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Supplementary Fig. 1. Changes to the microbiome at the level of 16S OTUs in the fasting+DASH and DASH groups, and changes
to the immunome in the DASH arm. Unconstrained Principal Coordinates graph with first two dimensions shown. Axes show fasting
and refeeding deltas in the case of fastingtDASH (A) and DASH, and V1-V2, V2-V3 deltas in the case of DASH after one-week
intervention and three-month. Pseudonym participant ID numbers are shown on the point markers. Transparent circle markers show
arithmetic mean position of one week intervention and three-month (A, B). Circles of (C) denote the same like in A and B, but with

Euclidean distances.
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Supplementary Fig. 2. Krona plots of abundances of microbiome taxonomic units derived
from 16S stool sequencing. Graphical overview of relative taxonomic composition of gut
microbiomes in the study. Stool samples were characterized using 16S sequencing from
samples collected at baseline (V1), post fasting / one week of DASH (V2) and after three
months (V3) intervention and. (A) Fasting + DASH. (B) DASH.
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Supplementary Fig. 3. Gating strategies. Events are shown after gating onto FSC-Area vs. SSC-
Area, followed by gating on doublet and dead cell exclusion. (A) Mucosa associated invariant T
(MALIT) cells were detected in PBMCs depleted of CD4" cells using magnetic microbead sorting.
MAITs were defined as CD161"TCRVa7.2"CD4-CD3". After restimulation with phorbol 12-
myristate 13-acetate (PMA) and ionomycin for 4hrs, MAITs were stained for IL-17A, TNFa, and
IFNYy. (B) Plots show cells gated on live events using LIVE/DEAD Fixable Aqua Dead Cell Stain
kit, for 405nm. T cell subsets were gated as CD8'CD4", CD25°CD4"CDS", and CD25"€"CD4*CD§-
. Activation of the T cells was assessed by expression patterns of CD45RO and CD62L. Cells were
defined as i) effector memory (Tem): CD45RO'CD62L°, ii) central memory (Tcm):
CD45ROCD62L", iii) naive (Tn): CD45ROCD62L", iv) terminally differentiated (Teff):
CD45ROCD62L", as shown in the scheme to the right. (C) Regulatory T cells (Treg) were defined
as CD4"CD25"ehCD127"°% population in isolated PBMCs. Activation status of the cells was
detected by the means of surface markers (CD45RA, CD39, and CD31). Representative plots
shown. (D) Identification of major cell population from whole blood staining. Whole blood was
stained with the respective antibodies followed by the subsequent lysis of the erythrocytes.
Samples were measured in a volumetric manner. (E) Identification of Th17 cells and Th17-like
CD25"eh CD4" cells by surface staining. (F) Intracellular marker expression of CD4" T cells. CD4"
cells were enriched from PBMCs using magnetic microbead sorting. After restimulation with
phorbol 12-myristate 13-acetate (PMA) and ionomycin for 4hrs, cells were stained with the
respective antibodies. For the analysis cells were further gated on the CD3" population. (G)
Monocytes were detected from whole peripheral blood mononuclear cell (PBMC) fraction.
Monocytes were gated in an HLA-DR™ or HLA-DR'CD16 subset. Classical, non-classical, and
intermediate monocytes were defined as CD14M'CD16°, CD14°"CD16"*, and CD14"CD16",
respectively. Plasmacytoid dendritic cells were defined as HLA-DR", CD14, CD16°, CD123".
Myeloid dendritic cells were defined as HLA-DR", CD14", CD167, CD11c¢". (A-G) correspond to
Fig. 1,3.4, (A, E-G) correspond to Fig. 5, (A,F,G) correspond to Fig. 6, (A,B,C,E) correspond to
Fig. 7.
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Supplementary Fig. 4. FlowSOM analysis of monocytes and antigen-presenting cells (APCs)
in the fasting arm. Peripheral blood mononuclear cells were labelled with fluorophore conjugated
monoclonal antibodies and measured with multicolor flow cytometry. Data was extracted from the
viable gate after doublet-exclusion and down sampled to 6000 events. Samples lacking 6000
events from the viable gate were excluded from the analysis. Monocyte like and APC-like nodules
were identified and annotated using the CD markers of the respective node. A-C, Increase (red) or
decrease (blue) for Fasting effect (A), Refeeding effect (B), and Study effect (C) is shown within
the nodes. D, Quantification of the relative changes between all three time points is shown by the
pie chart within the nodes. White, blue and red pie slices refer to V1, V2 and V3, respectively.
Blue and green background depicts monocytes and antigen-presenting cells, respectively. (n =17
for V1, V2 and V3).
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Supplementary Fig. 5. Microbiome functional potential changes during fasting are similar to those induced by metformin and
unlike those characteristic for MetS. To compare the microbiome signatures of fasting and refeeding to those seen in metabolic
syndrome and in the treatment of insulin resistance with metformin, we reanalyzed gut microbiome data from two previous studies
powered to test these two factors, respectively. To test associations between gut microbiome functional module (GMM) abundances and
metabolic syndrome status, we reanalyzed samples from Kushgulova et al.!, controlling for metformin treatment. To test associations
between gut microbiome functional module (GMM) abundances and metformin treatment, we reanalyzed samples from Forslund et al.2,
controlling for metabolic syndrome status. Size and direction (Cliff's delta) of significant effects are shown in the heatmap alongside
corresponding signals from the present study. Fasting, recovery, and overall study effect from our novel data are shown. Blue and red
indicate significant (MWU FDR < 0.1 for metformin/MetS status, respectively, post-hoc nested model test for confounder (the other
variable) P < 0.05) depletion/enrichment in each data set. White indicates non-significant effect or absence of the module in a dataset.
Modules significantly different in abundance in the metformin substudy show some overlap with and similar directional changes as in our
fasting study, whereas recovery exhibits the opposing pattern. MetS and metformin functional signals are starkly different from one
another, however there is little overlap between features altered in MetS and by fasting in our novel data.
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Supplementary Fig. 6. Decision tree for the determination of blood-pressure responders and
non-responders. Individual 24h systolic ambulatory blood pressure (SBP) and individual anti-
hypertensive medication at 3 months (V3) was evaluated in relation to baseline (V1) and patients
were categorized as responder, non-responder or not determinable. Normotensive SBP was defined
as being < 135 mm Hg. Significant change in the SBP was defined as an increase or decrease being
> 5 mmHg. Patients were categorized as responders if at V3: 1) their anti-hypertensive medication
was reduced and SBP was < 135 mm Hg, i1) anti-hypertensive medication was reduced and SBP
did not increase significantly, iii) if their anti-hypertensive medication did not change and their
SBP significantly decreased (Fasting n=22, DASH n= 17). Patients were categorized as non-
responders if at V3: 1) their anti-hypertensive medication was not changed and SBP did not
decrease significantly, ii) if their anti-hypertensive medication was increased but SBP did not
decrease (Fasting n= 10, DASH n = 14). Patients were categorized as not-determinable if at V3: 1)
their anti-hypertensive medication was decreased and SBP significantly increased, ii) their anti-
hypertensive medication was increased and SBP significantly decreased (Fasting n = 3, DASH =
5).
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Supplementary Fig. 7. Enterotype of fasting arm samples. Four enterotypes were identified,
which we classify as Ruminococcus-dominated, Prevotella-dominated, and two Bacteroides-
dominated enterotypes. (A) Fecal microbiome (n = 69) community variation on genus level, shown
in a principal coordinates analysis based on Bray-Curtis dissimilarities. Four enterotypes are
resolved, and shown using different colors. Paired samples are linked by grey lines. Ellipses
indicate 95% confidence interval. (B) Percentage of individuals with changed or unchanged
enterotype throughout the three time points (pre-intervention, post-fasting, followup). Raw counts
of samples falling within each outcome group are shown in the bars. (C) Proportion of enterotypes
in each case represented by stacked bar plot across time points. Most individuals retained the same
enterotype throughout the intervention, with a trend of change in enterotype (chi-squared test, P =
0.65).
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Supplementary Fig. 8. Association between the immunome, microbiome features and BMI.
Chord diagrams visualize the interrelation between body mass index (BMI), fasting impacted
microbiome functional or taxonomic features, and immune cell subsets. Features are shown that
form triplets of immune, microbial and phenotype variables where at least two of three correlations
are significant (Spearman FDR < 0.05, post-hoc nested model test accounting for same-donor
samples < 0.05) in the fasting arm of our cohort, and where in addition one or more feature
significantly (drug-adjusted post-hoc FDR < 0.05) are affected by the intervention. Color of the
connectors indicates positive or negative correlation (Spearman’s rho), color of the cells within
the tracks indicates changes upon fasting, refeeding or the overall study effect (Cliff’s delta). (A)
BMI/immune/taxonomic microbiome interrelations, (B) BMI/immune/microbiome KEGG
annotation interrelations. Identical non-gray colors of the inner track of immune features denote
the same immune features on (A) and (B).
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Supplementary Fig. 9. Long-lasting blood pressure responders and non-responders differ in
microbiome and immunome composition. (A-C) Cuneiform plot shows effect sizes (Cliff’s
delta; hue and marker size shows effect size, marker direction shows sign of effect) of immunome
features (A), gut functional profiles using KEGG and GMM (B), and gut taxon abundances
assessed using the mOTUv2 framework (C) significantly (posthoc FDR < 0.05) differing between
responders and non-responders at the different time points. (D), Prediction model for blood
pressure response using the changes of immune features between baseline (V1) and follow-up
(V3). Single subject prediction was quantified using a leave-one-out cross-validation approach.
Ten immune cell features were used to build up a multivariate logistic-regression algorithm. The
bar plots represent the regression in a model with binary output (responder yes=1 vs no=0) for
every feature. (E), Selection frequency of the different parameters for the prediction model shown
in Fig. 4c over the different classifiers built by using a leave-one-out cross-validation. (F),
Selection frequency of the different parameters for the prediction model shown in (D) over the
different classifiers built by using a leave-one-out cross-validation. Treg: CD25M$"CD127"°¥CD4".
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