chromo-
some and segregated their newly formed ori regions towards the other pole, where the ter region of
the initial chromosome is located [13, 14]. Although this increase is not readily visible on a linearly
scaled Hi-C map (Supplementary Fig. 6A, upper left), it is clearly visible on a logarithmic scale
(Supplementary Fig. 6A, lower right). Importantly, in experiments where replication is inhibited
prior to synchronization, such an increase in contacts between the ori and ter genomic regions is
not observed [15] (Supplementary Fig. 6B). In Ref. [15], two Hi-C experiments were performed on
swarmer cells that could not undergo replication or cell division: on cells depleted of dnaA, and
cells overexpressing ctrA(D51E)∆3Ω.

5.1 DNA replication inhibited Hi-C datasets
In the cells depleted of DnaA, the only copy of dnaA, whose product activates the initiation of
replication, is driven by an IPTG-regulated promoter. Growth in medium lacking IPTG produced
a population of cells that contained only a single, unreplicated copy of the chromosome. Cells
were suspended in PYE medium without IPTG to deplete DnaA for 90 min before synchroniza-
tion [15]. The data set analyzed here is for cells that were formadehyde fixed immediately after
synchronization (90 min after IPTG withdrawal).

In the cells overexpressing the hyperactive and non-degradable CtrA variant ctrA(D51E)∆3Ω,
chromosome replication is inhibited by constitutive binding of CtrA close to the origin of replication.
ctrA(D51E)∆3Ω is expressed from an xylose-inducible promoter on the high copy number pJS14
plasmid in the presence of the chromosomal copy of wild-type ctrA. Cells were suspended in PYE
medium plus xylose for 60 min before synchronization [15]. The data set analyzed here is for cells
that were formadehyde fixed at 0 hr post synchronization (60 min after xylose addition).

For both the DnaA-depleted cells and the cells overexpressing ctrA(D51E)∆3Ω, average Hi-C
scores are found to monotonicaly decrease with inter-arm genomic distance until a noise floor is
reached, and to exhibit three distinct scaling regimes (Supplementary Fig. 6C). By contrast, for
the wild-type synchronized swarmer cells from Ref. [12], an increase in average Hi-C scores for the
largest inter-arm genomic distances is observed (Supplementary Fig. 6F). If we train a MaxEnt
model directly on this data, this single-chromosome model will interpet these ori -ter contacts as
inter-chromosomal contacts, resulting in a weaker localization of the ter region (Supplementary
Note 7). Here, we propose a filtering procedure to process the wild-type data such that we can
infer a reliable single-chromosome MaxEnt model, even in the presence of a small fraction of non-
synchronized cells.

5.2 Filter procedure
The goal of our data processing procedure is to filter out the contribution of the newly replicated
ori from the wild-type data set, using the two data sets for replication-inhibited cells as a bench-
mark. The advantages of filtering the wild-type dataset, rather than applying the analysis to the
replication-inhibited cells, are two-fold: First, the experimental procedure to inhibit replication
might affect features of chromosome organization. Second, a filter method allows for the analysis
of data sets for mutants and cells in atypical growth conditions but without replication inhibition,
such as the ∆smc mutant and the rifampicin-treated cells in Ref. [12], using a single chromosome
model. For completeness, the results of applying the MaxEnt method directly to the unfiltered
wild-type data, as well as to the replication-inhibited cell data, are presented in Supplementary
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Notes 7 and 8. Importantly, we find that all the central conclusions drawn in the Main Text based
on our MaxEnt model trained on the filtered WT data, can also be drawn for a MaxEnt model on
the unprocessed Hi-C data from the replication-inhibited cells.

The procedure to filter out the contribution of the newly replicated ori aims to reproduce three
features observed for replication-inhibited cells: (1) a power law scaling of the average contact
frequencies in regime III (Supplementary Fig. 6C), (2) a proportionality between the mean and
variance of Hi-C scores across inter-arm genomic distance bins (Supplementary Fig. 6D), and (3)
a transition to a noise floor regime for the largest inter-arm genomic distances (Supplementary
Fig. 6C,E). The filtering procedure is as follows. First, the estimated average Hi-C scores for the
single, unreplicated chromosome f single

av (d) are constructed for each inter-arm genomic distance bin,
d, in regime III (Supplementary Fig. 6F, red dashed line) for the wild-type data set (the construction
procedure is detailed in the next paragraph). A rescaling factor µ(d) =

fsingle
av (d)

〈fWT
ij 〉d

is then obtained

between f single
av (d) and the unfiltered wild-type data averages 〈fWT

ij 〉d for a given distance bin d.
This factor µ(d) is subsequently used to rescale individual Hi-C scores of the wild type data set at
each inter-arm genomic distance bin d within regime III. By construction, this rescaling procedure
ensures that the filtered Hi-C scores will not only have the correct estimated average value, but
also the correct estimated variance, preserving the proportionality between average Hi-C scores and
the asscociated variance observed for replication-inhibited cells. Finally, when the average rescaled
contact frequencies fall below the noise floor observed for replication-inhibited cells, Hi-C scores are
determined from the observed noise floor distribution (Supplementary Fig. 6E).

To construct f single
av (d), we need two points a and b on the log-log plot to define the power law

relation associated to regime III. The vertical position of point a is set at 〈fWT
ij 〉d at the onset

of regime III (Supplementary Fig. 6F), beyond which contributions from the newly replicated ori
are assumed to become significant. To position point b, we assume the contributions to 〈fWT

ij 〉d
from inter-chromosomal contacts and the newly replicated ori regions to be equal at the minimum
of 〈fWT

ij 〉d (Supplementary Fig. 6F, dash-dotted line), since this marks the distance beyond which
contributions from the newly replicated ori become dominant. We thus set the vertical position of
point b equal to 〈fWT

ij 〉d/2. Hence, f single
av (d) follows the power law relation consistent with the line

from a to b, extending till point c, where the noise floor level is reached; this noise floor is found to
be at an average Hi-C score of 0.000078 for the replication-inhibited cells(Supplementary Fig. 6F,
point c). Using this procedure, we now also obtain µ(d) between point a and c.

The filter procedure rescales the Hi-C data by µ(d) between points a and c in regime III. Beyond
point c, the noise level is reached, and Hi-C scores are randomly drawn from the observed noise floor
distribution. These noise-floor distributions are constructed by counting all Hi-C scores of the two
replication-inhibited cells with an inter-arm genomic distance above 1.78 Mb, and are consistent
with an underlying Poissonian process (Supplementary Fig. 6E). Importantly, this construction
leaves all Hi-C scores in scaling regimes I and II (Supplementary Fig. 6C) unchanged, and filters
wild-type Hi-C scores in regime III. The resulting filtered Hi-C scores are shown in Supplementary
Fig. 6G and Supplementary Fig. 6H. Finally, we applied the same data processing procedure to two
other replicas of the WT experiments, as shown in Supplementary Fig. 7.

Our data processing procedure ensures that the averages and variances of the contact frequencies
per inter-arm genomic distance bin behave as observed for replication-inhibited cells. However, it
is possible that additional structure is present in the replication-inhibited data, which is lost in
the filtered wild-type data during this data processing procedure. To test this, we compute the
correlation between Hi-C contact scores within each inter-arm genomic distance bin, between (1)
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the filtered wild-type data set, (2) the DnaA-depleted cells and (3) ctrA(D51E)∆3Ω overexpressing
cells. These correlations are a measure for the similarities between the data sets for each inter-
arm genomic distance bin. A correlation of 1 corresponds to two data sets being identical up to a
proportionality constant, whereas a correlation of 0 corresponds to the variations within a genomic
distance bin being linearly independent between data sets. At the onset of regime III (point a), we
find significant correlations between the three datasets (Supplementary Fig. 6I). Importantly, these
correlations do not significantly differ between each of the three pairs of data sets, indicating the
presence of similar structure in the filtered wild-type data set and the replication-inhibited data
sets. For larger inter-arm genomic distances, the correlations between data sets go to zero, as would
be expected at the onset of the noise floor regime (point c).
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Supplementary Figure 6 (previous page): Hi-C data processing procedure A Wild-
type contact frequencies from [12] on a linear scale (upper left triangle) and a logarithmic scale
(bottom right triangle). B Contact frequencies for replication-inhibited swarmer cells directly
after synchronization. Upper left triangle: DnaA-depleted cells; lower right triangle: cells over-
expressing ctrA(D51E)∆3Ω. Both datasets are taken from [15]. C Hi-C score versus inter-arm
genomic distance for DnaA depleted cells (light blue dots). Dark blue dots: averages per inter-
arm genomic distance bin. Orange dots: averages per inter-arm genomic distance bin for cells
overexpressing ctrA(D51E)∆3Ω. Three distinct scaling regimes are identified, indicated by regions
I-III. D Variance of Hi-C scores within an inter-arm genomic distance bin versus the average Hi-C
score of this genomic distance bin for DnaA-depleted cells (blue line) and the cells overexpressing
ctrA(D51E)∆3Ω (orange line). E Probabilities of Hi-C score occurances in the noise floor regime,
taken over pairs of genomic regions with an inter-arm genomic distance of at least 1.78 Mb. Blue
line: DnaA-depleted cells; orange line: cells overexpressing ctrA(D51E)∆3Ω; black dots: averages
per Hi-C score bin; dashed line: distribution for a poissonian process with a mean equal to the
average of the two data sets and λ = 4; dash-dotted line: the same for λ = 5. F Hi-C score versus
inter-arm genomic distance for wild-type cells (grey dots). Black dots: average per inter-arm ge-
nomic distance bin. Dash-dotted line: horizintally aligned with the minimum point of the average
Hi-C scores. Red dashed line: f single

av (d) (from point a to c) and the noise floor beyond point c
(see Supplementary text for more details). G Wild-type Hi-C scores after the filtering procedure
is applied (grey dots) together with the averages per inter-arm genomic distance bin (black dots).
H Wild-type Hi-C score map after the filtering procedure has been applied. Hi-C scores have been
rescaled in the regime between the black and the grey lines. The noise floor region is enclosed withn
the grey lines, where Hi-C scores have been randomly drawn from the distribution in E. I Correla-
tions of contacts within an inter-arm genomic distance bin, between (1) the filtered wild-type data
set, (2) the DnaA-depleted cells and (3) ctrA(D51E)∆3Ω overexpressing cells.

6 Comparison of filter procedure for wild-type replicates
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Supplementary Figure 7: Comparison of data filtering procedure for wild-type repli-
cates A Unfiltered Hi-C scores as a function of inter-arm genomic distance for the three wild-type
replicates published in [12]. The onsets of scaling regimes II and III as introduced in Supplementary
Notes 5 are indicated by black vertical lines. B Hi-C scores versus inter-arm genomic distance for
the three replicates after the filter procedure has been applied. C Upper left: Hi-C scores of the
NcoI dataset before the filter procedure is applied. Lower right: Hi-C scores of the same data set
after the filter procedure has been applied. D Upper left: Hi-C scores of the BglII replicate 2
dataset before the filter procedure is applied. Lower right: Hi-C scores of the same data set after
the filter procedure has been applied.

7 Results for MaxEnt model trained on unfiltered Hi-C data

To further investigate the effect of this data processing on the model results, we reran our analysis
directly on the unprocessed Hi-C data. We find that the localizations of genomic regions (Supple-
mentary Fig. 9), the orientational and radial correlations in positions of regions (Supplementary
Fig. 10) and the local structure (Supplementary Fig. 11) are largely unaffected. The most significant
difference is found in the localization of the ter region, which is now found to move throughout the
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ori half of the cell in a minority of states (Supplementary Fig. 9). This movement of the terminus
has an effect on the long-axis anti-correlations between the ori and ter regions (Supplementary
Fig. 10), resulting in a modified long-axis correlation pattern compared to the filtered Hi-C data
(Main Text Fig. 3B). However, if conditional long-axis correlations are computed, conditioned on
the ori region (here defined as 3.75 Mb - 0.25 Mb) being in one half of the cell, and the ter region
(here defined as 1.75 Mb - 2.25 Mb) being in the other half, the pattern of anti-correlations between
the two juxtaposed chromosomal arms is restored (Supplementary Fig. 10).

A B

Supplementary Figure 8: Results for Main Text Fig. 1, re-analyzed for the unfiltered
Hi-C data of replicate 1 from [12]. A Comparison between experimental contact frequencies
f exptij (upper left corner, adapted from Ref. [12]) and contact frequencies obtained from our inferred
MaxEnt model fmodel

ij (lower right corner). B Associated inferred effective interaction energies εij
(lower right corner, white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij

(inset).
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Supplementary Figure 9: Results for Main Text Fig. 2, re-analyzed for the three
replicates from [12]. A Black solid line: average of the three data sets. Grey area: standard
deviation of the three replicates, centered at the average. B Solid lines: averages of the three
replicates. Shaded areas: standard deviations of the three replicates, centered at the average. Bars:
experimental data from microscopy experiments (adapted from [3]). To indicate experimental
variability, the solid/transparent bars indicate the minimum/maximum measured by two different
methods: FROS or FISH.
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Supplementary Figure 10: Two-point correlations for the three replicates from [12].
Plots A and B are for the Ncol replicate. A Upper left corner: two-point correlations in the
radial positions between genomic regions. Lower right corner: two-point correlations in angular
orientations around the long axis. B Upper left corner: two-point correlations between long-axis
positions of genomic regions. Lower right corner: conditional long-axis correlations, conditioned on
the ori region (here defined as 3.75 Mb - 0.25 Mb) being in one half of the cell, and the ter region
(here defined as 1.75 Mb - 2.25 Mb) being in the other half. C and D: same as A and B, for BglIl
replicate 1. E and F: same as A and B, for BglIl replicate 2.
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A B

Supplementary Figure 11: Results for Main Text Fig. 5, re-analyzed for the three
replicates from [12]. A The local chromosome extension δi as a function of genomic position.
Black solid line: average of the three replicates. Grey areas: standard deviation of the three
replicates, centred at the average. B Localization information per genomic region in bits. Black
solid line: average of the three replicates. Grey areas: standard deviation of the three replicates,
centred at the average.
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8 Results for MaxEnt model trained on replication-inhibited
cells

8.1 DnaA-depleted cells

A B

Supplementary Figure 12: Results for Main Text Fig. 1, re-analyzed for the DnaA-
depleted cell data set from [15]. A Comparison between experimental contact frequencies
f exptij (upper left corner, adapted from Ref. [15] and contact frequencies obtained from our inferred
MaxEnt model fmodel

ij (lower right corner). B Associated inferred effective interaction energies εij
(lower right corner, white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij

(inset).
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Supplementary Figure 13: Results for Main Text Fig. 2, re-analyzed for the DnaA-
depleted cell data set from [15]. A Black solid line: average long-axis positions of genomic
regions for DnaA-depleted cells predicted by the MaxEnt model. B Solid lines: distribution of
long-axis positions of chromosomal loci (blue: ori, red: pilA, green: pleC, orange: podJ ) for
DnaA-depleted cells predicted by the MaxEnt model, , together with previous experimental data
from microscopy experiments (bars, adapted from [3]). To indicate experimental variability, the
solid/transparent bars indicate the minimum/maximum measured by two different methods: FROS
or FISH.

A BRadial

Angular

Supplementary Figure 14: Results for Main Text Fig. 3, re-analyzed for the DnaA-
depleted cell data set from [15]. A Upper left corner: two-point correlations in the radial
positions between genomic regions. Lower right corner: two-point correlations in angular orien-
tations around the long axis. B Two-point correlations between long-axis positions of genomic
regions.

8.2 Cells overexpressing ctrA(D51E)∆3Ω
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Supplementary Figure 15: Results for Main Text Fig. 5, re-analyzed for the DnaA-
depleted cell data set from [15]. A Black solid line: the local chromosome extension δi as a
function of genomic position for DnaA-depleted cells as predicted by the MaxEnt model. B Black
solid line: localization information per genomic region for DnaA-depleted cells as predicted by the
MaxEnt model.

A B

Supplementary Figure 16: Results for Main Text Fig. 1, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Comparison between experi-
mental contact frequencies f exptij (upper left corner, adapted from Ref. [15] and contact frequencies
obtained from our inferred MaxEnt model fmodel

ij (lower right corner). B Associated inferred ef-
fective interaction energies εij (lower right corner, white regions indicate εij →∞) together with a
scatter plot of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 17: Results for Main Text Fig. 2, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Black solid line: average
long-axis positions of genomic regions for ctrA(D51E)∆3Ω overexpressing cells predicted by the
MaxEnt model. B Solid lines: distribution of long-axis positions of chromosomal loci (blue: ori,
red: pilA, green: pleC, orange: podJ ) for ctrA(D51E)∆3Ω overexpressing cells predicted by the
MaxEnt model, together with previous experimental data from microscopy experiments (bars,
adapted from [3]). To indicate experimental variability, the solid/transparent bars indicate the
minimum/maximum measured by two different methods: FROS or FISH.
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Supplementary Figure 18: Results for Main Text Fig. 3, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Upper left corner: two-point
correlations in the radial positions between genomic regions. Lower right corner: two-point corre-
lations in angular orientations around the long axis. B Two-point correlations between long-axis
positions of genomic regions.
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Supplementary Figure 19: Results for Main Text Fig. 5, re-analyzed for the
ctrA(D51E)∆3Ω overexpressing cell data set from [15]. A Black solid line: the local chro-
mosome extension δi as a function of genomic position for DnaA-depleted cells as predicted by the
MaxEnt model. B Black solid line: localization information per genomic region for DnaA-depleted
cells as predicted by the MaxEnt model.

31



9 Analysis of genomic Super Domains

9.1 Super Domain definition and long-axis exclusion analysis
To define genomic Super Domains (SuDs), we first choose a cluster radius r. For each genomic
region i, we consider a specific configuration of the chromosome and then calculate the length ` of
the set of subsequent genomic regions (in both directions along the chromosome) that lie within the
radius r from the position of genomic region i (illustrated by the black line in Main Text Fig. 4A).
We observe that for each configuration of the chromosome, the genomic regions separate into a
small number of domains, indicated by the blue and red areas in Main Text Fig. 4A. We identify a
domain with each local maximum in ` (indicated by L1− L3 and R1−R3 in Main Text Fig. 4B);
the peak location represents the genomic region at the center of a SuD and the peak value indicates
the number of genomic regions within the domain.

To determine a natural choice for r, we perform a parameter sweep over r and consider the
change in the average value of ` with r: d¯̀/dr. We find that for the MaxEnt models on wild-type,
rifampicin-treated and ∆smc cells, d¯̀/dr initially increases with r, and then becomes approximately
constant (Supplementary Fig. 20). For models unconstrained by Hi-C data (the ‘random polymer’,
and the ‘tethered random polymer’), such a transition to a plateau regime is not present. We
interpret the transition to this plateau regime in the MaxEnt models as the genomic length scale
at which the linear organization of the chromosome along the cell length starts dominating local
fluctuations of loci(Main Text Fig. 2A&B). We take the crossover point between these two regimes
to be r = 264 nm, indicated by the grey dashed line in Supplementary Fig. 20.

To quantify the degree of long-axis exclusion between SuDs, the distribution of long-axis posi-
tions of the genomic regions contained in each domain is computed (Main Text Fig. 4B). A long-axis
position is assigned to a Super Domain based on the highest-occupied long axis coordinate of this
cluster. The degree of overlap of long-axis positions is then computed for randomly paired left and
right arm configurations and for correctly matched pairs.

9.2 Super Domain properties
To quantify the distribution of SuD sizes and locations, we determined the average number of SuDs
on each chromosomal arm, the average SuD size across genomic regions and the distribution of SuD
center locations across the genome. The results are shown in Supplementary Figure 21. An illus-
tration of the expected link between SuDs and the inferred anticorrelations between chromosomal
arms is shown in Supplementary Figure 22
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Supplementary Figure 20: Super Domain cluster analysis. Derivative of the average cluster
size as a function of the cutoff radius r, for wild-type cells (black), rifampicin-treated cells (blue),
a ∆smc mutant (orange), a tethered random polymer (dash-dotted line) and a random polymer
(dashed line). The vertical dashed line indicates the chosen cutoff value.

A

D E

B C
Wild-type Rifampicin treated Δsmc

Supplementary Figure 21: Super Domain properties. Distribution of the number of Super
Domains across configurations for the left arm (blue) and the right arm (orange) for wild-type cells
(A), rifampicin-treated cells (B) and a ∆smc mutant (C). D Average size of the SuD a genomic
region is part of, given that it is part of a SuD, as a function of genomic position. E Probability of
a cluster center being within 50 kb of a genomic region, as a function of genomic position.

33



r1

r2
r2

r1

Supplementary Figure 22: Illustration of SuDs inducing anticorrelations between
chromosomal arms. In this illustration, genomic regions r1 and r2 lie on different chromosomal
arms but have the same average long-axis position (dashed line). The SuD that region r1 is part
of, has a tendency to avoid the SuD that region r2 is part of (given that both regions are part of a
SuD). This is expected to induce anticorrelations in the long-axis positions of regions r1 and r2.
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10 Overlap analysis between local chromosome extension peaks
and highly transcribed genes

To investigate the connection between peaks in the local extension profile and the locations of highly
transcribed genes, we first construct a (nonlinear) trend line through the chromosome extension
profile. This line is constructed by repeatedly applying a Gaussian smoothing filter over the data,
incorporating periodic boundary conditions. The Gaussian smoothing is implemented by repeatedly
applying a moving average over groups of 3 subsequent genomic regions. We find that 250 repeats
to result in a satisfactory balance between smoothing out local peaks and keeping the larger-scale
trend (grey line in Supplementary Figure 23A). Next, we select the subset of local extension peaks
that lie a factor α above the trend line. We perform a sweep over α and calculate for each choice of
α the fraction of incorporated peaks that coincide with the locations of highly transcribed genes.
Additionally, for each α we simulate a number of randomly positioned peaks equal to the number
of incorporated peaks. From this simulation, we calculate the expected fraction of overlap and the
95% confidence intervals.

We find that the fraction of overlap is significantly higher than expected for randomly positioned
local extention peaks, if up to the 9 highest peaks are considered (Supplementary Figure 23B). If
more peaks are incorporated, the fraction of overlap gradually decays to the level expected for
random positions. Repeating this analysis for the right (0-2 Mb) and left (2-4 Mb) chromosomal
arms seperately, we find that the fraction of overlap is only significantly higher than a random guess
for the highest peaks of the right arm (Supplementary Figure 23C). For the left arm, by contrast,
the fraction of overlap is close to the value expected by random guess for all values of α.
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Supplementary Figure 23: Analysis of the degree of overlap between peaks in local
chromosome extension and the locations of highly transcribed genes. A Wild-type lo-
cal chromosome extension profile (black line), together with a trend line obtained from Gaussian
smoothing (grey line) and the locations of highly transcribed genes (HTGs) (vertical dashed lines).
B Green solid line: fraction of local extension peaks that coincide with the location of a highly tran-
scribed gene, as a function of the cutoff factor α. The dashed line indicates the expected fraction
of overlap for randomly chosen locations of peaks, the light green area indicates the 95% confidence
interval around this expected fraction. The grey line indicates the number of peaks included for a
given cutoff factor (indicated on the right axis). C The same analysis as in B, performed separately
for the right (0-2 Mb, blue) and left (2-4Mb, red) chromosomal arms. D,E The same analyses as
in B and C, using only the positions of HTGs located on the forward strand of the chromosome.
F,G The same analyses as in B and C, using only the positions of HTGs located on the reverse
strand of the chromosome.
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11 Relation between Hi-C scores and average distance and
distance correlations

Previous modelling approaches for the C. crescentus chromosome used average distance based
models to find typical chromosome configurations [13, 14]. In these approaches, an experimentally
determined average linear relation between intra-arm genomic distances and average spatial dis-
tances was used to derive a functional relation between Hi-C contact scores and average spatial
distances. Our MaxEnt model does not require this assumption, instead we can use the model to
predict the relation between Hi-C scores and average distances. Interestingly, our MaxEnt model
predicts an approximately linear relation between Hi-C scores and average distances, but with sig-
nificant deviations from this average trend for individual pairs of genomic regions (Supplementary
Figure 25A). Moreover, there are substantial deviations from a linear trend for small and large
genomic distances. Finally, we also observe significant variations around an average trend for Hi-C
scores versus spatial distances (Supplementary Figure 25B).

In addition to these variations in average spatial distances, we also find significant correlations
in deviations from these averages for individual configurations throughout the entire chromosome
(Supplementary Figure 25). In previously used approaches [13, 14] such correlations could not be
taken into account, which could explain the difference in predictions from our MaxEnt model.

A B

Supplementary Figure 24: Variations of average distance statistics between individual
pairs of genomic regions. A Average spatial distance versus genomic distance predicted by the
MaxEnt model. B Average spatial distance versus the logarithm of the Hi-C score predicted by the
MaxEnt model.
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Supplementary Figure 25: Correlations between distances of all pairs of genomic
regions, and the distance between three sample pairs. The chosen sample pairs are: A
genomic regions at (1.0Mb, 1.1Mb), B genomic regions at (1.55Mb, 2.5Mb), C genomic regions at
(3.0Mb, 3.5Mb).

12 A global rotation does not produce the observed long-axis
correlation pattern

To illustrate the features of a long-axis correlation map that would be induced by a global rotation,
we simulated the effects of such rotational fluctuations. Specifically, we took a set of configurations
from our model, and generated an ensemble of new configurations by performing a rotational
fluctuation with a random magnitude of all genomic regions along the polymers axial coordinate
within each configuration. The magnitude of this rotation was drawn from a zero-average normal
distribution, with the standard deviation σ treated as a free parameter. For this new ensemble
of configurations, including global rotation fluctuations, the long-axis correlations were calculated
between all genomic regions. The resulting long-axis correlation maps for this rotational model for
four choices of the standard deviation are shown in Supplementary Figure 26.

We see that for σ = 0.2Mb, the magnitude of correlations in the rotation model (Supplementary
Figure 26A, upper left) is comparable to those observed in the original MaxEnt model (Main Text
Fig. 3B, upper left). Importantly however, the anticorrelations in the rotation model are present
between all genomic regions on opposite stretches of the chromosome. Thus, in this case, we see
anti-correlation both between opposing genomic regions on the left and right chromosome arm and
between opposing genomic regions near ori and ter. This is in contrast to the pattern observed in
the original MaxEnt model, where the anticorrelations are only present between juxtaposed genomic
regions lying on opposite sides of the left and right chromosome arms and opposing genomic regions
near ori and ter exhibit positive correlations (Main Text Fig. 3B, upper left). For larger values of
σ, the anticorrelation pattern in the rotation model initially remains qualitatively the same as for
low σ, but the magnitude of correlations increases (Supplementary Figure 26A, lower right). For
even larger values of σ, the long-axis correlation pattern starts to qualitatively change: the region
of anticorrelation between ori and ter becomes larger (Supplementary Figure 26B). Furthermore,
the magnitude of anticorrelations is much higher for these values of σ than observed in the original
MaxEnt model.
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Supplementary Figure 26: Long-axis correlations for chromosome configurations with
global rotational fluctuations. A) Upper left: long-axis correlations for model configurations
with global rotational fluctuations along the polymer axis, drawn from a normal distribution with
σ=0.2Mb. Lower right: the same for σ=0.3Mb. B) Upper left: same for σ=0.7Mb, lower right:
same for σ=1Mb.

13 MaxEnt models for ∆smc cells and rifampicin-treated cells
We apply the same approach to perform a Hi-C data analysis and MaxEnt model inference for
rifampicin-treated cells and ∆smc cells. The prepossessing of Hi-C data is shown in Figs. 27 and 28,
and the corresponding MaxEnt models are shown in Figs. 29 and 30. We show the results for the
long-axis localization in Supplementary Figure 31 together with previously published experimental
data, and various correlation functions are depicted in Supplementary Figure 32.

A B

Supplementary Figure 27: Hi-C scores for rifampicin-treated cells before and after
correction. Hi-C scores of rifampicin-treated cells before correction (upper left triangle), and
after correction (lower right triangle) on a linear scale (A) and a logarithmic scale (B).
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Supplementary Figure 28: Hi-C scores for ∆smc cells before and after correction.
Hi-C scores of ∆smc cells before correction (upper left triangle), and after correction (lower right
triangle) on a linear scale (A) and a logarithmic scale (B).

A B

Supplementary Figure 29: Maximum entropy model inferred for rifampicin-treated
cells. A Comparison between experimental contact frequencies f exptij (upper left corner, adapted
from Ref. [12]) and contact frequencies obtained from our inferred MaxEnt model fmodel

ij (lower right
corner). B Inferred effective interaction energies εij (lower right corner) together with scatterplot
of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 30: Maximum entropy model inferred for ∆smc cells. A com-
parison between experimental contact frequencies f exptij (upper left corner, adapted from Ref. [12])
and contact frequencies obtained from our inferred MaxEnt model fmodel

ij (lower right corner). B
Inferred effective interaction energies εij (lower right corner) together with scatterplot of f exptij vs.
fmodel
ij (inset).
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Supplementary Figure 31: Distribution of long-axis positions for ∆smc and rifampicin-
treated cells. Comparison between inferred long-axes localization distributions for wild-type cells
(dashed lines) and ∆smc mutants (A, solid lines) and rifampicin-treated cells (B, solid lines).
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Supplementary Figure 32: Radial and angular correlations for ∆smc and rifampicin-
treated cells. Correlations in the radial positions (upper left corner) and orientations around the
long axis (lower right corner) between all pairs of genomic regions, for rifampicin-treated cells (A)
and ∆smc mutants (B).
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14 Estimates of localization information
To compute the localization information for a genomic region, we first calculate the average occupa-
tion P s,i of each unit cell s for each genomic region i during a forward simulation. The localization
entropy Siloc in bits of site i is then calculated by [16]

Siloc = −
∑
s

P s,i log2 P
s,i. (S8)

The positional information is calculated by subtracting Siloc from the localization entropy of a flat
distribution.

A possible issue with calculating positional information within a coarse-grained model, is that
the obtained value is an underestimate. This is the case if the localization is confined to a region
approximately the size of a unit cell. Since we find the localizations of genomic regions to be
significantly larger than this (Main Text Fig. 2B), we do not expect our estimate to be sensitive to
the course graining scale.

15 Local extension interval and origin of ori and ter exten-
sions

Supplementary Figure 33: Change of local extension with genomic distance Local
extensions, defined as the average distance between the nth nearest neighbours of a genomic region,
shown for n = 1 up to n = 4. The value of n = 2 is shown in the main text as its features are more
prominent than those for n = 1, but less smoothened out than for higher values of n. The locations
of the peaks are largely identical between these different choices for n.

A possible explanation for the low local extension of the ori and ter regions, would be the
turning around of the average long-axis positions at these regions. As the local extension of a
region is calculated as the average geometric distance between its nth neighbours, such an effect
could cause the observed low local extension. To test if this is the case, we make use of the presence
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of variations in the positions of the ori and ter ; for a subset of states, these will not be the furthest
regions along the long axis. If the inferred low local extension is indeed due to a ‘turning around’
of the chromosome at the ori and ter, the local extension would be expected to be higher for this
subset of states.

Taking a conditional average of the local extension of the ori over states where the previous 5
or subsequent 5 genomic regions all have an equal or lower long-axis position than the ori region,
we find an increase of only 2% compared to an average over all states. For the ter region, we find
the same statistics (2% increase if either set of 5 neighboring regions has a higher or equal long-axis
position than the ter). Thus, the inferred local density of the ori and ter regions reflect the intrinsic
extensions of these regions, rather than artefacts due to a turning around of the average long axis
positions at these sites.

16 Linear spatial organization of a polymer with juxtaposed
chromosomal arms

To investigate organizational features of a polymer with juxtaposed arms, but no additional struc-
ture, we derive a MaxEnt model taking average long-axis positions as the only constraints. This
model we term the linearly organized polymer model. To enable a direct comparison to MaxEnt
models learned from Hi-C data, we take the average long-axis positions predicted from these models
and use these as constraints for the linearly organized polymer. This allows us to investigate to
what extent features of the MaxEnt model based on Hi-C data are due to its linear organization
throughout the cell. For the linearly organized polymer model, the entropy functional takes the
following form:

S̃ =−
∑
{r}

P ({r}) lnP ({r})−
∑
i

λi

(∑
{r}

P ({r})zi(r) −〈zi〉cons
)
− λ0

(∑
{r}

P ({r})− 1

)
. (S9)

Here, zi(r) denotes the long-axis position of region i in configuration r, and 〈zi〉cons denotes the
imposed average long-axis position of region i. Extremizing this entropy functional and solving for
P ({r}) yields

P ({r}) =
1

Z
exp

[
−
∑
i

λizi(r)

]
, (S10)

with Z = exp[1 + λ0] as in the main text. The solutions for λi were found with an iterative Monte
Carlo algorithm similar to the one presented in 3, where the update of λi at each iteration of the
inverse algorithm is now proportional to 〈zi〉cons−〈zi〉model. The resulting organizational properties
of the linearly organized polymer model are presented in Supplementary Figure 34.
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Supplementary Figure 34: Model results for the linearly organized polymer model. A)
Average localization profile used as a constraint of the linearly organized polymer (line) together with
the experimental FISH [3] data shown in Main Text Fig. 2A. (dots). B)) Radial correlations (upper
left triangle) and angular correlations (lower right triangle) for the linearly organized polymer. C))
Long-axis correlations for the linearly organized polymer. D)) Results for the local extension as
in Main Text Fig. 5A, together with those for the linearly organized polymer. E)) Results for the
localization information as in Main Text Fig. 5B, together with those for the linearly organized
polymer.
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17 Independence of results for modified MaxEnt models
To test if our results are robust under minor model modifications, we inferred two alternative
MaxEnt models: one with a slightly curved confinement, and one with a tethered ori. The former
incorporates the typically observed C. crescentus cell shape, the latter enforces the experimentally
measured long-axis distribution of the position of the ori locus. The inferred models are shown in
Figs. 36 and 37.

2.2μm

0.63μm

Supplementary Figure 35: Top view of the curved cell shape used for analyses pre-
sented in this Note. A lattice spacing corresponds to 88nm, as in the Main Text model.

A B

Supplementary Figure 36: Results for Main Text Fig. 1, re-analyzed for a model with
tethered ori. A Comparison between experimental contact frequencies f exptij (upper left corner,
adapted from Ref. [12] and contact frequencies obtained from our inferred MaxEnt model fmodel

ij

(lower right corner). B Associated inferred effective interaction energies εij (lower right corner,
white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 37: Results for Main Text Fig.1, re-analyzed for a model with
a curved cell A Comparison between experimental contact frequencies f exptij (upper left corner,
adapted from Ref. [12] and contact frequencies obtained from our inferred MaxEnt model fmodel

ij

(lower right corner). B Associated inferred effective interaction energies εij (lower right corner,
white regions indicate εij →∞) together with a scatter plot of f exptij vs. fmodel

ij (inset).
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Supplementary Figure 38: Results for Main Text Fig. 2, re-analyzed for a model with
a tethered ori and a curved cell. A Average scaled long-axis position predicted from MaxEnt
models (solid lines) inferred for various MaxEnt models, including the model described in the main
text (black), a model for a curved cell (green), and a model with a tethered ori (red), together with
results from microscopy experiments (adapted from [3]). B Solid lines: localizations for a MaxEnt
model with a tethered ori. Dashed lines: Maxent model results as presented in Main Text Fig. 2.
C Solid lines: localizations for a MaxEnt model with a curved cell. Dashed lines: Maxent model
results as presented in Main Text Fig. 2.
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Supplementary Figure 39: Long-axis correlations and average distances for Maxent
models with a curved cell and a tethered ori. A Long-axis correlations for a Maxent model
with a curved cell (top left) and a tethered ori (bottom right). B Average distances for a Maxent
model with a curved cell (top left) and a tethered ori (bottom right).

A B

Main text model

Main text model

Supplementary Figure 40: Results for Main Text Fig. 5, re-analyzed for a model with
a tethered ori and a curved cell. A The local chromosome extension δi as a function of genomic
position. Model prediction are shown for the model described in the main text (black), a model
for a curved cell (green), and a model with a tethered ori (red). B Localization information per
genomic region in bits for the model described in the main text (black), a model for a curved cell
(green), and a model with a tethered ori (red).
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